接收机系统设计
某接收机测试台系统设计

设 计 以噪 声调 制 脉 冲信 号 为基 准 , 由 1. 4 它 0 2 MHz晶 体 输 出 后 经 集 成 电 路 C 0 0的 D4 4 24 0 8分 频 后 得 到 。S TC 触 发 脉 冲 、 步 检 波 脉 冲 及 接 收 脉 冲 , 别 以 噪 声 凋 制 脉 冲 为输 入 时 同 分 钟 , 双 单 稳 多 谐 振 荡 器 7 L 1 3延 时 得 到 。MGC 控 制 码 输 入 通 过 4位 轻 触 开 关 输 入 . 经 4S2 由
22 . 系 统 工 作 过 程
如 不 接 外 同 步 信 号 , 频 产 生 模 块 所 需 基 准 由 内部 提 供 , 过 测 试 台面 板 的按 键 1 ▲ 来 改 变 所 需 的 本 振 射 通 . r
。
测 试 台通 电后 , 入 外 同 步 信 号 , 试 台射 频 产 生 模 块 所 需 基 准 由外 同步 提 供 接 测
第 3 1卷
图 3 自动 切 断 电 路 框 图
3 射 频 模 块 部 分 原 理
射频模块部分包 括两部分 :
a .本 振 产 生 电 路 ;
b .相 参 6 MHz 生 电 路 。 0 产
两 个 部 分 都 是 以锁 相 环 路 来 实 现 的 。 采用 美 国 Qu lo ac mn公 司 生 产 的 高 性 能 单 片 锁 相 环
脉 冲 , 声 调制脉 冲 , 步检 波脉 冲, 噪 同 MGC 控 制 码 以 及 同 步 基 准 信 号 、 射 调 制 信 号 , 于 接 发 用 收 系统 的 生 产 、 试 及 交 验 。 调
2 总 体 方 案 J / 木
21 . 总 体 设 计
测 试 台 由五 部 分 组 成 , 图 1所 示 。 如 第一部 分 : MGC码 及 脉 冲产 生 数 字 电 路 。
卫星导航系统接收机原理与设计——之一(上)

Satelliteclassroom卫星课堂卫星导航系统接收机原理与设计——之一(上)+刘天雄第二十四讲概述 Receiver overview全球卫星导航系统简称GNSS(Global Navigation Satellite System)系统,由空间段SS(space segment)、地面控制段CS(control segment)以及用户段US(user segment)三个部分组成,其中用户段US就是咱们手里拿的接收机。
空间段SS的每颗导航卫星连续播发无线电导航信号,简称为SIS信号(Signals In Space),通常是L频段无线电信号,载波信号调制有周期数字码(periodic digital code)和导航电文(Navigation message),周期数字码又称为伪随机噪声测距码,简称PRN(pseudo-random noise code)码。
卫星导航系统定位的基本原理是单向到达时间测距,简称TOA(Time Of Arrival)原理,接收机通过解调导航信号的电文得到卫星的位置坐标,通过测量导航信号从卫星到接收机的传播时间来测距,以导航卫星为球心,信号传播的距离为半径画球面,用户接收机一定在球面上,当接收机分别测量出与四颗导航卫星之间的距离时,四个球面相交于一个点,即用户接收机的位置坐标,如图1所示。
如果是导航仪,接收机根据位置坐标和数字地图的映射关系,可以把定位结果映射到数字地图上,在显示屏上给出地址信息。
根据不同的应用场景,卫星导航接收机可以设计成多种不同状态,从单频(single-frequency)到多频(multi-frequency)、从单系统(single -constellation)到多系统(multi-constellation)、从专业测量型(survey)到一般车载导航型(automotive applications),设计接收机时还需要考虑信号带宽(signal bandwidth)、信号调制(modulation)、伪码速率(code rate)等技术指标,权衡工作性能(performance)、成本(cost)、功耗(power consumption)以及自主性(autonomy)等要求。
数字信道化接收机系统设计及硬件实现

1、前端模拟接收机
前端模拟接收机是数字信道化接收机的关键部分,主要作用是对输入信号进 行低噪声放大、滤波和混频等处理,将接收到的信号转换为适合ADC采样的中频 信号。在设计前端模拟接收机时,需要考虑以下因素:
(1)灵敏度:灵敏度是接收机的关键指标之一,它决定了接收机能够接收 到的最小信号强度。为了提高系统的灵敏度,需要选择低噪声放大器(LNA)和 混频器等具有低噪声性能的器件。
2、ADC
ADC是将模拟信号转换为数字信号的关键器件。在选择ADC时,需要考虑以下 因素:
(1)采样率:采样率是ADC的重要指标之一,它决定了可以采样的频率范围。 为了满足数字信道化接收机的需要,需要选择具有足够采样率的ADC。
(2)分辨率:分辨率是ADC的另一个重要指标,它决定了数字信号的精度。 为了提高系统的性能,需要选择具有足够分辨率的ADC。
(1)传输速率:传输速率是高速数据接口的重要指标之一,它决定了数据 传输的速度和质量。为了满足数字信道化接收机的需要,需要选择具有足够传输 速率的高速数据接口。
(2)接口类型:接口类型是指高速数据接口所采用的接口协议和标准。为 了实现与其他设备的兼容和互操作,需要选择具有通用性强的接口类型,如以太 网、光纤通道等。
数字信道化接收机系统设计及 硬件实现
目录
01 一、系统设计
03 参考内容
02 二、硬件实现
随着通信技术的快速发展,数字信道化接收机系统在通信、雷达、电子对抗 等领域的应用越来越广泛。本次演示将介绍数字信道化接收机系统的设计原则和 硬件实现方法。
一、系统设计
数字信道化接收机系统主要包括前端模拟接收机、模数转换器(ADC)、数 字信号处理器(DSP)和高速数据接口等部分。
感谢观看
雷达接收机自动测试系统设计

工作方舱内 ,指标测试至少需要 4人 /15 . 小时 ,才能完成 一套接收机的测试 工作 , 并 且 还 有 人 为 因素 的 存 在 , 数 据 准 确 度 不 高 。这些 不利 因素都 制约 了接收 机测
试 工 作的 发 展 。
控制软件主要功能是方便用 户设置各 种 参 数 ,并 控 制 设 备 按 照 预 定 程 序 运 行 ,并从 测试 设 备 中采 集 测试 数据 。 计算显示软 件主要功能是把采集到的 数 据进 行计算 ,并 把 测试 结果 存档 或送
meh d i ta io t a r o o ta t. t o w t r d in O c r y n c n r s h t
P d r e ie ; T s ; A t m t  ̄ a rc v r & e et uo a i c
接收 机 指标 比较 多 ,而 且频率 变化 范 围大 , 测 试 要 逐 步 进 行 , 需 要 较 多 的 人 员配置和 浪 费大量 时 间 ,以某 大型雷 达为例 ,接收 机有 8个正常通道 ,接收机 通道 的两端分 别在距离很远的天线车上和
到显 示 器 显示 。
每个 测试 仪表设 置测 试参 数 ,重 复性 工 作较 多 ,并 且 容易误 操作 。 自动测试 系 统 只 需 要 设 置 一 次 参 数 , 控 制 系 统 自动 把 参数 分配 给每 个仪 表 ,操 作简 单 ,使 用 方便 。 传统测试的数据处 理全部靠 人完成 , 在 自动测 试 系统 中 ,消除 了人 为因素 对 数 据 的 影 响 ,提 高 了测 试 数 据 的 准 确
DVB-T内接收机系统的设计与仿真的开题报告

DVB-T内接收机系统的设计与仿真的开题报告题目:DVB-T内接收机系统的设计与仿真一、选题背景数字电视已经成为了现代电视技术中重要的一环,标准化的数字电视技术使得多媒体应用具有了更大的空间。
其中,DVB-T是一种数字电视广播的标准,它采用的是OFDM技术,可以提供更高的频谱利用率和抗干扰能力。
因此,DVB-T的研究和应用也得到了广泛的关注。
本课题旨在设计和仿真基于DVB-T标准的内接收机系统,深入研究数字电视技术的原理和实现。
二、研究内容和技术路线本课题的主要研究内容是基于DVB-T标准的内接收机系统的设计和仿真,主要包括以下几个方面:1. DVB-T标准的研究。
研究数字电视技术的原理和实现,深入了解DVB-T标准的OFDM技术、调制方式、信道编码等方面的知识。
2. 内接收机系统的设计。
考虑系统中需要使用的模块,如前置放大器、混频器、低通滤波器、A/D转换器、数字处理器等,以及它们之间的协调工作和数据传输。
3. 系统仿真。
使用Matlab/Simulink工具对内接收机系统进行仿真,分析系统的性能和各个模块间的关系。
技术路线如下:1. 理论学习:深入学习数字电视技术和DVB-T标准的相关知识。
2. 系统设计:根据DVB-T标准的要求,设计内接收机系统的各个模块。
3. 仿真分析:使用Matlab/Simulink工具对内接收机系统进行仿真分析,评估系统的性能和各个模块间的关系,并进行调试。
4. 结果分析:评估系统的性能和可行性,优化系统设计。
三、预期成果本课题预期达到以下成果:1. 深入了解数字电视技术和DVB-T标准的相关知识。
2. 设计符合DVB-T标准的内接收机系统,并进行仿真分析。
3. 对系统进行调试和优化,评估系统性能和可行性。
四、研究意义数字电视技术已经进入了快速的发展时期,而DVB-T是数字电视领域的重要标准之一。
本课题的研究可以深入探究数字电视技术的原理和实现,了解DVB-T标准的细节,提高学生的综合实践能力。
射频接收机前端AGC系统的电路设计

射频接收机前端AGC系统的电路设计提纲:一、射频接收机前端AGC系统的基本原理及设计要点二、传统射频接收机前端AGC系统挑战及优化设计技术三、现代射频接收机前端AGC系统设计方法研究四、射频接收机AGC系统的性能评估与实验测量五、未来射频接收机前端AGC系统的发展趋势和展望一、射频接收机前端AGC系统的基本原理及设计要点AGC(Automatic Gain Control)系统是射频接收机的重要组成部分,在信道不稳定的环境下可以实现信号输入电平的自动控制。
其主要功能是控制单位电平内射频前端放大器的信息增益,以确保信号在最佳的动态范围内运行。
射频接收机前端AGC系统的设计要点主要包括信号放大段、包络检波环节、比较环节和控制回路。
其中,信号放大段的设计为AGC系统的核心,关系到整个系统性能的优劣。
当前,射频接收机前端AGC系统的设计主要分为两大类:一类是传统模拟AGC系统,它采用经典的线性控制回路,具有结构简单,功耗低,抗干扰能力强等优点;另一类是数字AGC系统,它基于DSP的现代控制理论,具有精度高,响应速度快等优点。
二、传统射频接收机前端AGC系统挑战及优化设计技术目前,传统AGC系统仍然是射频接收机中最常用的设计方案之一。
然而,传统AGC系统在设计中还存在一些挑战,主要包括信号失真、抗干扰能力不足和高功耗等问题。
为克服这些问题,优化设计技术主要包括:1、引入自适应控制器,利用反馈控制环节提高控制精度和系统鲁棒性,增强系统的稳定性和抗干扰能力。
2、优化模拟电路设计,提高系统带宽、增益平坦度和延时响应特性,并减少失真和噪声干扰。
3、使用低功耗模拟电路设计,降低系统功耗并提高信号处理速度。
三、现代射频接收机前端AGC系统设计方法研究现代射频接收机前端AGC系统采用数字控制理论,利用高速AD/DA转换器实现对系统的数字控制。
其优点在于精度高,控制方便和响应速度快等。
目前,现代AGC系统主要分为三类:1、基于改进的遗传算法和FPGA的AGC系统,该设计主要以FPGA为核心控制器,利用改进的遗传算法实现AGC控制回路,并通过DSP进行算法协调。
数字信道化接收机系统设计与硬件实现

5.3调试结论
通过调试,证明在该硬件平台上能够完成数字信道化接收机功能,包括:AD、DDC、数据预处理和信道化处理,能实现多模式动态配置,单块电路板可同时处理三通道模拟信号。目前系统主要参数为:中频:70MHz;带宽2MHz;采样率: 32.768MHz;抽取后数据率:2.048MHz;最大多相因子:8;最小子信道带宽: 125Hz。在该硬件平台上通过软件设计可改变以上参数,适应不同的系统要求。因此,该硬件平台满足系统需求,且具有通用性、灵活性。
AD6654的并口包括一个并口时钟PCLK,16位数据总线P[15:0],两个握手信号:ACK、REQ,三个指示信号:IQ、GAIN、CH[2:0]。并口时钟由AD6654的DDC模块输入时钟CLK经片上PLL分频得到,最高频率可达200MHz.ACK 是输入信号,表示FPGA准备好接收数据;REQ是输出信号,表示AD6654输出有效数据,因为DDC后数据率较低,并口时钟较高,因此并口数据不是连续的, REQ信号就特别重要;IQ信号用来指示I/Q两路数据,在REQ有效时IQ有一个周期为高表示该周期数据是I,下一周期IQ为低,表示该周期数据是Q。GAIN也有一个周期为高,表示该周期的数据是AGC增益字,但AGC功能可以被旁路,则没有增益字输出,GAIN始终为低,REQ的有效周期也会少一个。cri[2:o]在数
第五章系统接口及控制模块的实现
该IP Core的工作原理是:输入工作时钟outclock,datain h和datain1分别输入上升沿和下降沿要传送的数据,在输出端数据就会以DDR的形式输出。该系统用四个1-bit的altddio out核并行为链路口的四根数据线提供DDR数据。例如对应data的最低8-bit数据:data0-7,我们将data0、data4作为第一个altddio_out的输入,datal、data5;data2、data6;data3、data7分别作为第二、三、四个altddio_out 的输入,则在时钟上升沿输出data0、datal、data2和data3,下降沿输出data4、data5、data6和data7。使用IP Core不仅减少了程序设计的工作量,而且IP Core成熟的技术提高了系统在高速传输中的稳定性。输出时钟由CLK通过延迟和移相再和输出时钟使能信号相与得到,严格保证输出时钟:clk Out与数据的相对关系。
接收机的设计范文

接收机的设计范文接收机是无线通信系统中至关重要的一个组成部分。
它负责接收和解码传输的无线信号,将其转化为可识别的信息。
接收机的设计对通信质量和性能至关重要。
在接收机的设计过程中,需要考虑以下几个方面:1.频率范围选择:接收机设计的第一步是选择适当的频率范围。
不同的无线通信系统使用不同的频率范围。
根据实际需求,选择适当的频率范围会减小干扰的风险,以获得更好的通信质量。
此外,还需要考虑频率范围内的信号强度及其特征。
2.灵敏度要求:灵敏度是接收机接收和解码无线信号的重要参数。
它定义了接收机能够接收到的最小信号强度。
提高接收机的灵敏度可以增强接收机对低信号强度情况下的接收能力。
为了实现更高的灵敏度,可以采用高增益的天线、低噪声放大器和增加接收机的功率等方法。
3.抗干扰能力:在无线通信环境中,接收机需要面对各种干扰源,如电磁干扰、多路径传播等。
设计一个具有良好的抗干扰能力的接收机可以提高接收到正确信号的准确性。
为了实现这一点,可以采用数字信号处理技术,如滤波、自适应等。
4.功耗控制:接收机的功耗也是一个值得考虑的问题。
高功耗可能导致电池寿命短暂,增加了系统维护的成本。
为了降低接收机的功耗,可以采用低功耗电子元件、优化电路设计和电源管理技术等。
5.数据处理与解码:接收到的无线信号通常是经过编码或调制的。
设计一个有效的接收机需要能够解码并提取信息。
这通常涉及到数字信号处理的技术,如解调、解码、信道估计等。
为了提高数据处理的效率和准确性,可以采用高速处理器和专用硬件等。
6.系统性能评估:最后,设计一个接收机需要对其性能进行评估和测试。
通常可以通过信噪比、误码率、数据吞吐量和距离等指标来评估接收机的性能。
通过不断优化设计,可以提高接收机的性能。
总之,接收机的设计是一个复杂的过程,需要考虑诸多因素。
它不仅仅与硬件设计有关,还与信号处理、数据解码等方面密不可分。
只有综合考虑这些因素,才能设计出优秀的接收机,满足无线通信系统中的要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
接收机系统设计接收机设计是一种综合性的挑战,首先要明确设计目的,即设计那一种接收机,不同种类接收机的设计方法是大不相同的。
然后根据系统设计的指标要求进行全面分析,寻找出设计重点或难点,即是高灵敏度设计;或是高线性设计;或是大动态范围设计;还是宽频带设计。
不同的设计重点有不同的实现方法,根据系统要求的性能指标,首先要确定:1.接收机的结构形式,设计系统实现的原理方框图。
确定采样超外差式结构,零中频结构,还是数字IF结构;确定采样本振频率合成器的类型;确定是一次变频还是多次变频结构,是否用高中频;确定信号的动态范围及接收机的线性度。
2.接收机功能电路实现及系统线路组成,设计电路图。
本章对一般接收机的设计方法不作详细的讨论,只重点讨论接收机设计中有关高线性度和大动态范围实现的具体方法,这也是本课题实现中的难点所在。
§大动态范围接收机设计方法接收机动态范围DR(Dynamic Range),是指接收机能够接收检测到的信号功率从最小可检测信号MDS到接收机输入1-dB压缩点之间的功率变化范围,是接收机最重要的性能指标之一。
第二章对动态范围已经作了详细的论述。
通常,一般的接收机都具有60dB~80dB的动态范围,现代接收机则对动态范围指标提出相当苛刻的要求,往往超过100dB。
如本项目动态范围指标要求做的大于120dB。
实现接收机动态范围的功能电路是接收机中的AGC,自动增益控制电路。
AGC是一个闭环负反馈自动控制系统,是接收机最重要的功能电路之一。
接收机的总增益通常分配在各级AGC电路中,各级AGC电路级联构成总的增益。
在接收微弱信号时,接收机要具有高增益,将微弱信号放大到要求的电平,在接收机靠近发射电台式时,AGC控制接收机的总增益,使接收机对大信号的增益很小,甚至衰减。
接收机动态范围实现的示意图如下图所示。
图1-1 接收机动态范围实现AGC 的一般原理框图如下,是一个直流电压负反馈系统,控制信号代表信道输出幅度检波后的直流值与参考电压之间的误差值,若输图1-2 接收机动态范围实现入信号幅度变化,则控制信号也随着变化,其作用是使误差减小到最小值。
对AGC 环路的要求随输入信号的调制类型不同而不同。
通常,AM 信号对AGC 的要求较FM 接收机或脉冲雷达接收机要严格的多。
通常接收机第一级AGC 的输入级的信号动态范围最大,而且第一级AGC 一般要求要具有衰减作用以提高接收机接收大信号的能力。
在AGC 电路中必须保证信道放大器工作在线性区域,即小于器件的1-dB 压缩点,否则就会产生失真。
------ou d B 0-5-15--20输入信号功率§1.1.1 自动增益控制AGC 原理§1.1.1.1 线性AGC 原理AGC 系统从根本上说是一个非线性系统。
很难得到描述系统动态特性的非线性动态方程的通解。
但是,对于一些系统,可以求得系统的闭环解。
对于大多数系统可以根据系统的小信号模型导出近似解。
图1-3 线性(以分贝为单位)AGC 系统上图是一个能用解析法求解的线性AGC 系统。
在这个系统中,可变增益放大器VGA 的增益为P ,服从以下的控制律:C aV e K P +=1 (1-1) 因此: C aV i o e K V V +=1 (1-2) 上式中V i 和V o 分别表示输入和输出信号的包络幅度。
而对数放大器的增益为:12ln V a V = (1-3)上式中K 2为包络检波器的增益。
包络检波器的输出总式正的,因此,对数放大器的输出为实数,即可正可负。
于是控制电压为)ln )((2o r V K V s F -= (1-3)上式中,F (s )为滤波器的传递函数。
因为可变增益放大器服从指数规律,有:i c o V K aV V 1ln ln += (1-4)V r控制电压为: i o c V K V aV 1ln ln -= (1-5) 即: 21ln )(ln )(ln )](1[ln K s aF K V s aF V s aF V r i o -++=+ (1-6) 对输入信号的响应为:r i o V s aF V s aF V )(ln )](1[ln +=+ (1-7)因为由对数运算有下式关系:o o V V 10log 3.2ln = (1-8)所以,可得到下式: o o o V V V 115.0203.2ln ==(dB ) (1-9) 令e o 和e i 分别表示以分贝为单位的输出和输入,则:)(1)(7.8)(1s aF V s aF s aF e e r i o +-+= (1-10) 因此,只要给出的输入量和输出量以分贝为单位表示,则具体的AGC 电路便可以用线性微分方程来描述。
该AGC 系统就可以用如下图所示的线性负反馈系统等效方框图来描述系统。
图1-4 线性(以分贝为单位)AGC 系统等效方框图上图中,环路的动态特性由滤波器的传递函数F (S )和可变增益放大器的系数a 来描述。
由于环路带宽必须受到限制,使它对存在于输入信号的任何幅度调制不作出响应,所以F (S )必须使低通滤波器。
环路的稳定性取决于滤波器的阶数和环路增益。
随着输入幅度的变化而产生的输出稳态增益为:)0(1aF e e io +∆=∆ (1-10)r式中F (0)为滤波器的直流增益。
应该使增量Δe o 随输入幅度的变化尽可能小。
为达到这一目的,应使直流环路增益尽可能大。
如果F (S )是一个一阶滤波器,且:1/)(-=B s K s F (1-11) 式中,K 是滤波器的直流增益,B 是滤波器的带宽,那么直流特性为:aKe e i o +∆=∆1 (1-12) 则图3-4所示的线性AGC 系统的总直流输出为:aKaK V aK e e r i o +++=1655.81 (1-13) 通常,环路传输aK 远大于1,所以输出e o 等于。
若以分贝为单位,则输出幅度与参考电压V r 成正比。
含有参考电压的AGC 环路,称为延迟AGC 。
延迟AGC 并不是指带宽的限制而延迟了增益控制,主要是指AGC 环路包含有参考信号。
简单的AGC 环路里不含有参考电压,这在一般低要求的接收机中是常见的,比如普通的收音机。
具有一阶低通滤波器环路的AGC 闭环传递函数为:1)1(11+++•+∆=∆aK B s B s aK e e i o (1-14) 对于所有的aK>0的闭环极点总在左半平面,所以这个系统基本是稳定的。
闭环系统频率响应的幅频响应图如下图1-5所示。
为了对输入信号幅度变化作出响应,AGC 环路应具有高通滤波器特性,即在高频时,AGC 的作用很小。
对于幅度调制信号,角频率ωL 应低于最低调制频率ωM :M L aK B ωω<+=)1( (1-15)这意味着滤波器带宽要比最低调制频率小得多,其原因是负反馈增大了闭环带宽。
图1-5 线性AGC 系统的频率响应如上所述,为了保持输出电平地恒定,应该保持尽可能大的直流环路增益。
一种方法是采用积分器作为滤波器,即F (S )=C/S 。
理想的积分器对直流的增益为无穷大,因此稳态输出幅度不会随着输入幅度的慢变化而变化。
这种滤波器的输出为:aCs a V aC s s s e s e r i o +++=6.8)()( (1-16) 在输入恒定时,稳态输出仍与参考电压成正比,即CV t e r o t 6.8)(lim =∞→ (1-17) §1.1.1.2 另一种AGC 模型分析许AGC 环路不含有对数放大器,因为对数放大器要和指数型可变增益放大器一起应用时才能构成线性AGC 模型。
但是对于不含对数放大器的AGC 系统,仍然可以导出其小信号模型。
小信号的限制时指:分析系统只对某一特定的工作点附近的微小变化量时正确的。
下图3-6是一个AGC 系统的原理方框图模型。
在该AGC 系统中,可变增益放大器和检测器是环路中仅有的非线性部件。
为了简化分析,而又不失一般性,假定检测器、差动放大器以及在可变增益放大器之后的放大器的增益都为1。
图3-6 具有两个非线性部件的AGC 系统基于以上的假设,上图所示的系统可用下图3-7所示的简化模型表示。
图1-7 图3-6所示AGC 系统的简化模型上图中,V o 和V i 现在指的是包络值,F 为低通滤波器和放大器组合的与频率有关的传递函数。
输出电压V o =PV o ,可变增益放大器的增益P 是V c 的函数。
控制电压为:F V V V o r c )(-= (1-18)输出电压对输入电压的导数为:ii i i i o dV dP V P PV dV d dV dV +==)( (1-19) 由于: io c i o o c c i c c i dV dV F dV dP dV dV dV dV dV dP dV dV dV dP dV dP )(-=== (1-20) 将式(3-20)代入到式(3-19),可得到:电V oP dV dP FV dV dV ci i o =+)1( (1-21) 或 1)1(-+=ci i i o o dV dP FV V dV V dV (1-22) 式(1-21)和(1-22)是图1-7所示AGC 环路的小信号微分方程。
对于在某一特定控制电压的增量变化,上式是正确的。
环路的传输函数为:ci dV dP V s F L )(-= (1-23) 是输入信号的函数,因此系统一般是非线性的。
由于系统的非线性特性,随着输入幅度变化而产生的如图1-5所示的系统暂态性能一般是难以得到的。
因为环路传输取决于输入幅度,故而闭环系统的极点也取决于输入幅度,暂态响应的速率也是如此。
如果图1-7所示系统中,AGC 环路含有一个具有线性特性的 P (V c )=V c 可变增益放大器和一个作为低通滤波器F (s )的积分器,且F (s )=K/s ,从式(3-23)可得:i V sK L -= (1-24) 而输入信号的微小阶跃变化为: ss V V i i i ∆=∆)( (1-25)因此,输出电压的归一化变化量为:ii o o KV s s V V +∆=∆)( (1-26) 反变换到时域: t KV i oo i e t V V -∆=∆)( (1-27) 可以看出环路动态特性时任何取决于输入信号的幅度的。
在AGC 系统中,关键时对暂态响应的控制,一般需要更复杂的环路。
如果可变增益特性P (V c )已知,就可以通过选择一个控制电压值作为起始点,来进行环路直流特性的数值计算。
以上讨论的AGC 系统都能提供对输出振幅的连续监测和对可变增益放大器的连续调整。
还有许多系统是间歇地监测输出负载的,并在间歇期间调节增益。
在其余时间,环路控制是开路的,并且在开路期间增益保持恒定。