共轭效应与超共轭效应的定义及特点
化学奥赛复习 专题11电子效应

化学奥赛复习 专题11电子效应一、共价键的极性: 1、共价键的极性:由不同原子形成的共价键,由于成键原子电负性不同,使成键电子云偏向电负性较大的原子,该原子带上部分负电荷,而电负性较小的原子带部分正电荷。
这种共价键具有极性。
HCl δ+2、共价键的极性主要决定于:(1)成键原子的相对电负性大小。
电负性差别越大,键的极性越大。
(2)还受相邻键和不相邻原子成基团的影响。
例如1:CH 3—CH 3中的C-C 为非极性键。
但CH 3—CH 2—Cl 中的C —C 键却是极性的。
CH CH Cl δ+δδ+δ+H 2CH3二、电子效应 :电子效应是指电子云密度分布的改变对物质性质的影响。
电子效应可以根据作用方式分为诱导效应和共轭效应两种类型 (一)、诱导效应(I ): 1、诱导效应的定义:由于成键原子电负性不同,引起电子云偏移可沿着沿键链(σ键和π键)按一定方向移动的效应或键的极性通过键链依次诱导传递的效应叫诱导效应。
2、诱导效应(I )的表示:诱导效应的正负以H 为标准,如吸电子能力较H 强,叫吸电子基,具有吸电子的诱导效应,用“-I ”表示。
如吸电子能力比H 弱,称给(或供)电子基,具有给(或供)电子的诱导效应,用“+I ”表示。
R 3C HR 3CR 3C (+I)(-I)Y:供电基Z:吸电基I=0标准例如2:CH CH Cl δ+δδ+δ+H 2CH33、诱导效应的相对强度,取决于基团吸电子能力或供电子能力的大小。
(即原子或原子团的电负性大小) (1)、产生诱导效应的基团:①、吸电子基团:产生吸电子诱导效应(-I ) 带正电荷的基团具有高度吸电子性,如:、 、等;卤素原子,如:—F 、—Cl 、—Br 、—I ;带氧原子或氮原子的基团,如:—NO 2、=C=O 、—COOH 、—OR 、—OH 、—NR 2、=NR 等; 芳香族或不饱和烃基,如:—C 6H 5、—C ≡CR 、—CR=CR 2等。
共轭效应与超共轭效应的定义及特点

超共轭效应的应用也很广泛,可以应用于对碳正离子稳定性的解释,碳游离基稳定性的解释,甲苯是邻对位定位基的解释,羰基活性的解释等.
(注:文档可能无法思考全面,请浏览后下载,供参考。可复制、编制,期待你的好评与关注)
3.2 σ-p超共轭
当烷基与正离子或游离基相连时,C-H上电子云可以离域到空的p空轨道或有单个电子的p轨道上,使正电荷和单电子得到分散,从而体系趋于稳定,称做σ-p超共轭体系.简单的说就是C-H的σ键轨道与p轨道形成的共轭体系称做σ-p超共轭体系.如乙基碳正离子即为σ-p超共轭体系.
参加σ-p超共轭的C-H数目越多,正电荷越容易分散,C正离子就越稳定.
中的都是+C效应.
当参与共轭的O. N只提供一个电子,而本身电负性大于C原子,所以有使共轭体系电子向O. N转移的能力,因此有-C效应.电负性大于C的原子参与的等电子共轭是吸电子共轭.例如:
都是-C效应.
大多数共轭效应是由碳的2p轨道与其他原子的p轨道重叠所产生的,当某原子参与共轭的p轨道的形状大小,能量与碳的2p轨道越接近时,轨道重叠越,离域越易,共轭作用越强.即共轭效应的强弱与参与共轭的原子轨道的主量子数有关.n=2时有强的共轭,n>2有弱的共轭,n越大共轭越弱.另外,元素的电负性越小,越容易给出电子,有较强的+C效应.相反,元素的电负性越大,越容易吸引电子,有较强的-C效应.因此共轭效应也有周期性变化.
1.共轭效应与超共轭效应的定义及特点
1.1共轭效应
不饱和的化合物中,有三个或三个以上互相平行的p轨道形成大π键,这种体系称为共轭体系.共轭体系中,π电子云扩展到整个体系的现象称为电子离域或离域键.
共轭效应:电子离域,能量降低,分子趋于稳定,键长平均化等现象称为共轭效应,也叫做C效应
共轭效应介绍.

2、P-π共轭
如氯乙烯,当氯原子的p轨道的对称轴与
键中的p轨道对称轴平行时,电子发生离域。
3、超共轭(σ-π共轭)
超共轭效应是由一个烷基的C-
H键的σ键电子与相邻的半满 或全空的p轨道互相重叠而产 生的一种共轭现象。
效应(推电子),但两者均较弱,因此既不能 进行阴离子聚合,也不能进行阳离子聚合,只 能进行自由基聚合。如氯乙烯、氟乙烯、四氟 乙烯均只能按自由基聚合机理进行。
13
凡共轭体系上的取代基能降低体系的π电
子云密度,则这些基团有吸电子共轭效应, 用-C表示,如-COOH,-CHO,-COR;凡共 轭体系上的取代基能增高共轭体系的π电子云 密度,则这些基团有给电子共轭效应,用+C 表示,如-NH2,-OH,-R。
电子离域
如1,3-丁二烯,四个π电子不是
两两分别固定在两个双键碳原子之 间,而是扩展到了四个碳原子之间, 象这种现象称为电子离域。它体现 了分子内原子之间的相互影响。
二、分类:
共轭效应大致分为三类: 1、π-π共轭 2、P- π共轭
3、超共轭(σ-π共轭)
1、π-π共轭
非饱和键(双键或三键)与单键交替分 布,形成π键的P轨道在同一平面上相互重 叠而成共轭体系,称之为π-π共轭
如:1,3-丁二烯, CH2=CH-CH=CH2中,可以 看作两个孤立的双键重合在 一起,π电子的运动范围不 再局限在两个碳原子之间, 而是扩充到四个碳原子之间。
共轭效应的结果
ⁿ ⑴键长相对缩短,电子云重叠得越多,电子云密度 越大,两个原子结合得就越牢固,键长也就越短,单双 键产生了平均化
共轭效应 定义

共轭效应定义共轭效应是指在化学反应中,某些分子或离子的结构和性质会因为共轭体系的存在而发生变化。
共轭体系是指由连续的多个π键构成的结构。
共轭体系可以改变分子的电子分布和电子云的稳定性,从而影响分子的化学行为。
共轭效应最早是由德国化学家奥托·迈尔斯(Otto Meier)在20世纪初提出的。
他发现,当分子中存在共轭体系时,分子的吸收和发射光谱发生了变化。
这些变化表明,共轭体系可以影响分子的电子结构和能级分布,从而改变分子的光学性质。
共轭效应在有机化学中具有重要的意义。
共轭体系可以增强分子的稳定性,提高分子的光学活性和电子云的扩展性。
共轭体系中的π电子可以自由移动,形成共振结构,从而增加分子的化学反应性。
例如,共轭双键的存在可以增加分子的亲电性,使其更容易与其他分子发生反应。
共轭效应还可以影响分子的光学性质。
共轭体系中的π电子可以吸收和发射特定波长的光,产生特定的光谱带。
这些光谱带可以用来确定分子的结构和性质,从而在化学分析和材料科学中有广泛的应用。
共轭效应还可以影响分子的色彩。
共轭体系中的π电子可以吸收特定波长的光,产生彩色化合物。
这些彩色化合物在染料工业和有机电子领域有重要的应用。
共轭效应不仅存在于有机化合物中,还存在于无机化合物和生物分子中。
在无机化学中,共轭体系可以改变金属离子的电子结构和光学性质。
在生物化学中,共轭体系可以影响生物分子的结构和功能,从而在生物学研究中具有重要的意义。
共轭效应是一种重要的化学现象,它可以影响分子的结构和性质。
共轭体系可以改变分子的电子分布和能级分布,从而影响分子的化学行为和光学性质。
共轭效应在有机化学、无机化学和生物化学中具有广泛的应用。
通过研究和理解共轭效应,我们可以更好地理解和控制化学反应和材料性质,推动化学科学的发展。
共轭效应

离域现象H2C=CH2,π键的两个π电子的运动范围局限在两个碳原子之间,这叫做定域运动。
共轭效应CH2=CH-CH=CH2中,可以看作两个孤立的双键重合在一起,π电子的运动范围不再局限在两个碳原子之间,而是扩充到四个碳原子之间,这叫做离域现象。
共轭效应这种分子叫共轭分子。
共轭分子中任何一个原子受到外界试剂的作用,其它部分可以马上受到影响。
这种电子通过共轭体系的传递方式,叫做共轭效应。
特点沿共轭体系传递不受距离的限制。
共轭效应,由于形成共轭π键而引起的分子性质的改变叫做共轭效应。
共轭效应主要表现在两个方面。
电子效应的一种。
组成共轭体系的原子处于同一平面,共轭体系的p电子,不只局限于两个原子之间运动,而是发生离域作用,使共轭体系的分子产生一系列特征,如分子内能低、稳定性高、键长趋于平均化,以及在外电场影响下共轭分子链发生极性交替现象和引起分子其他某些性质的变化,这些变化通常称为共轭效应。
共共轭效应轭效应是指在共轭体系中电子离域的一种效应是有机化学中一种重要的电子效应.它能使分子中电子云密度的分布发生改变(共平面化),内能减少,键长趋于平均化,折射率升高,整个分子更趋稳定。
编辑本段基本介绍“共轭效应是稳定的”是有机化学的最最基本原理之一.但是,自30年代起,键长平均化,4N+2芳香性理论,苯共轭效应环D6h构架的起因,分子的构象和共轭效应的因果关系,π-电子离域的结构效应等已经受到了广泛的质疑.其中,最引人注目的是Vollhardt等合成了中心苯环具有环己三烯几何特征的亚苯类化合物,Stanger等合成了键长平均化,但长度在0.143~0.148nm的苯并类衍生物.最近(1999年),Stanger又获得了在苯环中具有单键键长的苯并类化合物.在理论计算领域,争论主要表现在计算方法上,集中在如何将作用能分解成π和σ两部分.随着论战的发展,作用能分解法在有机化学中的应用不断地发展和完善,Hückel理论在有机化学中的绝对权威也受到了挑战.为此,简要地介绍了能量分解法的发展史,对Kollma法的合理性提出了质疑.此外特别介绍了我们新的能量分解法,及在共轭效应和芳香性的研究中的新观点和新的思维模式。
共轭效应与超共轭效应的定义及特点

1.共轭效应与超共轭效应的定义及特点共轭效应不饱和的化合物中,有三个或三个以上互相平行的p轨道形成大π键,这种体系称为共轭体系.共轭体系中,π电子云扩展到整个体系的现象称为电子离域或离域键.共轭效应:电子离域,能量降低,分子趋于稳定,键长平均化等现象称为共轭效应,也叫做C效应共轭效应的结构特点:共轭体系的特征是各σ键在同一平面内,参加共轭的p轨道轴互相平行,且垂直于σ键在的平面,相邻p轨道间从侧面重叠发生键离域.共轭效应与诱导效应相比还有一个特点是沿共轭体系传递不受距离的限制.超共轭效应烷基上C原子与极小的氢原子结合,由于电子云的屏蔽效力很小,所以这些电子比较容易与邻近的π电子(或p电子)发生电子的离域作用,这种涉及到σ轨道的离域作用的效应叫超共轭效应.超共轭体系,比共轭体系作用弱,稳定性差,共轭能小.2.共轭效应共轭的类型2.1.1 π-π共轭通过形成π键的p轨道间相互重叠而导致π电子离域作用称为π-π共轭.参加共轭的原子数目等于离域的电子总数,又称为等电子共轭.我们可以简单地概括为双键,单键相间的共轭就是π-π共轭.例如:共轭体系的分子骨架称做共轭链.2.1.2 p-π共轭体系通过未成键的p轨道(包括全满,半满及全空轨道)与形成π键的p轨道的重叠而导致的电子离域作用,称为p-π共轭.包括富电子,足电子,缺电子三种p-π共轭类型.我们也可以简单地理解为:双键相连的原子上的p 轨道与π键的p轨道形成的共轭即为p-π共轭.例如:共轭方向及强弱判断共轭效应的方向及强弱直接影响物质的性质和稳定性,因此共轭方向及强弱的判断也就有着非常重要的作用.能够给出电子的称给电子共轭,用符号+C表示.相反,能接受电子的称吸电子共轭,用符号-C表示.卤素,羟基,氨基,碳负离子等与双键直接相连时,X. O. N .C等原子的孤对电子对与π键共轭.由于是由一个原子向共轭体系提供两个电子,相当于使π电子密度增大,所以有给出电子的能力,称为+C效应.一般富电子p-π共轭都属于给电子共轭.例如:中的都是+C效应.当参与共轭的O. N 只提供一个电子,而本身电负性大于C原子,所以有使共轭体系电子向O. N 转移的能力,因此有-C效应.电负性大于C的原子参与的等电子共轭是吸电子共轭.例如:都是-C效应.大多数共轭效应是由碳的2p轨道与其他原子的p轨道重叠所产生的,当某原子参与共轭的p轨道的形状大小,能量与碳的2p轨道越接近时,轨道重叠越,离域越易,共轭作用越强.即共轭效应的强弱与参与共轭的原子轨道的主量子数有关.n=2时有强的共轭,n>2有弱的共轭,n越大共轭越弱.另外,元素的电负性越小,越容易给出电子,有较强的+C效应.相反,元素的电负性越大,越容易吸引电子,有较强的-C效应.因此共轭效应也有周期性变化.同一类元素随n值增大,共轭减弱;同一周期n值相同,随原子序数增大,电负性增大,给电子共轭效应减弱;吸电子共轭主要有电负性决定,电负性越大,吸电子共轭越强.3. 超共轭效应超共轭效应视其电子电子转移作用分为σ-π.σ-p .σ-σ几种,以σ-π最为常见.σ-π超共轭丙烯分子中的甲基可绕C—Cσ键旋转,旋转到某一角度时,甲基中的C-Hσ键与C=C的π键在同一平面内, C-Hσ键轴与π键p轨道近似平行,形成σ-π共轭体系,称为σ-π超共轭体系.在研究有机反应时有着重要的应用,在学习不对称烯烃的HX加成反应时,我们以C正离子形成的稳定性来解释马尔科夫尼科夫规则,若应用σ-π超共轭效应,则不仅说明甲基是推电子的,同时加深了对这一经验规则的深入理解.再如,不饱和烯烃的a-H的特殊活泼性也可以用σ-π超共轭效应来理解.丙烯的甲基比丙烷的甲基活泼的多,在液氨中丙烯中甲基的H易被取代,丙烷中甲基的H不易被取代.σ-p超共轭当烷基与正离子或游离基相连时,C-H上电子云可以离域到空的p空轨道或有单个电子的p轨道上,使正电荷和单电子得到分散,从而体系趋于稳定,称做σ-p超共轭体系.简单的说就是C-H的σ键轨道与p轨道形成的共轭体系称做σ-p超共轭体系.如乙基碳正离子即为σ-p超共轭体系.参加σ-p超共轭的C-H数目越多,正电荷越容易分散,C正离子就越稳定.应用超共轭效应的应用也很广泛,可以应用于对碳正离子稳定性的解释,碳游离基稳定性的解释,甲苯是邻对位定位基的解释,羰基活性的解释等.。
共轭效应

4
04-06 共轭效应
三. 共轭效应在有机化学中的应用
判断或解释有机反应活性中间体的稳定性
碳正离子、碳负离子、自由基、不同取代的烯烃
例如:比较下列烯烃的稳定性
>
12个σ-π 超共轭 9个σ-π 超共轭
>
6个σ-π 超共轭Βιβλιοθήκη 504-06 共轭效应
例如:比较下列碳正离子的稳定性
>
p-π共轭
>
σ-p超共轭 6个C-H
04-06 共轭效应
二. 超共轭效应
1. 含义及分类
含义:一种特殊的共轭(-、-p) -超共轭效应: 键与C-H 键共轭产生的电子离域效应。
-p超共轭效应:C-H 键与p轨道共轭产生的电子离域效应。
-超共轭效应
-p超共轭效应
04-06 共轭效应
2. 产生的原因 原因:H原子体积小,C—H键电子云的形状及大小与碳原子的p轨 道相差不大,且近似平行,易与邻位的或p电子发生相互作用,形 成-、-p共轭体系。 3. 超共轭效应的特征 超共轭效应比共轭效应弱得多; 在超共轭效应中, 键一般是给电子的, C-H键越多超共轭效应越大。 -CH3 > -CH2R > - CHR2 > -CR3
>
σ-p超共轭 3个C-H
>
无共轭
σ-p超共轭 9个C-H
6
04-06 共轭效应
一. 共轭效应
1. 共轭效应的定义
分子体系内一种特殊的非成键重叠(部分重叠)方式,从而使分子更稳
定、内能更小、键长趋于平均化的效应,叫共轭效应。
电子离域
04-06 共轭效应
2. 共轭效应的分类 π- π p- π
共轭效应 定义

共轭效应定义共轭效应是指在某些情况下,两个或多个变量之间的关系不仅仅是线性的,而是非线性的。
这种非线性关系可以通过改变一个变量来影响另一个变量的方式来体现。
共轭效应在物理学、化学、生物学等领域中都有广泛的应用。
本文将从不同领域的角度来介绍共轭效应的定义和应用。
在物理学中,共轭效应是指在某些情况下,两个变量之间的关系不仅仅是简单的线性关系,而是存在一定的非线性关系。
这种非线性关系可以通过改变一个变量来影响另一个变量。
例如,在光学中,共轭效应可以通过调整透镜的焦距来实现。
当一个光束通过透镜时,透镜会将光束聚焦在焦点上。
如果我们将一个透镜放在光束的路径上,它将会产生一个与原来光束相对称的光束。
这就是光学中的共轭效应。
在化学领域中,共轭效应是指分子中的π电子云的重叠形成的一种特殊的电子结构。
共轭效应可以影响分子的化学性质,使得分子具有特殊的光学、电学、磁学等性质。
例如,共轭双键是一种常见的化学结构,它由两个相邻的双键构成。
共轭双键可以使分子具有特殊的光学吸收和发射性质,因此在荧光染料、有机发光二极管等领域中有着广泛的应用。
在生物学中,共轭效应是指某些基因或信号通路之间的相互作用。
这种相互作用可以通过改变一个基因或信号通路来影响另一个基因或信号通路的表达或活性。
例如,在免疫系统中,共轭效应可以通过调节细胞之间的相互作用来调节免疫应答。
当免疫细胞受到外界刺激时,它们会释放一些信号分子,这些信号分子可以影响其他免疫细胞的活性,从而调节整个免疫应答。
除了物理学、化学和生物学,共轭效应还在其他领域中有着广泛的应用。
在经济学中,共轭效应可以用来研究不同市场之间的相互影响。
在社会学中,共轭效应可以用来研究不同群体之间的相互作用。
在心理学中,共轭效应可以用来研究不同刺激之间的相互影响。
无论在哪个领域,共轭效应都是研究变量之间相互作用的重要工具。
共轭效应是指在某些情况下,两个或多个变量之间存在非线性关系,可以通过改变一个变量来影响另一个变量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 共轭效应与超共轭效应的定义及特点
共轭效应
不饱和的化合物中,有三个或三个以上互相平行的p轨道形成大n键,这种体系称为共轭体系•共轭体系中,n电子云扩展到整个体系的现象称为电子离域或离域键
共轭效应:电子离域,能量降低,分子趋于稳定,键长平均化等现象称为共轭效应,也叫做C效应
共轭效应的结构特点:共轭体系的特征是各6键在同一平面内,参加共轭的P轨道轴互相平行,且垂直于(T
键在的平面,相邻P轨道间从侧面重叠发生键离域•共轭效应与诱导效应相比还有一个特点是沿共轭体系传递
不受距离的限制•
超共轭效应
烷基上C原子与极小的氢原子结合,由于电子云的屏蔽效力很小,所以这些电子比较容易与邻近的n电子(或p电子)发生电子的离域作用,这种涉及到
6轨道的离域作用的效应叫超共轭效应•超共轭体系,比共轭体系作用弱,稳定性差,共轭能小•
2. 共轭效应
共轭的类型
2.1.1 n-n共轭
通过形成n键的p轨道间相互重叠而导致n电子离域作用称为n-n共轭.参加共轭的原子数目等于离域
的电子总数,又称为等电子共轭•我们可以简单地概括为双键,单键相间的共轭就是n-n共轭.例如:共轭体系的分子骨架称做共轭链
2.1.2 p- n共轭体系
通过未成键的p轨道(包括全满,半满及全空轨道)与形成n键的p轨道的重叠而导致的电子离域作用,称
为p- n共轭.包括富电子,足电子,缺电子三种p- n共轭类型.我们也可以简单地理解为:双键相连的原子上的p
轨道与n键的p轨道形成的共轭即为p- n共轭.例如:
共轭方向及强弱判断
共轭效应的方向及强弱直接影响物质的性质和稳定性,因此共轭方向及强弱的判断也就有着非常重要的
作用.
能够给出电子的称给电子共轭,用符号+C表示.相反,能接受电子的称吸电子共轭,用符号-C表示.
卤素,羟基,氨基,碳负离子等与双键直接相连时,X. O. N .C等原子的孤对电子对与n键共轭.由于是由一
个原子向共轭体系提供两个电子,相当于使n电子密度增大,所以有给出电子的能力,称为+C效应.一般富电子p- n共轭都属于给电子共轭.例如:
中的都是+C效应.
当参与共轭的O. N只提供一个电子,而本身电负性大于C原子,所以有使共轭体系电子向O. N转移的
能力,因此有-C效应.电负性大于C的原子参与的等电子共轭是吸电子共轭.例如:
都是-C效应.
大多数共轭效应是由碳的2p轨道与其他原子的p轨道重叠所产生的,当某原子参与共轭的p轨道的形状大小,能量与碳的2p轨道越接近时,轨道重叠越,离域越易,共轭作用越强•即共轭效应的强弱与参与共轭的原
子轨道的主量子数有关.n=2时有强的共轭,n>2有弱的共轭,n越大共轭越弱.另外,元素的电负性越小,越容易给出电子,有较强的+C效应.相反,元素的电负性越大,越容易吸引电子,有较强的-C效应.因此共轭效应也有周
期性变化.
同一类元素随n值增大,共轭减弱;同一周期n值相同,随原子序数增大,电负性增大,给电子共轭效应减弱
吸电子共轭主要有电负性决定,电负性越大,吸电子共轭越强.
3. 超共轭效应
超共轭效应视其电子电子转移作用分为o- n . -p . (- a几种,以o- n最为常见.
c- n超共轭
丙烯分子中的甲基可绕C—C o键旋转,旋转到某一角度时,甲基中的C-Hc键与C=C的n键在同一平面内
C-H -键轴与n键p轨道近似平行,形成l n共轭体系,称为o- n超共轭体系.
在研究有机反应时有着重要的应用,在学习不对称烯烃的HX加成反应时,我们以C正离子形成的稳定性
来解释马尔科夫尼科夫规则,若应用bn超共轭效应,则不仅说明甲基是推电子的,同时加深了对这一经验规
则的深入理解.再如,不饱和烯烃的a-H的特殊活泼性也可以用& n超共轭效应来理解.丙烯的甲基比丙烷的甲
H易被取代,丙烷中甲基的H不易被取代.
基活泼的多,在液氨中丙烯中甲基的
o-p超共轭
当烷基与正离子或游离基相连时,C-H上电子云可以离域到空的p空轨道或有单个电子的p轨道上,使正电荷和单电子得到分散,从而体系趋于稳定,称做o-p超共轭体系.简单的说就是C-H的(键轨道与p轨道形成
的共轭体系称做^p超共轭体系.如乙基碳正离子即为o-p超共轭体系.
参加o-p超共轭的C-H数目越多,正电荷越容易分散,C正离子就越稳定.
应用
超共轭效应的应用也很广泛,可以应用于对碳正离子稳定性的解释,碳游离基稳定性的解释,甲苯是邻对位定位基的解释,羰基活性的解释等。