BP中的训练样本和测试样本

合集下载

BP

BP

BP神经网络建立船舶耐波性评价的GUI实现作者:李生长李勇来源:《科技创新导报》2012年第25期摘要:应用BP神经网络建立船舶的耐波性评价模型,通过调用Matlab中的神经网络工具箱来完成评价模型的GUI实现。

在GUI设置界面内加入神经网络的输入向量和输出向量,同时设置网络需要的各种参数,可以很直观的查看评价模型的结构,减轻了使用者的认知负担。

应用GUI窗口训练评价网络,然后加入测试样本进行仿真测验,整个实现过程操作方便,使船舶耐波性的评价更人性化。

关键词:BP神经网络船舶耐波性评价 GUI中图分类号:U675.91 文献标识码:A 文章编号:1674-098X(2012)09(a)-0009-02人工神经网络是一种新型信息处理体系,其智能化特征与能力使其应用在诸多领域,并且在解决问题方面取得了良好的效果。

BP神经网络是基于误差反向传播算法的多层前馈型神经网络,适用于多因素共同作用下的系统安全状态综合评价。

在Matlab环境下应用BP神经网络建立的船舶耐波性评价模型,为耐波性评价及指导船舶操纵提供了一种有效的方法。

[1]GUI(Graphical User Interface)是指人机交互图形用户界面设计,用户可以通过选择、激活图形对象,实现某种特定的功能,使操作更人性化,减轻使用者的认知负担[2]。

本文通过GUI界面的网络设计,能够实现船舶耐波性评价的BP神经网络模型,从而进行船舶的安全评价,提高船舶耐波性评价效率,能够更方便、更有效的指导船舶操纵。

1 船舶耐波性评价模型的建立船舶耐波性是指船舶在波浪扰动下,产生各种摇荡运动、砰击、甲板上浪、失速、螺旋桨出水以及波浪弯矩等,仍能维持一定航速在波浪中安全航行的性能。

建立船舶耐波性评价模型首先要确定影响船舶安全的耐波性因素,影响船舶航行安全的耐波性因素有横摇、横荡、纵摇、纵荡、升沉、首摇、砰击、失速、晕船率、甲板上浪、甲板淹埋、稳性损失、螺旋桨出水、纵向波浪弯矩、船体某横剖面加速度、横向加速度、操纵性能恶化等。

bp分类的基本概念

bp分类的基本概念

bp分类的基本概念BP分类(Backpropagation)是一种基于梯度下降算法的神经网络分类方法。

它是一种监督学习算法,通过反向传播误差来训练神经网络模型。

基本概念如下:1. 前向传播(Forward Propagation):在神经网络中,输入样本通过网络的输入层向前传播,经过隐藏层的计算,最终在输出层得到分类结果。

2. 反向传播(Backward Propagation):反向传播是BP分类算法的核心,通过计算输出层与目标输出之间的误差,并将误差向后传播到隐藏层和输入层,用来更新网络的权重和偏置值。

3. 激活函数(Activation Function):激活函数在神经网络的每个神经元中使用,它们负责将输入信号进行非线性转换,增加网络的表达能力。

常用的激活函数有Sigmoid、ReLU、Tanh等。

4. 损失函数(Loss Function):损失函数衡量了模型的输出值与目标值之间的差距,是用来衡量模型预测的准确性的指标。

常见的损失函数包括均方误差(Mean Squared Error)、交叉熵(Cross-Entropy)等。

5. 权重更新(Weight Update):根据反向传播算法中计算得到的梯度信息,通过梯度下降算法对网络中的权重进行更新,使网络的预测结果逐步逼近目标输出。

6. 学习率(Learning Rate):学习率是用来控制权重更新的步长,它决定了每次权重更新的幅度大小。

合适的学习率可以加快收敛速度,但过大或过小的学习率都会导致训练效果不佳。

7. 批量学习(Batch Learning):在BP分类中,通常会将训练数据集分成若干个批次进行训练,每个批次包含多个样本。

通过计算每个样本的误差平均值来更新权重,以减小计算量和提高训练速度。

以上是BP分类的基本概念,理解这些概念对于掌握BP分类算法的原理和实现是很重要的。

BP神经网络实验报告

BP神经网络实验报告

BP神经网络实验报告一、引言BP神经网络是一种常见的人工神经网络模型,其基本原理是通过将输入数据通过多层神经元进行加权计算并经过非线性激活函数的作用,输出结果达到预测或分类的目标。

本实验旨在探究BP神经网络的基本原理和应用,以及对其进行实验验证。

二、实验方法1.数据集准备本次实验选取了一个包含1000个样本的分类数据集,每个样本有12个特征。

将数据集进行标准化处理,以提高神经网络的收敛速度和精度。

2.神经网络的搭建3.参数的初始化对神经网络的权重和偏置进行初始化,常用的初始化方法有随机初始化和Xavier初始化。

本实验采用Xavier初始化方法。

4.前向传播将标准化后的数据输入到神经网络中,在神经网络的每一层进行加权计算和激活函数的作用,传递给下一层进行计算。

5.反向传播根据预测结果与实际结果的差异,通过计算损失函数对神经网络的权重和偏置进行调整。

使用梯度下降算法对参数进行优化,减小损失函数的值。

6.模型评估与验证将训练好的模型应用于测试集,计算准确率、精确率、召回率和F1-score等指标进行模型评估。

三、实验结果与分析将数据集按照7:3的比例划分为训练集和测试集,分别进行模型训练和验证。

经过10次训练迭代后,模型在测试集上的准确率稳定在90%以上,证明了BP神经网络在本实验中的有效性和鲁棒性。

通过调整隐藏层结点个数和迭代次数进行模型性能优化实验,可以发现隐藏层结点个数对模型性能的影响较大。

随着隐藏层结点个数的增加,模型在训练集上的拟合效果逐渐提升,但过多的结点数会导致模型的复杂度过高,容易出现过拟合现象。

因此,选择合适的隐藏层结点个数是模型性能优化的关键。

此外,迭代次数对模型性能也有影响。

随着迭代次数的增加,模型在训练集上的拟合效果逐渐提高,但过多的迭代次数也会导致模型过度拟合。

因此,需要选择合适的迭代次数,使模型在训练集上有好的拟合效果的同时,避免过度拟合。

四、实验总结本实验通过搭建BP神经网络模型,对分类数据集进行预测和分类。

BP神经网络的基本原理_一看就懂

BP神经网络的基本原理_一看就懂

5.4 BP神经网络的基本原理BP(Back Propagation)网络是1986年由Rinehart和McClelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。

BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。

它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。

BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer)(如图5.2所示)。

5.4.1 BP神经元图5.3给出了第j个基本BP神经元(节点),它只模仿了生物神经元所具有的三个最基本也是最重要的功能:加权、求和与转移。

其中x1、x2…xi…xn分别代表来自神经元1、2…i…n的输入;wj1、wj2…wji…wjn则分别表示神经元1、2…i…n与第j个神经元的连接强度,即权值;bj 为阈值;f(·)为传递函数;yj为第j个神经元的输出。

第j个神经元的净输入值为:(5.12)其中:若视,,即令及包括及,则于是节点j的净输入可表示为:(5.13)净输入通过传递函数(Transfer Function)f (·)后,便得到第j个神经元的输出:(5.14)式中f(·)是单调上升函数,而且必须是有界函数,因为细胞传递的信号不可能无限增加,必有一最大值。

5.4.2 BP网络BP算法由数据流的前向计算(正向传播)和误差信号的反向传播两个过程构成。

正向传播时,传播方向为输入层→隐层→输出层,每层神经元的状态只影响下一层神经元。

若在输出层得不到期望的输出,则转向误差信号的反向传播流程。

通过这两个过程的交替进行,在权向量空间执行误差函数梯度下降策略,动态迭代搜索一组权向量,使网络误差函数达到最小值,从而完成信息提取和记忆过程。

5.4.2.1 正向传播设 BP网络的输入层有n个节点,隐层有q个节点,输出层有m个节点,输入层与隐层之间(·),的权值为,隐层与输出层之间的权值为,如图5.4所示。

神经网络的BP算法实验报告

神经网络的BP算法实验报告

计算智能基础实验报告实验名称:BP神经网络算法实验班级名称:341521班专业:探测制导与控制技术姓名:***学号:********一、 实验目的1)编程实现BP 神经网络算法;2)探究BP 算法中学习因子算法收敛趋势、收敛速度之间的关系;3)修改训练后BP 神经网络部分连接权值,分析连接权值修改前和修改后对相同测试样本测试结果,理解神经网络分布存储等特点。

二、 实验要求按照下面的要求操作,然后分析不同操作后网络输出结果。

1)可修改学习因子2)可任意指定隐单元层数3)可任意指定输入层、隐含层、输出层的单元数4)可指定最大允许误差ε5)可输入学习样本(增加样本)6)可存储训练后的网络各神经元之间的连接权值矩阵;7)修改训练后的BP 神经网络部分连接权值,分析连接权值修改前和修改后对相同测试样本测试结果 。

三、 实验原理1BP 神经网络算法的基本思想误差逆传播(back propagation, BP)算法是一种计算单个权值变化引起网络性能变化的较为简单的方法。

由于BP 算法过程包含从输出节点开始,反向地向第一隐含层(即最接近输入层的隐含层)传播由总误差引起的权值修正,所以称为“反向传播”。

BP 神经网络是有教师指导训练方式的多层前馈网络,其基本思想是:从网络输入节点输入的样本信号向前传播,经隐含层节点和输出层节点处的非线性函数作用后,从输出节点获得输出。

若在输出节点得不到样本的期望输出,则建立样本的网络输出与其期望输出的误差信号,并将此误差信号沿原连接路径逆向传播,去逐层修改网络的权值和节点处阈值,这种信号正向传播与误差信号逆向传播修改权值和阈值的过程反复进行,直训练样本集的网络输出误差满足一定精度要求为止。

2 BP 神经网络算法步骤和流程BP 神经网络步骤和流程如下:1) 初始化,给各连接权{},{}ij jt W V 及阈值{},{}j t θγ赋予(-1,1)间的随机值;2) 随机选取一学习模式对1212(,),(,,)k k k k k k k n k n A a a a Y y y y ==提供给网络;3) 计算隐含层各单元的输入、输出;1n j ij i j i s w a θ==⋅-∑,()1,2,,j j b f s j p ==4) 计算输出层各单元的输入、输出;1t t jt j t j l V b γ==⋅-∑,()1,2,,t t c f l t q ==5) 计算输出层各单元的一般化误差;()(1)1,2,,k k t t tt t t d y c c c t q =-⋅-=6) 计算中间层各单元的一般化误差;1[](1)1,2,,q kk jt jt j j t e d V b b j p ==⋅⋅-=∑7) 修正中间层至输出层连接权值和输出层各单元阈值;(1)()k jt jt t j V iter V iter d b α+=+⋅⋅(1)()k t t t iter iter d γγα+=+⋅8) 修正输入层至中间层连接权值和中间层各单元阈值;(1)()kk ij ij j i W iter W iter e a β+=+⋅⋅(1)()kj j j iter iter e θθβ+=+⋅9) 随机选取下一个学习模式对提供给网络,返回步骤3),直至全部m 个模式训练完毕;10) 重新从m 个学习模式对中随机选取一个模式对,返回步骤3),直至网络全局误差函数E 小于预先设定的一个极小值,即网络收敛;或者,当训练次数大于预先设定值,强制网络停止学习(网络可能无法收敛)。

BP神经网络实验详解(MATLAB实现)

BP神经网络实验详解(MATLAB实现)

BP神经网络实验详解(MATLAB实现)BP(Back Propagation)神经网络是一种常用的人工神经网络结构,用于解决分类和回归问题。

在本文中,将详细介绍如何使用MATLAB实现BP神经网络的实验。

首先,需要准备一个数据集来训练和测试BP神经网络。

数据集可以是一个CSV文件,每一行代表一个样本,每一列代表一个特征。

一般来说,数据集应该被分成训练集和测试集,用于训练和测试模型的性能。

在MATLAB中,可以使用`csvread`函数来读取CSV文件,并将数据集划分为输入和输出。

假设数据集的前几列是输入特征,最后一列是输出。

可以使用以下代码来实现:```matlabdata = csvread('dataset.csv');input = data(:, 1:end-1);output = data(:, end);```然后,需要创建一个BP神经网络模型。

可以使用MATLAB的`patternnet`函数来创建一个全连接的神经网络模型。

该函数的输入参数为每个隐藏层的神经元数量。

下面的代码创建了一个具有10个隐藏神经元的单隐藏层BP神经网络:```matlabhidden_neurons = 10;net = patternnet(hidden_neurons);```接下来,需要对BP神经网络进行训练。

可以使用`train`函数来训练模型。

该函数的输入参数包括训练集的输入和输出,以及其他可选参数,如最大训练次数和停止条件。

下面的代码展示了如何使用`train`函数来训练模型:```matlabnet = train(net, input_train, output_train);```训练完成后,可以使用训练好的BP神经网络进行预测。

可以使用`net`模型的`sim`函数来进行预测。

下面的代码展示了如何使用`sim`函数预测测试集的输出:```matlaboutput_pred = sim(net, input_test);```最后,可以使用各种性能指标来评估预测的准确性。

数据挖掘实验(一)bp神经网络实验指导书48

数据挖掘实验(一)bp神经网络实验指导书48

数据挖掘实验(一)BP神经网络实验吴诗乐通信7班20123100053一、实验目的初步熟悉MATLAB 工作环境,熟悉命令窗口,学会使用帮助窗口查找帮助信息。

二、实验内容1、网络设计,包括输入层、隐含层、输出层节点个数的设计。

2、算法步骤3、编程,注意原始数据的通用化,数据输入的随机性。

4、网络训练,注意训练数据与验证数据分开。

5、网络验证6、结果分析,修改隐含层节点个数,修改学习率,分别对结果的影响。

三、实验数据本实验以Fisher的Iris数据集作为神经网络程序的测试数据集。

Iris数据集可以在/wiki/Iris_flower_data_set 找到。

也可以在UCI数据集中下载。

Iris数据集中Iris花可分为3个品种,现需要对其进行分类。

不同品种的Iris 花的花萼长度、花萼宽度、花瓣长度、花瓣宽度会有差异。

现有一批已知品种的Iris花的花萼长度、花萼宽度、花瓣长度、花瓣宽度的数据。

要求用已有的数据训练一个神经网络用作分类器。

四、神经网络实现1. 数据预处理在训练神经网络前一般需要对数据进行预处理,一种重要的预处理手段是归一化处理。

下面简要介绍归一化处理的原理与方法。

(1) 什么是归一化?数据归一化,就是将数据映射到[0,1]或[-1,1]区间或更小的区间,比如(0.1,0.9) 。

(2) 为什么要归一化处理?<1>输入数据的单位不一样,有些数据的范围可能特别大,导致的结果是神经网络收敛慢、训练时间长。

<2>数据范围大的输入在模式分类中的作用可能会偏大,而数据范围小的输入作用就可能会偏小。

<3>由于神经网络输出层的激活函数的值域是有限制的,因此需要将网络训练的目标数据映射到激活函数的值域。

例如神经网络的输出层若采用S形激活函数,由于S形函数的值域限制在(0,1),也就是说神经网络的输出只能限制在(0,1),所以训练数据的输出就要归一化到[0,1]区间。

BP人工神经网络试验报告一

BP人工神经网络试验报告一

BP⼈⼯神经⽹络试验报告⼀学号:北京⼯商⼤学⼈⼯神经⽹络实验报告实验⼀基于BP算法的XX及Matlab实现院(系)专业学⽣姓名成绩指导教师2011年10⽉⼀、实验⽬的:1、熟悉MATLAB 中神经⽹络⼯具箱的使⽤⽅法;2、了解BP 神经⽹络各种优化算法的原理;3、掌握BP 神经⽹络各种优化算法的特点;4、掌握使⽤BP 神经⽹络各种优化算法解决实际问题的⽅法。

⼆、实验内容:1 案例背景1.1 BP 神经⽹络概述BP 神经⽹络是⼀种多层前馈神经⽹络,该⽹络的主要特点是信号前向传递,误差反向传播。

在前向传递中,输⼊信号从输⼊层经隐含层逐层处理,直⾄输出层。

每⼀层的神经元状态只影响下⼀层神经元状态。

如果输出层得不到期望输出,则转⼊反向传播,根据预测误差调整⽹络权值和阈值,从⽽使BP 神经⽹络预测输出不断逼近期望输出。

BP 神经⽹络的拓扑结构如图1.1所⽰。

图1.1 BP 神经⽹络拓扑结构图图1.1中1x ,2x , ……n x 是BP 神经⽹络的输⼊值1y ,2y , ……n y 是BP 神经的预测值,ij ω和jk ω为BP 神经⽹络权值。

从图1.1可以看出,BP 神经⽹络可以看成⼀个⾮线性函数,⽹络输⼊值和预测值分别为该函数的⾃变量和因变量。

当输⼊节点数为n ,输出节点数为m 时,BP 神经⽹络就表达了从n 个⾃变量到m 个因变量的函数映射关系。

BP 神经⽹络预测前⾸先要训练⽹络,通过训练使⽹络具有联想记忆和预测能⼒。

BP 神经⽹络的训练过程包括以下⼏个步骤。

步骤1:⽹络初始化。

根据系统输⼊输出序列()y x ,确定⽹络输⼊层节点数n 、隐含层节点数l ,输出层节点数m ,初始化输⼊层、隐含层和输出层神经元之间的连接权值ij ω和式中, l 为隐含层节点数; f 为隐含层激励函数,该函数有多种表达形式,本章所选函数为:步骤3:输出层输出计算。

根据隐含层输出H ,连接权值jk ω和阈值b ,计算BP 神经⽹络预测输出O 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

训练样本和测试样本
一,训练样本和测试样本
训练样本的目的是数学模型的参数,经过训练之后,可以认为你的模型系统确立了下来。

建立的模型有多好,和真实事件的差距大不大,既可以认为是测试样本的目的。

一般训练样本和测试样本相互独立,使用不同的数据。

网上有人说测试样本集和验证样本集不一样,测试样本集数据主要用于模型可靠程度的检验,验证样本集的样本数据要在同样条件下,再另外采集一些数据用来对模型的准确性进行验证。

(?)
有人采用交叉验证,交叉验证指的的训练样本集、测试样本集、验证样本集、三中数据集都组合在一起,数据的划分采用交叉取样的方法。

二,如何选择训练集和测试集
未完待续
网上有人说经常采用的是m-folder cross validation的方法,把样本分成m份,轮流把其中一份作为测试集。

至于m取多少看样本数量而定,样本充足的话m=10,另外m=3也是经常被使用的
至于验证集,通常并不需要。

三,Clementine中如何选择节点将数据分为训练集和测试集
前期整理好数据后,选择partition节点连接入数据流,在里面可以设置训练集、测试集及验证集,若要平分在测试集及训练集栏位内填上50%。

另外可以设置标签及数值;下面的设置是对数据表中增加标志字段(区分测试集和训练集)的数值进行选择,第一个表示使用1、2、3这样的数值来表示,第二个是使用“1_training“等来表示,第三个是使用”training“等来表示,可以通过第二个图中的value来观察。

此外下面还有设置随机种子的选项。

ps:在分割完不同集合后,可以右击partition节点,选择cache中enable,这样随机分割完的数据就可以暂时存在缓存中,这样不同时候进行不同建模的时候就不会因为样本不同而使结构受影响!(第一次执行后会在节点的右上方出现绿色的文件件的标签)
四,如何建立测试模型
如果训练好模型后,把所得的模型节点从右上方拖到数据流的测试集后,建立连接后,再加个分析节点或一些结果的节点就可以了。

相关文档
最新文档