CO2传感器在呼气末二氧化碳(ETCO2)监测中的应用

合集下载

3呼末二氧化碳分压(PETCO2)监测在临床中的应用及意义

3呼末二氧化碳分压(PETCO2)监测在临床中的应用及意义

呼末二氧化碳分压(P ET CO2)监测在临床中的应用及意义崔晓莉呼气末二氧化碳分压(P ET CO2)作为一种较新的无创监测技术,是除体温、呼吸、脉搏、血压、动脉血氧饱和度以外的第六个基本生命体征,美国麻醉医师协会(ASA)已规定P ET CO2为麻醉期间的基本监测指标之一。

它具有高度的灵敏性且使用简便,对判断肺通气、血流变化及代谢变化等具有特殊的临床意义。

近年来,随着传感分析、微电脑等技术的发展和多学科相互渗透,利用监测仪连续无创测定P ET CO2已在麻醉、ICU、呼吸、急诊等科室得到越来越多的应用。

生理原理组织细胞代谢产生二氧化碳,经毛细血管和静脉运输到肺,呼气时排出体外,在产生、运输和排出过程中的任何环节发生障碍,均可使CO2在体内潴留或排出过多,并造成不良影响。

因此,体内二氧化碳产量(VCO2)、肺泡通气量(VA)和肺血流灌注量三者共同影响肺泡内二氧化碳分压(PACO2)。

CO2弥散能力很强,极易从肺毛细血管进入肺泡内,肺泡和动脉血CO2很快完全平衡,且无明显心肺疾病的患者V/Q比值正常,最后呼出的气体应为肺泡气,一定程度上,P ET CO2≈PACO2≈PaCO2,所以临床上可通过测定P ET CO2反映paCO2的变化。

正常P ET CO2为5%,而1%CO2约等于11Kpa(7.5mmHg),因此,相当于5KPa(38mmHg)。

物理原理CO2监测仪可根据不同的物理原理测定呼气末CO2,包括红外线分析仪、质谱仪、拉曼散分析仪、声光分光镜和化学CO2指示器等,而最常用的CO2监测仪是根据红外线吸收光谱的原理设计而成的,因CO2能吸收特殊波长的红外线(4.3μm),当呼吸气体经过红外线传感器时,红外线光源的光束透过气体样本,光束量衰减,且衰减程度与CO2浓度呈正比。

红外线检测器测得红外线的光束量,最后经过微电脑处理获得P ET CO2或呼气末二氧化碳浓度(C ET CO2),以数字(mmHg或kPa及%)和CO2图形显示。

二氧化碳传感器模块的原理及应用

二氧化碳传感器模块的原理及应用

二氧化碳传感器模块的原理及应用目前二氧化碳传感器模块的种类很多,就其原理来分有热导式、密度计式、辐射吸收式、电导式、化学吸收式、电化学式、色谱式、质谱式、红外光学式等。

二氧化碳传感器哪种好?目前来讲:电化学原理及红外原理的传感器使用的比较多,选择国外牌子的传感器为主,因为国外牌子的传感器在使用寿命及精度上也是比较有优势的。

二氧化碳气体传感器原理(1)红外二氧化碳传感器模块:红外线气体分析仪是利用红外线进行气体分析,它基于待分析组分的浓度不同,吸收的辐射能不同,剩下的辐射能使得检测器里的温度升高不同,动片薄膜两边所受的压力不同,从而产生一个电容检测器的电信号,这样,就可间接测量出待分析组分的浓度。

根据红外辐射在气体中的吸收带的不同,可以对气体成分进行分析。

例如,二氧化碳对于波长为2.7μm、4.33μm和14.5μm红外光吸收相当强烈,并且吸收谱相当的宽,即存在吸收带。

根据实验分析,只有4.33μm吸收带不受大气中其他成分影响,因此可以利用这个吸收带来判别大气中的CO2的含量。

该传感器利用非色散红外(NDIR)原理对空气中存在的CO2进行探测,具有很好的选择性,无氧气依赖性,广泛应用于存在可燃性、爆炸性气体的各种场合。

(2)热传导二氧化碳传感器模块:据混合气体的总导热系数随待分析气体含量的不同而改变的原理制成,由检测元件和补偿元件配对组成电桥的两个臂,遇可燃性气体时检测元件电阻变小,遇非可燃性气体时检测元件电阻变大(空气背景),桥路输出电压变量,该电压变量随气体浓度增大而成正比例增大,补偿元件起参比及温度补偿作用,主要应用场所在民用、工业现场的天然气、液化气、煤气、烷类等可燃性气体及汽油、醇、酮、苯等有机溶剂蒸汽的浓度检测。

二氧化碳浓度传感器测量范围:0-500ppm、1000ppm、2000ppm、5000ppm、50000ppm,0-1%VOL、2%VOL、5%VOL、10%VOL、20%VOL、30%VOL、50%VOL、100%VOL可选,根据现场的环境选择较佳的量程范围。

CO2传感器在呼气末二氧化碳(ETCO2)

CO2传感器在呼气末二氧化碳(ETCO2)

CO2传感器在呼气末二氧化碳(ETCO2)监测中的应用呼气末二氧化碳(ETCO2)监测是一项无创、简便、实时、连续的功能学监测指标。

其在急诊科的临床工作中得到了越来越广泛的使用。

工采了解到在呼吸过程中将测得的二氧化碳浓度与相应时间一- -对应描图,即可得到所谓的二氧化碳曲线。

对于小气道梗阻导致通气困难的患者,如重症哮喘和慢性阻塞性肺病患者,在采用二氧化碳分压监测仪时,由于肺泡内气体排出速度缓慢,时相Ⅱ波形上升趋于平缓。

气体存留在肺泡内的时间较久,肺泡气的二氧化碳分压更接近静脉血二氧化碳分压。

这一部分气体在呼气后期缓慢排出,使得二氧化碳波形在时相Ⅲ呈斜向上的鲨鱼鳍样特征性改变。

严重气道梗阻患者,因死腔通气比例增大,可导致呼出气二氧化碳分压显著下降。

对于治疗性低通气患者,例如急性呼吸窘迫综合征患者进行保护性肺通气策略治疗时,小潮气量(6mL/kg甚至更低)通气增加了二氧化碳滞留的风险。

实时监测ETCO2,可以及时发现二氧化碳潴留,并减少动脉血气检查频次。

低通气高危患者监测,推荐深度镇静镇痛或麻醉患者监测ETCO2。

对于存在低通气风险的患者,例如镇痛镇静、门急诊手术的患者,使用ETCO2监测仪发现的通气异常早于氧饱和度下降和可观察到的低通气状态。

呼吸末二氧化碳测量技术近年来有了很大的发展,特别是二氧化碳检测设备的关键部件,如红外光源和红外探测器的发展,为二氧化碳传感器检测技术的进步提供了很大的帮助。

该技术在临床实践中的应用越来越广泛,临床对该技术的要求也越来越高。

例如,对信号质量控制、呼吸参数测量的准确性和可靠性提出了更高的要求。

工采英国GSS高速响应红外二氧化碳传感器(NDIR CO2传感器) - SprintIR,具有高速检测(20Hz)的特性,其非扩散红外光吸收技术的感测技术适用于捕捉CO2浓度快速度变化的领域,如新陈代谢评估和呼吸机。

1/ 1。

呼气末二氧化碳(PETCO2)监测意义

呼气末二氧化碳(PETCO2)监测意义

【转】呼气末二氧化碳(PETCO2)监测意义2011-05-01 11:52:42呼气末二氧化碳(PETCO2)监测意义呼气末二氧化碳(PETCO2)作为一种较新的无创伤监测技术,已越来越多地应用于手术麻醉的监护中,它具有高度的灵敏性,不仅可以监测通气也能反映循环功能和肺血流情况,目前已成为麻醉监测不可缺少的常规监测手段。

一、PETCO2监测的原理组织细胞代谢产生二氧化碳,经毛细血管和静脉运输到肺,在呼气时排出体外,体内二氧化碳产量(VCO2)和肺通气量(VA)决定肺泡内二氧化碳分压(PETCO2)即PETCO2=VCO2×0.863/VA,0.863是气体容量转换成压力的常数。

CO2弥散能力很强,极易从肺毛细血管进入肺泡内。

肺泡和动脉CO2完全平衡,最后呼出的气体应为肺泡气,正常人PETCO2≈PACO2≈paCO2,但在病理状态下,肺泡通气/肺血流(V/Q)及交流(Qs/Qt)的变化,PETCO2就不能代表paCO2。

呼气末二氧化碳的测定有红外线法,质谱仪法和比色法三种,临床常用的红外线法又根据气体采样的方式分为旁流型和主流型两类。

二、PETCO2波形及意义正常的CO 2波形一般可分四相四段:(1)Ⅰ相:吸气基线,应处于零位,是呼气的开始部分为呼吸道内死腔气,基本上不含二氧化碳。

(2)Ⅱ相:呼气上升支,较陡直,为肺泡和无效腔的混合气。

(3)Ⅲ相:二氧化碳曲线是水平或微向上倾斜,称呼气平台,为混合肺泡气,平台终点为呼气末气流,为PETCO2值。

(4)Ⅵ相:吸气下降支,二氧化碳曲线迅速而陡直下降至基线新鲜气体进入气道。

2、呼气末CO2的波形应观察以下5个方面:(1)基线:吸入气的CO2浓度,一般应等于零。

(2)高度:代表PETCO2浓度。

(3)形态:正常CO2的波形与异常波形。

(4)频率:呼吸频率即二氧化碳波形出现的频率(5)节律:反映呼吸中枢或呼吸机的功能3、正常二氧化碳波形的定性指标和定量指标:(1)呼气中出现二氧化碳:表示代谢产生的二氧化碳经循环后从肺排出。

呼气末二氧化碳ETCO监测意义

呼气末二氧化碳ETCO监测意义

【转】呼气末二氧化碳(PETCO2)监测意义2011-05-0111:52:42呼气末二氧化碳(PETCO2)监测意义呼气末二氧化碳(PETCO2)作为一种较新的无创伤监测技术,已越来越多地应用于手术麻醉的监护中,它具有高度的灵敏性,不仅可以监测通气也能反映循环功能和肺血流情况,目前已成为麻醉监测不可缺少的常规监测手段。

一、PETCO2监测的原理组织细胞代谢产生二氧化碳,经毛细血管和静脉运输到肺,在呼气时排出体外,体内二氧化碳产量(VCO2)和肺通气量(VA)决定肺泡内二氧化碳分压(PETCO2)即PETCO2=VCO2×0.863/VA,0.863是气体容量转换成压力的常数。

CO2弥散能力很强,极易从肺毛细血管进入肺泡内。

肺泡和动脉CO2完全平衡,最后呼出的气体应为肺泡气,正常人PETCO2≈PACO2≈paCO2,但在病理状态下,肺泡通气/肺血流(V/Q)及交流(Qs/Qt)的变化,PETCO2就不能代表paCO2。

呼气末二氧化碳的测定有红外线法,质谱仪法和比色法三种,临床常用的红外线法又根据气体采样的方式分为旁流型和主流型两类。

二、PETCO2波形及意义正常的CO2波形一般可分四相四段:(1)Ⅰ相:吸气基线,应处于零位,是呼气的开始部分为呼吸道内死腔气,基本上不含二氧化碳。

(2)Ⅱ相:呼气上升支,较陡直,为肺泡和无效腔的混合气。

(3)Ⅲ相:二氧化碳曲线是水平或微向上倾斜,称呼气平台,为混合肺泡气,平台终点为呼气末气流,为PETCO2值。

(4)Ⅵ相:吸气下降支,二氧化碳曲线迅速而陡直下降至基线新鲜气体进入气道。

2、呼气末CO2的波形应观察以下5个方面:(1)基线:吸入气的CO2浓度,一般应等于零。

(2)高度:代表PETCO2浓度。

(3)形态:正常CO2的波形与异常波形。

(4)频率:呼吸频率即二氧化碳波形出现的频率(5)节律:反映呼吸中枢或呼吸机的功能3、正常二氧化碳波形的定性指标和定量指标:(1)呼气中出现二氧化碳:表示代谢产生的二氧化碳经循环后从肺排出。

呼气末CO2监测技术-精品文档

呼气末CO2监测技术-精品文档

45
0
患者侧卧时位往往会出现驼峰样的曲线。
45
0
多见于使用肌肉松弛药和麻醉性镇痛药的恢复中,自主呼吸频率 低,峰相呈不连贯状,有如冰山消融,ETCO2高于正常。
45
0
ETCO2持续低值且无平台,平台缺失说明吸气前肺换气不彻 底或呼出气被新鲜气流多稀释,常见支气管痉挛或分泌物增 多造成小气到阻塞,可闻及喘鸣音、啰音。
呼气末CO2监测 技术
东方医院重症医学科
为什么要监测呼气末CO2
呼吸末CO2分压不仅可监测通气,还可反应循环和肺血。 监测通气功能:无明显心肺疾患者,可一定程度上反应PaCO2。
维持正常通气:全麻期间可根据ETCO2来调节通气量,避免通气不足
或通气过度。 代谢功能的监测:监测CO2的排出可评估机体的代谢率,特别有利于
CO2浓度迅速消失至零,CO2波形消失, ETCO2还有助于判断胸外心脏
按压是否有效。
适应症
主要用于有创机械通气患者,呼气
末CO2的监测可间接反映动脉血CO2分 压的水平。
ETCO2的正常值与曲线
ETCO2的正常值为35-40mmHg,超过45mmHg可能存在通气不足, 低于35mmHg可能存在通气过度。 正常波形分为4个部分:1、上升支P-Q,2、平台期Q-R,3、下 降支R-S,4、基线S-P。(正常的二氧化碳曲线图如下)
2、当通气或血流受影响时均会影响数
值的准确性,故在开始监测时应取动 脉血气分析以了解与PaCO2的关系。
3、影响因素有呼吸机管路漏气,发热
,呼吸加快,低体温,低灌注,失血 ,肺栓塞的减低。
常见的ETCO2改变
ETCO2受吸氧浓度的影响,因氧分压增高,将使CO2分压稍有下降,

气管插管病人ETCO2监测的临床应用与方法

气管插管病人ETCO2监测的临床应用与方法
医疗保 健等 县 2008年第5期 (总第1II期)
Medical Healthcare Apparatus 2008,III (5)
管插管病人肺梗塞 ,循环衰竭。通气不足(呼吸衰竭),co 产 生增 多 f应 用 碳 酸 氢 钠 、创 伤 、败 血 症 、发 热 、恶 性 高 热 、甲
4影响 ETCo 监测 的 因素
中。现将 监测过程中 的若干关键 问题加 以总结 ,以提高 ET—
CO,监测的准确性 ,提高临床治疗的效果。
3正 常值 与 变化 的临床 意义
无 明显心肺疾病的患者 ,V/Q (肺泡通气 /肺血 流) 比值
1适 应 症
正常。一定程度上 ETCO 可反 映 PaCO ,正常 ETCO 为 5%,
【摘要】呼气末二氧化碳 (ETCO )被认 为是 除体温、呼吸 、脉搏 、血压 、动脉血氧饱和度之 外的第六个基本 生命体征。ET—
C0 作 为一种操作简单、 连 续、无创和反应迅速的定量呼吸监测方法,被广泛应用于气管气插 管患者 的监护 中,不仅可用来监 测病人呼吸功能,也可用来判断气管导管是否插入 气管 中,从 而可提高 ETCO 监测 的准确 性,判 断病人病情发展 ,提高临床治
疗 的效 果 。
【关键词】呼气末二氧化碳 ;监测 ;气管插管病人 ;临床应用;方法
中图 分类 号 :R473.6
文献 标 识 码 :A
文 章 编 号 : 1006—2653 (2008)05—0013-02
呼气末二氧化碳 (ETCO2)被认 为是除体温 、呼吸 、脉搏 、
校准 1:将传感器置于有 0.0mmHg的低小圆窗内 ,显示读
表 1
ETC02 AWRQ IMCO2

呼气末二氧化碳PETCO监测意义

呼气末二氧化碳PETCO监测意义
(4)PETCO2为定量指标,正常情况下应稍低于PETCO2。
4、异常的PETCO2波形
(1)呼气中CO2消失说明有效的肺循环和肺通气不足,或缺乏,麻醉时常由于技术性原因造成,如气管插管误入食管,通气环路接头脱落,或因通气障碍所致如呼吸暂停或呼吸道梗阻,也可以见于心跳停止。
(2)吸气中出现CO2有意识地进行重吸入时,吸入气出现CO2­是正常现象(如MaplesonD型装置的Bain环路),异常的或大量的出现说明麻醉环路有故障,如活瓣关闭失灵。CO2吸收剂失效MaplesonD系统新鲜气流不足。
一、PETCO2监测的原理
组织细胞代谢产生二氧化碳,经毛细血管和静脉运输到肺,在呼气时排出体外,体内二氧化碳产量(VCO2)和肺通气量(VA)决定肺泡内二氧化碳分压(PETCO2)即PETCO2=VCO2×0.863/VA,0.863是气体容量转换成压力的常数。CO2弥散能力很强,极易从肺毛细血管进入肺泡内。肺泡和动脉CO2完全平衡,最后呼出的气体应为肺泡气,正常人PETCO2≈PACO2≈paCO2,但在病理状态下,肺泡通气/肺血流(V/Q)及交流(Qs/Qt)的变化,PETCO2就不能代表paCO2。呼气末二氧化碳的测定有红外线法,质谱仪法和比色法三种,临床常用的红外线法又根据气体采样的方式分为旁流型和主流型两类。
(3)呼出气PETCO2波形异常:上升段延长提示因呼吸道高位阻塞或支气管痉挛以致呼气流量下降,肺泡平台倾斜度增加,说明因慢性阻塞性肺疾患或气管痉挛使肺泡排气不均。某些波形改变不一定是病理现象,如潮气量不足时,使用面罩,可看到不规则的或截锥形的波形;侧卧位机械通气时,肺泡平台呈驼峰状,Bain环路时可见慢频率呼吸心源性起伏和“Bain隆凸”波形。
(4)Ⅵ相:吸气下降支,二氧化碳曲线迅速而陡直下降至基线新鲜气体进入气道。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

CO2传感器在呼气末二氧化碳(ETCO2)监测中的应用呼气末二氧化碳(ETCO2)监测是一项无创、简便、实时、连续的功能学监测指标。

其在急诊科的临床工作中得到了越来越广泛的使用。

工采了解到在呼吸过程中将测得的二氧化碳浓度与相应时间一- -对应描图,即可得到所谓的二氧化碳曲线。

对于小气道梗阻导致通气困难的患者,如重症哮喘和慢性阻塞性肺病患者,在采用二氧化碳分压监测仪时,由于肺泡内气体排出速度缓慢,时相Ⅱ波形上升趋于平缓。

气体存留在肺泡内的时间较久,肺泡气的二氧化碳分压更接近静脉血二氧化碳分压。

这一部分气体在呼气后期缓慢排出,使得二氧化碳波形在时相Ⅲ呈斜向上的鲨鱼鳍样特征性改变。

严重气道梗阻患者,因死腔通气比例增大,可导致呼出气二氧化碳分压显著下降。

对于治疗性低通气患者,例如急性呼吸窘迫综合征患者进行保护性肺通气策略治疗时,小潮气量(6mL/kg甚至更低) 通气增加了二氧化碳滞留的风险。

实时监测ETCO2,可以及时发现二氧化碳潴留,并减少动脉血气检查频次。

低通气高危患者监测,推荐深度镇静镇痛或麻醉患者监测ETCO2。

对于存在低通气风险的患者,例如镇痛镇静、门急诊手术的患者,使用ETCO2监测仪发现的通气异常早于氧饱和度下降和可观察到的低通气状态。

呼吸末二氧化碳测量技术近年来有了很大的发展,特别是二氧化碳检测设备的关键部件,如红外光源和红外探测器的发展,为二氧化碳传感器检测技术的进步提供了很大的帮助。

该技术在临床实践中的应用越来越广泛,临床对该技术的要求也越来越高。

例如,对信号质量控制、呼吸参数测量的准确性和可靠性提出了更高的要求。

工采英国GSS 高速响应红外二氧化碳传感器(NDIR CO2传感器) - SprintIR,具有高速检测(20Hz)的特性,其非扩散红外光吸收技术的感测技术适用于捕捉CO2 浓度快速度变化的领域,如新陈代谢评估和呼吸机。

相关文档
最新文档