2018-2019学年九年级数学下册第26章二次函数26-1二次函数同步练习新版华东师大版
九年级数学下册 第26章 二次函数 26.1 二次函数同步练习 (新版)华东师大版-(新版)华东师大

二次函数一、选择题1.下列函数:①y =x 2+1;②y =1x 2+1;③y =x 2+1;④y =x +1;⑤y =(x +1)2-x 2;⑥y =ax 2+bx +c (a ,b ,c 是常数);⑦y =3(x -1)2+1;⑧y =x +1x ;⑨y =1x2+x .其中y 是x 的二次函数的有()A .1个B .2个C .3个D .4个2.已知二次函数y =1-3x +5x 2,则其二次项系数a ,一次项系数b ,常数项c 分别是()A .1,-3,5B .1,3,5C .5,3,1D .5,-3,13.在下列4个不同的情境中,两个变量所满足的函数关系属于二次函数关系的有() ①设正方形的边长为x ,面积为y ,则y 与x 之间的函数关系;②x 个球队参加比赛,每两个队之间比赛一场,则比赛的场次y 与x 之间的函数关系; ③设正方体的棱长为x ,表面积为y ,则y 与x 之间的函数关系;④若一辆汽车以120 km /h 的速度匀速行驶,则汽车行驶的里程y(km )与行驶时间x(h )之间的函数关系.A .1个B .2个C .3个D .4个4.若函数y =(a -1)xa 2+1+x -3是关于x 的二次函数,则a 的值是()A .1B .-1C .±1D .05.若等边三角形的边长为x ,则它的面积y 与x 之间的函数关系式是()A .y =12x(x >0) B .y =32x 2(x >0) C .y =34x 2(x >0) D .y =33x 2(x >0) 6.共享单车为市民出行带来了方便.某单车公司第一个月投放a 辆单车,计划第三个月投放单车y 辆,设该公司第二、三两个月投放单车数量的月平均增长率为x ,那么y 与x 之间的函数关系式是()A .y =a(1+x)2B .y =a(1-x)2C .y =(1-x)2+aD .y =x 2+a7.某种品牌服装的进价为每件150元,当售价为每件210元时,每天可卖出20件,现需降价处理,且经市场调查发现,每件服装每降价2元,每天可多卖出1件.在确保盈利的前提下,若设每件服装降价x 元,每天售出服装的利润为y 元,则y 关于x 的函数关系式为()A .y =-12x 2+10x +1200(0≤x<60) B .y =-12x 2-10x +1250(0<x<60) C .y =-12x 2+10x +1250(0<x<60) D .y =-12x 2+10x +1250(x≤60)二、填空题8.下列属于二次函数的有________.(填序号)(1)S =πR 2;(2)C =2πR ;(3)V =a 3;(4)S =12ab ;(5)d =n (n -2)2.听课例1归纳总结9.将二次函数y =2(x +1)2-3化为一般形式为________________. 10.已知二次函数y =x 2+kx -8,当x =2时,y =-8,则k =________.11.(1)已知关于x 的函数y =(m 2-m)x 2+(m -1)x +m +1,若这个函数是二次函数,则m________; (2)已知函数y =(k +2)xk 2+k -4是关于x 的二次函数,则k =________.12.2017·某某如图K -1-1,正方形EFGH 的顶点在边长为2的正方形ABCD 的边上.若设AE =x ,正方形EFGH 的面积为y ,则y 关于x 的函数关系式为________.图K -1-113.某产品每件的成本为10元,试销阶段每件产品的销售单价x(元/件)与日销售量y(件)之间的关系如下表.按照这样的规律可得,日销售利润w(元)与销售单价x(元/件)之间的函数关系式是________(不必写出自变量的取值X围).三、解答题14.根据下面的条件列出函数关系式(不要求写出自变量的取值X围),并判断列出的函数是不是二次函数.(1)如果两个数中,一个数比另一个数大5,那么这两个数的乘积p是较大的数m的函数;(2)一个半径为10 cm的圆上,挖掉4个大小相同的正方形孔,剩余部分的面积S(cm2)是方孔边长x(cm)的函数;(3)有一块长为60 m,宽为40 m的矩形绿地,计划在它的四周相同的宽度内种植草坪,中间种郁金香,那么郁金香的种植面积S(m2)是草坪宽度a(m)的函数.听课例1归纳总结15.若函数y=(a-1)x b+1+x2+1是关于x的二次函数,试讨论a,b的取值X围.16.如图K-1-2,在正方形ABCD中,AB=2,M为正方形ABCD的边CD上的动点(与点C,D不重合),连接BM,作MF⊥BM,与正方形ABCD的外角∠ADE的平分线交于点F.设CM=x,△MDF的面积为y,求y与x之间的函数关系式.(不必写出自变量的取值X围,提示:在BC上截取CH=CM,连接MH)图K-1-217.开心果园有100棵橙子树,每一棵树平均结600个橙子.2019年开心果园准备多种一些橙子树以提高产量,但是如果多种树,那么树与树之间的距离就会减小,每一棵树所接收的阳光也会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.(1)问题中有哪些变量?(2)假设果园增种x棵橙子树,那么果园共有多少棵橙子树?这时平均每棵树结多少个橙子?(3)如果果园橙子的总产量为y个,那么请你写出y与x之间的函数关系式(不必写出自变量的取值X围).(4)根据(3)中的函数关系式,填写下表:观察表中的数字,你知道增种多少棵橙子树,可以使果园橙子的总产量最多吗?听课例2归纳总结1.[解析] B①和⑦符合题意.2.[解析] D∵函数y=1-3x+5x2是二次函数,∴a=5,b=-3,c=1.3.[解析] C ①依题意,得y =x 2,属于二次函数关系,故符合题意;②依题意,得y =12x(x -1)=12x 2-12x ,属于二次函数关系,故符合题意;③依题意,得y =6x 2,属于二次函数关系,故符合题意;④依题意,得y =120x ,属于一次函数关系,故不符合题意.综上所述,两个变量所满足的函数关系属于二次函数关系的有3个.4.[解析] B 依题意,得a 2+1=2且a -1≠0,解得a =-1.故选B . 5.[解析] C 由等边三角形的边长为x ,可求得它任意边上的高为32x ,所以它的面积y =12·x ·32x =34x 2(x>0). 6.[解析] A 设该公司第二、三两个月投放单车数量的月平均增长率为x ,依题意得第三个月投放单车a(1+x)2辆,则y =a(1+x)2,故选A .7.[解析] A 由题意,得y =(210-150-x)×⎝ ⎛⎭⎪⎫20+12x =-12x 2+10x +1200(0≤x<60).8.[答案] (1)(5) 9.[答案] y =2x 2+4x -1 10.[答案] -211.[答案] (1)≠0且m ≠1(2)2或-3[解析] (1)要使函数是二次函数,则二次项系数不能等于零. ∵m 2-m ≠0,∴m ≠0且m ≠1,即当m ≠0且m ≠1时,这个函数是二次函数.(2)由题意可得k 2+k -4=2且 k +2≠0,解得k =2或k =-3.12.[答案] y =2x 2-4x +4(0<x<2) [解析] 如图所示,∵四边形ABCD 是边长为2的正方形, ∴∠A =∠B =90°,AB =2, ∴∠1+∠2=90°. ∵四边形EFGH 为正方形, ∴∠HEF =90°,EH =EF , ∴∠1+∠3=90°,∴∠2=∠3, ∴△AHE ≌△BEF ,∴AE =BF =x ,AH =BE =2-x. 在Rt △AHE 中,由勾股定理,得EH 2=AE 2+AH 2=x 2+(2-x)2=2x 2-4x +4,即y =2x 2-4x +4(0<x <2). 故答案为y =2x 2-4x +4(0<x<2). 13.[答案] w =-10x 2+500x -4000[解析] 由表中数据易得y 与x 之间的函数关系式为y =250-10(x -15)=-10x +400,故日销售利润w(元)与销售单价x(元/件)之间的函数关系式为w =(x -10)y =(x -10)(-10x +400)=-10x 2+500x -4000.14.解:(1)这两个数的乘积p 与较大的数m 之间的函数关系式为p =m(m -5)=m 2-5m ,是二次函数. (2)剩余部分的面积S(m 2)与方孔边长x(cm )之间的函数关系式为S =100π-4x 2,是二次函数. (3)郁金香的种植面积S(m 2)与草坪宽度a(m )之间的函数关系式为S =(60-2a)(40-2a)=4a 2-200a +2400,是二次函数.15.解:①由b +1=2,解得b =1, 由a -1+1≠0,解得a≠0.∴当a≠0,b =1时,函数是关于x 的二次函数. ②由b +1=1或b +1=0,得b =0或b =-1,∴当b =0或b =-1,a 取全体实数时,函数是关于x 的二次函数. ③当a =1,b 为全体实数时,y =x 2+1是二次函数. 16.解:∵四边形ABCD 是正方形, ∴CD =BC ,∠C =∠CDA =90°=∠ADE. ∵DF 平分∠ADE , ∴∠ADF =12∠ADE =45°,∴∠MDF =90°+45°=135°.如图,在BC 上截取CH =CM ,连接MH ,则△MCH 是等腰直角三角形,BH =MD ,∴∠CHM =∠CMH =45°, ∴∠BHM =135°,∴∠1+∠BMH =45°,∠BHM =∠MDF. ∵MF ⊥BM ,∴∠FMB =90°, ∴∠2+∠BMH =45°,∴∠1=∠2. 在△BHM 与△MDF 中,∵∠1=∠2,BH =MD ,∠BHM =∠MDF , ∴△BHM ≌△MDF ,∴BH =MD =2-x ,S △MDF =S △BHM ,∴y 与x 之间的函数关系式为y =12x(2-x)=-12x 2+x.17.解:(1)变量有果园里面的橙子树的棵数和果园的总产量.(2)假设果园增种x 棵橙子树,那么果园共有(100+x)棵橙子树,这时平均每棵树结(600-5x)个橙子.(3)果园橙子的总产量y =(100+x)(600-5x)=-5x 2+100x +60000. (4)填表如下:由上表可知,当x 取10时,y 取得最大值,即增种10棵橙子树时,可以使果园橙子的总产量最多. [素养提升][答案] y =⎩⎪⎨⎪⎧-12x 2+8(0≤x≤4),-12x 2+8x -24(4<x≤8)[解析] 在点P ,Q 的运动过程中,当0≤x≤4时,y =S △ABD -S △APQ =12×4×4-12x 2=-12x 2+8;当4<x≤8时,y =S △CBD -S △CPQ =12×4×4-12(8-x)2=-12x 2+8x -24.。
华东师大版九年级数学下册第26章:二次函数(26.2.2~26.2.3) 同步测试题(含答案)

华东师大版九年级数学下册第26章二次函数(26.2.2~26.2.3)同步测试题(时间:100分钟 满分:100分)一、选择题(每小题4分,共32分)1.二次函数y =-x 2+2x +4的最大值为(C)A.3B.4C.5D.62.抛物线y =x 2+4x +3的对称轴是(C)A.直线x =1B.直线x =-1C.直线x =-2D.直线x =23.对于二次函数y =-13x 2+2,当x 为x 1和x 2时,对应的函数值分别为y 1和y 2.若x 1>x 2>0,则y 1和y 2的大小关系是(B)A.y 1>y 2B.y 1<y 2C.y 1=y 2D.无法比较4.二次函数y =2x 2+3的图象经过(A)A.第一、二象限B.第三、四象限C.第一、三象限D.第二、四象限5.抛物线y =x 2-2x +m 2+2(m 是常数)的顶点在(A)A.第一象限B.第二象限C.第三象限D.第四象限6.如果抛物线y =ax 2+2x +c 全部在x 轴的上方,那么下列判断中正确的是(C)A.a >0,对称轴在y 轴右侧B.a <0,对称轴在y 轴左侧C.a>0,对称轴在y轴左侧D.a<0,对称轴在y轴右侧7.已知抛物线y=ax2+bx和直线y=ax+b在同一平面直角坐标系内的图象如图,其中正确的是(D)A B C D8.如图,已知抛物线y=ax2+bx+c与x轴交于A,B两点,顶点C的纵坐标为-2,现将抛物线向右平移2个单位长度,得到抛物线y=a1x2+b1x+c1,则下列结论:①b>0;②a-b+c<0;③阴影部分的面积为4;④若c=-1,则b2=4a.其中正确的是(D)A.①③B.②③C.②④D.③④二、填空题(每小题4分,共20分)9.把二次函数y=x2-12x化为形如y=a(x-h)2+k的形式:y=(x-6)2-36.10.若一条抛物线的顶点是(-2,3),并且经过点(0,-1),则它的表达式为y=-(x+2)2+3.11.如图是二次函数y=ax2+bx+c的图象,已知点(2,y1),(3,y2)是函数图象上的两个点,则y1,y2的大小关系是y1>y2.12.如图,抛物线y=ax2+1与y轴交于点A,过点A与x轴平行的直线交抛物线y=4x2于点B,C,则线段BC的长为1.13.李大伯第一次种植大棚菜,在塑料大棚内密植了100棵黄瓜秧,收获时,每棵黄瓜秧平均只收获2千克黄瓜,听说邻居每棵黄瓜秧可收获近5千克黄瓜,他便向县农业技术员请教,农业技术员查看了情况后说:种植太密,不通风,并告诉他如何改进.已知每少栽一棵秧苗,一棵黄瓜秧平均可多收0.1千克黄瓜,那么请你帮李伯伯计算:减少40棵黄瓜秧收获最多,最多收获360千克.三、解答题(共48分)14.(10分)如图,直线y=-x+c与x轴交于点B(3,0),与y轴交于点C,抛物线y=x2+bx+c经过点A,B,C.求点A的坐标和抛物线的表达式.解:把B(3,0)代入y=-x+c,得-3+c=0,解得c=3,∴直线表达式为y=-x+3.当x=0时,y=-x+3=3,则C(0,3).把B(3,0),C(0,3)代入y =x 2+bx +c ,得⎩⎪⎨⎪⎧9+3b +c =0,c =3.解得⎩⎪⎨⎪⎧b =-4,c =3. ∴抛物线表达式为y =x 2-4x +3.当y =0时,x 2-4x +3=0,解得x 1=1,x 2=3,∴A(1,0).15.(12分)如图,在一个直角三角形的内部作一个矩形ABCD ,其中AB 和AD 分别在两直角边上,C 点在斜边上,设矩形的一边AB =x m ,矩形的面积为y m 2,求矩形面积的最大值.解:由题意可得,DC∥AF,∴△EDC∽△EAF.∴ED EA =DC AF, 即30-AD 30=x 40.解得AD =120-3x 4. ∴y=AD·AB=120-3x 4·x =-34x 2+30x=-34(x -20)2+300. ∵a=-34<0,∴当x =20时,y 最大=300. 答:矩形面积的最大值为300 m 2.16.(12分)设函数y =(x -1)[(k -1)x +(k -3)](k 是常数).(1)当k 取1和2时的函数y 1和y 2的图象如图所示,请你在同一平面直角坐标系中画出当k 取0时的函数的图象;(2)根据图象,写出一条你发现的结论;(3)将函数y 2的图象向左平移4个单位长度,再向下平移2个单位长度,得到函数y 3的图象,求函数y 3的最小值.解:(1)当k =0时,y =-(x -1)(x +3),所画函数图象如图所示.(2)答案不唯一,如:①图象都经过点(1,0)和(-1,4);②图象与x 轴的交点都包含(1,0);③k 取0和2时的函数图象关于点(0,2)中心对称.(3)∵平移后的函数y 3的表达式为y 3=(x +3)2-2,∴当x =-3时,函数y 3的最小值是-2.17.(14分)如图,已知抛物线y =-x 2+mx +3与x 轴交于A ,B 两点,与y 轴交于点C ,点B 的坐标为(3,0).(1)求m 的值及抛物线的顶点坐标;(2)点P 是抛物线对称轴l 上的一个动点,当PA +PC 的值最小时,求点P 的坐标.解:(1)把点B(3,0)代入抛物线y =-x 2+mx +3,得0=-32+3m +3,解得m =2.∴y=-x 2+2x +3=-(x -1)2+4.∴顶点坐标为(1,4).(2)连结BC 交抛物线对称轴l 于点P ,连结AP ,则此时PA +PC 的值最小.设直线BC 的表达式为y =kx +b ,∵点C(0,3),点B(3,0),∴⎩⎪⎨⎪⎧0=3k +b ,3=b ,解得⎩⎪⎨⎪⎧k =-1,b =3. ∴直线BC 的表达式为y =-x +3.则当x =1时,y =-1+3=2.∴当PA+PC的值最小时,点P的坐标为(1,2).。
新人教版九年级数学下册 26.1.1 二次函数同步练习(含答案)

26.1.1 二次函数
1. 下列五个函数关系式:①25y ax x =-+,②y =-x 2+1,③y =32
+2x ,④2325y x x =--,⑤2256
y x x =-+.其中是二次函数的有( ) A .1个 B .2个 C .3个 D .4个 2. 下列结论正确的是( )
A .关于x 的二次函数y =a (x +2)2中,自变量的取值范围是x ≠-2
B .二次函数自变量的取值范围是所有实数
C .在函数y =-x 22
中,自变量的取值范围是x ≠0 D .二次函数自变量的取值范围是非零实数
3. 如图,直角三角形AOB 中,AB ⊥OB ,且AB =OB =3,设直线x =t 截此三角形所得的阴影部
分的面积为S ,则S 与t 之间的函数关系式为( )
A .S=t
B .212S t =
C .S=t 2
D .2112
S t =- 4. 当m =_________时,2(2)m m y m x +=+是关于x 的二次函数.
5. 国家决定对某药品价格分两次降价,若设平均每次降价的百分率为x ,该药品原价为18
元,降价后的价格为y 元,则y 与x 之间的函数关系式为 .
参考答案
1.B
2.B
3.B
4.1
5.y=18(1-x)2。
人教版九年级数学下册第二十六单元二次函数的应用同步练习1带答案

人教版九年级数学下册第二十六单元《二次函数的应用》同步练习1带答案一、抛物线y=(k+1)x 2+k 2-9开口向下,且通过原点,那么k =—————————二、已知抛物线y=x 2+(n-3)x+n+1通过坐标原点O ,求这条抛物线的极点P 的坐标3、、二次函数c bx x y ++=2的图象上有两点(3,-8)和(-5,-8),那么此拋物线的对称轴是( )(A )1x =- (B )1x = (C )2x =(D )3x =4、极点为(-2,-5)且过点(1,-14)的抛物线的解析式为___________________.五、已知二次函数y =ax 2+bx +c ,当x =1时,y 有最大值为5,且它的图象通过点(2,3),求那个函数的关系式.6、某水果批发商场经销一种水果,若是每千克盈利10元,天天可售出500千克.经市场调查发觉, 在进货价不变的情形下,假设每千克涨价1元,日销售量将减少20千克.(10分)(1)当每千克涨价为多少元时,天天的盈利最多?最多是多少?(2)假设商场只要求保证天天的盈利为6000元,同时又可使顾客取得实惠,每千克应涨价为多少元?7、已知函数12-+=bx x y 的图象通过点(3,2).求那个函数的解析式;并指出图象的极点坐标;当0>x 时,求使2≥y 的x 的取值范围.八、二次函数c bx x y ++=2的图象上有两点(3,-8)和(-5,-8),那么此拋物线的对称轴是( )A .x =4 B. x =3 C. x =-5 D. x =-1。
九、直角坐标平面上将二次函数y =-2(x -1)2-2的图象向左平移1个单位,再向上平移1个单位,那么其极点为( )A.(0,0) B.(1,-2) C.(0,-1) D.(-2,1)10、已知二次函数232)1(2-++-=m mx x m y ,那么当=m 时,其最大值为0. 1一、抛物线2ax y =与直线b ax y +=交于点)3,3(-A ,求这两个函数的解析式。
九年级数学下册26.1二次函数练习(含解析)(新版)华东师大版

26.1二次函数同步练习一、选择题 1.函数432-+=x xy ( )A .一次函数B .二次函数C .正比例函数D .反比例函数答案:B解析:解答:因为函数中二次项的系数03≠,函数形式符合二次函数. 故选:B .分析:根据二次函数的定义形如c bx axy ++=2,()0≠a 判断函数是否是二次函数.2.在下列y 关于x 的函数中,一定是二次函数的是( ) A .2xy =B .21xy = C .2kx y = D .x k y 2=答案:A解析:解答:A.符合二次函数定义形式,是二次函数;B.是分式方程,故B 错误;C.当k =0时,不是函数,故C 错误;D.当k =0是常函数,故D 错误. 故选:A .分析:根据二次函数的定义形如c bx axy ++=2,()0≠a 是二次函数.3.对于任意实数m ,下列函数一定是二次函数的是( ) A .()221xm y -=B .()221xm y +=C .()221x m y +=D .()221x my -=答案:C解析:解答:A.当m =1时,二次项系数等于0,不是二次函数,故错误;B.当m =-1时,二次项系数等于0,不是二次函数,故错误;C.无论m 取何值,12+m 总大于或等于1,即无论m 取何值,12+m 都不等于0,符合二次函数概念,是二次函数,故正确. 故选:C .分析:根据二次函数的定义形如c bx axy ++=2,()0≠a 是二次函数.4. 二次函数532+=x y 的二次项系数是( ) A.3 B.2 C.5 D.0 答案:A解析:解:二次函数532+=x y 的二次项系数是3,一次项系数是0.故选:A .分析:本题考查二次函数的定义,是基础题,熟记概念是解题的关键.5.下列各式中,y 是x 的二次函数的是( ) A .22=+x xyB .0222=+-y x C .21xy =D .02=-x y答案:B解析:解:A.整理为y=22x x x-+不是二次函数,故A 错误; B.0222=+-y x变形,得1212+=x y ,是二次函数,故B 正确;C.分母中含自变量,不是二次函数,故C 错误;D.y 的指数是2,y 不是x 的二次函数,故此选项错误. 故选:B .分析:整理成一般形式后,根据二次函数的定义判定即可. 6.下列函数中,属于二次函数的是( )A .x y 2=B .()()312-+=x x yC .23-=x yD .xx y 12+=答案:B 解析:解:A.xy 2=是反比例函数,故本选项错误; B.()()6423122--=-+=x xx x y ,是二次函数,故本选项正确;C.23-=x y 是一次函数,故本选项错误;D.xx x x y 112+=+=,不是二次函数,故本选项错误.故选:B .分析:根据反比例函数的定义,二次函数的定义,一次函数的定义对各选项分析判断后利用排除法求解.7.已知函数()5621--+=m m xm y 是二次函数,则m 等于( )A .7B .-2或7C .﹣1D .以上都不对答案:A 解析:解:∵()5621--+=m m xm y 是二次函数,∴2562=--m m ,∴m =7或m =﹣1(舍去). 故选A .分析:根据二次函数的定义列出关于m 的方程,求出m 的值即可. 8.下列函数是二次函数的是( ) A .12+=x y B .12+-=x y C .22+=x y D .221-=x y答案:C解析:解:A.12+=x y ,是一次函数,故此选项错误; B.12+-=x y ,也是一次函数,故此选项错误; C.22+=x y 是二次函数,故此选项正确;D.221-=x y ,是一次函数,故此选项错误. 故选:C .分析:直接根据二次函数的定义判定即可. 9.下列函数中,属于二次函数的是( )A .32-=x yB .()221x x y -+=C .x x y 722-= D .22x y -= 答案:C解析:解:A.函数32-=x y 是一次函数,故本选项错误; B.由原方程化简,得12+=x y ,属于一次函数,故本选项错误; C.函数x x y 722-=符合二次函数的定义;故本选项正确;D.22xy -=不是整式;故本选项错误. 故选:C .分析:二次函数是指未知数的最高次数为二次的多项式函数.二次函数可以表示为c bx axy ++=2,()0≠a .10.下列四个函数中,一定是二次函数的是( )A .x xy +=21 B .c bx ax y ++=2 C .()227+-=x x y D .()()121-+=x x y答案:D解析:解答:解:A.x xy +=21中未知数的最高次数不是2,故本选项错误; B.c bx axy ++=2二次项系数a =0时,c bx ax y ++=2不是二次函数,故本选项错误;C.∵()()4914121--=-+=x x x y ,即4914--=x y ,没有二次项,故本选项错误;D.由原方程得,122--=x x y ,符合二次函数的定义,故本选项正确.故选:D .分析:根据二次函数的定义解答. 11.已知函数①45-=x y ,②x x t 6322-=,③38223+-=x x y ,④1832-=x y ,⑤2132+-=xx y ,其中二次函数的个数为( )A .1B .2C .3D .4答案:B解析:解:①45-=x y ,③38223+-=x xy ,⑤2132+-=xx y 不符合二次函数解析式, ②x x t6322-=,④1832-=x y 符合二次函数解析式,有两个. 故选B .分析:首先去掉不是整式的函数,再利用二次函数的定义条件判定即可. 12.下列函数关系中,可以看做二次函数c bx ax y++=2,()0≠a 模型的是()A.在一定的距离内汽车的行驶速度与行驶时间的关系B.我国人口年自然增长率1%,这样我国人口总数随年份的关系C.竖直向上发射的信号弹,从发射到落回地面,信号弹的高度与时间的关系(不计空气阻力)D.圆的周长与圆的半径之间的关系 答案:C解析:解:A.距离一定,汽车行驶的速度与行驶的时间的积是常数,即距离,速度与时间成反比例关系;B.设原来的人口是a ,x 年后的人口数是y ,则()x a y%11+=,是正比例函数;C.竖直向上发射的信号弹,从发射到落回地面,信号弹的高度与时间的关系(不计空气阻力)是二次函数.D.设半径是r ,则周长r C π2=,是一次函数关系.故选C .分析:根据实际问题中的数量关系及二次函数的模型,逐一判断. 13.若函数()1222--+=m m xm m y是二次函数,那么m 的值是( )A.2B.-1或3C.3D.1-答案:C 解析:解:∵()1222--+=m m x m my 是二次函数,∴2122=--m m ,∴m =3或m =-1. 当m =-1时02=+m m ,所以m =3故选C .分析:根据二次函数的定义列出关于m 的方程,求出m 的值即可. 14.下列函数中,是二次函数的是( ) A.182+=x yB.18+=x yC.x y 8=D.28xy =答案:A解析:解答:A 符合二次函数定义形式,是二次函数;B 一次函数,故B 错误;C 是反比例函数,故C 错误;D 不符合二次函数定义形式,故D 错误. 故选:A .分析:根据二次函数的定义形如c bx ax y ++=2,()0≠a 是二次函数.15.若()222--=m xm y 是二次函数,则m 等于( ) A .2B .-2C .±2D .不能确定答案:B解析:解答:根据二次函数的定义,得222=-m ,解得m =2或m =-2,又2-m ≠0,即m ≠2,故当m =-2时,这个函数是二次函数. 故选:B .分析:根据二次函数的定义可得答案. 二、填空题 16. 关于x 的函数()()m x m x m y +-++=112,当m =0时,它是________函数;当m =-1时,它是________函数. 答案:二次|一次解析:解答:当m =0时,函数关系式可化为x x y -=2,是一个二次函数;当m =-1时,函数关系式可化为12--=x y,是一次函数.分析:将m =0和m =1分别代入等式中再进行判断. 17.已知()ax x a y++=21是二次函数,那么a 的取值范围是_________答案:a ≠﹣1解析:解答:根据二次函数的定义可得a +1≠0, 即a ≠﹣1.分析:根据二次函数的定义条件列出不等式求解即可. 18.已知()322-++=x x a y是关于x 的二次函数,则常数a 应满足的条件是_________.答案:a ≠﹣2 解析:解答:由()322-++=x x a y 是关于x 的二次函数,得02≠+a .解得a ≠﹣2, 故答案为:a ≠﹣2. 分析:根据形如c bx ax y ++=2,()0≠a 是二次函数,可得答案.19.已知()kk xk y ++=22是二次函数,则k 的值为_________.答案:1解析:解答:∵()kk xk y ++=22是二次函数,∴22=+k k 且k +2≠0,解得k =1,故答案为:1.分析:利用二次函数的定义列方程求解即可. 20.已知方程02=++cy bx ax(0≠a ,b 、c 为常数),请你通过变形把它写成你所熟悉的一个函数表达式的形式.则函数表达式为_________,成立的条件是_________,是 _________函数. 答案:x cbx c a y --=2|a ≠0,c ≠0|二次. 解析:解答:整理得函数表达式为x cbx c a y --=2,成立的条件是a ≠0,c ≠0,是二次函数. 故答案为:x cbx c a y --=2;a ≠0,c ≠0;二次. 分析:函数通常情况下是用x 表示y .注意分母不为0,二次项的系数不为0. 三、解答题 21.已知函数()35112-+-=+x xm y m y 是二次函数,求m 的值. 答案:解答:()35112-+-=+x xm y m 是二次函数,得21012m m ì-?ïïíï+=ïî解得m =﹣1.解析:本题考查了二次函数的定义,注意二次项的系数不等于零,二次项的次数是2. 分析:根据二次函数是c bx ax y ++=2的形式,可得答案.22. 已知函数()2222+-+=m m xm my .(1)当函数是二次函数时,求m 的值. 答案:解答:(1)依题意,得2222=+-m m ,解得m =2或m =0; 又02≠+m m ,解得m ≠0且m ≠-1;因此m =2.(2)当函数是一次函数时,求m 的值. 答案:解答:依题意,得1222=+-m m ,解得m =1; 当m =1时,02≠+m m ,因此m =1.解析:本题考查了二次函数和一次函数的定义,注意二次项的系数不等于零,二次项的次数是2,所以令2222=+-m m 且02≠+m m 即可.同理第二问令1222=+-m m 即可求解.分析:根据二次函数是c bx ax y ++=2,()0≠a 的形式,可得答案.23.己知()m xm y m ++=21是关于x 的二次函数,且当x >0时,y 随x 的增大而减小.求:(1)m 的值. 答案:解答:(1)∵()m xm y m ++=21是关于x 的二次函数,∴22=m ,解得m =,∵当x >0时,y 随x 的增大而减小, ∴m+1<0,m =﹣,m =(不符合题意,舍);(2)求函数的最值.答案:解答:当x =0时,y 最大=m =﹣.解析:(1)根据()m xm y m ++=21是关于x 的二次函数,可得22=m ,再由当x >0时,y 随x 的增大而减小,可得m +1<0,从而得出m 的值; (2)根据顶点坐标即可得出函数的最值.分析:本题考查了二次函数的定义,利用了二次函数的定义,二次函数的性质. 24.已知()()212232m x m x m my m x +-+-=--是x 的二次函数,求出它的解析式.答案:解答:根据二次函数的定义可得:2122=--m m ,且02≠-m m ,解得 m =3或m =﹣1; 当m =3时,962+=xy ;当m =﹣1时,1422+-=x x y ;综上所述,该二次函数的解析式为:962+=x y 或1422+-=x x y .解析:本题考查二次函数的定义.一般地,形如c bx axy ++=2,()0≠a 的函数,叫做二次函数.其中x 、y 是变量,a 、b 、c 是常量,a 是二次项系数,b 是一次项系数,c 是常数项.c bx ax y ++=2,()0≠a 也叫做二次函数的一般形式.分析:根据二次函数的定义列出不等式求解即可.25.函数()()31--=x kx y ,当k 为何值时,y 是x 的一次函数?当k 为何值时,y 是x 的二次函数?答案:解答:∵()()()313333122++-=+--=--=x k kx x kx kx x kx y ,∴k =0时,y 是x 的一次函数,k ≠0时,y 是x 的二次函数.解析:利用一次函数与二次函数的定义分别分析得出即可.。
九数下册第26章二次函数26.2二次函数的图象与性质同步练习(附答案华东师大版)

九数下册第26章二次函数26.2二次函数的图象与性质同步练习(附答案华东师大版)九年级数学下册第26章二次函数26.2二次函数的图象与性质同步练习(附答案华东师大版)下载文档九年级数学下册第26章二次函数26.2二次函数的图象与性质同步练习(附答案华东师大版)26.2.1 二次函数y= 的图象与性质一.选择题1.已知a≠0,在同一直角坐标系中,函数y=ax与y=ax2的图象有可能是()A. B. C.D.2.函数y=ax2+1与y= (a≠0)在同一平面直角坐标系中的图象可能是()A. B. C. D.3.已知抛物线y=ax2+bx和直线y=ax+b在同一坐标系内的图象如图,其中正确的是()A. B.C. D.4.已知函数y=﹣(x﹣m)(x﹣n)(其中m<n)的图象如图,则一次函数y=mx+n 与反比例函数y= 的图象可能是()C. D.二.填空题5.下列函数,当x>0时,y随x的增大而减小的是.(填序号)(1)y=﹣x+1,(2)y=2x,(3),(4)y=﹣x2.6.如图,抛物线与两坐标轴的交点坐标分别为(﹣1,0),(2,0),(0,2),则抛物线的对称轴是;若y>2,则自变量x的取值范围是.7.如图,边长为2的正方形ABCD的中心在直角坐标系的原点O,AD∥x轴,以O为顶点且过A、D两点的抛物线与以O为顶点且过B、C两点的抛物线将正方形三.解答题8.抛物线y=﹣x2+(m﹣1)x+m与y轴交于点(0,3).(1)求出m的值并画出这条抛物线.(2)求它与x轴的交点和抛物线顶点的坐标.(3)x取什么值时,抛物线在x轴上方?(4)x取什么值时,y的值随x值的增大而减小?9.分别在同一直角坐标系内,描点画出y= x2+3与y= x2的二次函数的图象,并写出它们的对称轴与顶点坐标.参考答案一.1.C 2.B 3.D 4.C二.5.(1)(4)6.x= 0<x<1 7.2三.8.解:(1)由抛物线y=﹣x2+(m﹣1)x+m与y轴交于(0,3),得m=3.∴抛物线为y=﹣x2+2x+3=﹣(x﹣1)2+4.列表得:x ﹣1 0 1 2 3y 0 3 4 3 0图象如右图.(2)由﹣x2+2x+3=0,得x1=﹣1,x2=3.∴抛物线与x轴的交点为(﹣1,0),(3,0).∵y=﹣x2+2x+3=﹣(x﹣1)2+4∴抛物线的顶点坐标为(1,4).(3)由图象可知:当﹣1<x<3时,抛物线在x轴上方.(4)由图象可知:当x>1时,y的值随x值的增大而减小.9.解:抛物线y= x2+3的开口方向向上,顶点坐标是(0,3),对称轴是y轴,且经过点(3,6)和(﹣3,6).抛物线y= x2的开口方向向上,顶点坐标是(0,0),对称轴是y轴,且经过点(3,3)和(﹣3,3),26.2.2 二次函数y=ax2+k的图象与性质1.如图,将抛物线y=13x2向________平移________个单位得到抛物线y=13x2+2;将抛物线y=13x2向________平移________个单位得到抛物线y=13x2-2.2.将二次函数y=x2的图象向下平移1个单位,则平移后的二次函数的关系式为( )A.y=x2-1 B.y=x2+1C.y=(x-1)2 D.y=(x+1)23.不画出图象,回答下列问题:(1)函数y=4x2+2的图象可以看成是由函数y=4x2的图象通过怎样的平移得到的?(2)说出函数y=4x2+2的图象的开口方向、对称轴和顶点坐标;(3)如果要将函数y=4x2的图象经过适当的平移,得到函数y=4x2-5的图象,应怎样平移?4.抛物线y=-12x2-6的开口向________,顶点坐标是________,对称轴是________;当x________时,y有最________值,其值为________;当x________0时,y 随x的增大而增大,当x________0时,y随x的增大而减小.①y=-x+1,②y=2x,③y=-2x,④y=-x2.6.已知点(-1,y1),-12,y2都在函数y=12x2-2的图象上,则y1______y2.(填“>”“ ”或“=”)7.二次函数y=2x2+1,y=-2x2-1,y=12x2-2的图象的共同特征是( )A.对称轴都为y轴B.顶点坐标相同C.开口方向相同D.都有最高点8.二次函数y=-x2+1的图象大致是( )9.二次函数y=2x2-3的图象是一条抛物线,下列关于该抛物线的说法,正确的是( )A.抛物线开口向下B.抛物线经过点(2,3)C.抛物线的对称轴是直线x=1D.抛物线的顶点坐标是(0,-3)10.已知二次函数y=ax2+c有最大值,其中a和c分别是方程x2-2x-24=0的两个根,试求该二次函数的关系式.11.在同一坐标系中,一次函数y=-mx+n2与二次函数y=x2+m的图象可能是( )12.从y=2x2-3的图象上可以看出,当-1≤x≤2时,y的取值范围是( ) A.-1≤y≤5B.-5≤y≤5C.-3≤y≤5D.-2≤y≤113.已知函数y=x2+1(x≥-1),2x(x -1),则下列函数图象正确的是( )14.已知二次函数y=ax2+k的图象上有A(-3,y1),B(1,y2)两点,且y2 A.a>0 B.aC.a≥0D.a≤015.小华同学想用“描点法”画二次函数y=ax2+c的图象,取自变量x的5个值,分别计算出对应的y值,如下表:x …-2 -1 0 1 2 …y … 11 2 -1 2 5 …由于粗心,小华算错了其中的一个y值,请你指出这个算错的y值所对应的x=________.16.如图,在平面直角坐标系中,抛物线y=ax2+4与y轴交于点A,过点A且与x轴平行的直线交抛物线y=14x2于点B,C,则BC的长为________.17.能否适当地上下平移函数y=12x2的图象,使得到的新图象过点(4,-2)?18.已知抛物线y=12x2,把它向下平移,得到的抛物线与x轴交于A,B两点,与y轴交于点C.若△ABC是直角三角形,则原抛物线应向下平移几个单位?19.已知直线y=kx+b与抛物线y=ax2-4的一个交点坐标为(3,5).(1)求抛物线所对应的函数关系式;(2)求抛物线与x轴的交点坐标;(3)如果直线y=kx+b经过抛物线y=ax2-4与x轴的交点,试求该直线所对应的函数关系式.参考答案1.上 2 下 22.A3.解:(1)函数y=4x2+2的图象可以看成是由函数y=4x2的图象向上平移2个单位得到的.(2)函数y=4x2+2的图象开口向上,对称轴为y轴,顶点坐标为(0,2).(3)将函数y=4x2的图象向下平移5个单位得到函数y=4x2-5的图象.4.下(0,-6) y轴(或直线x=0) =0 大-6 >x的增大而增大,不符合题意;③y=-2x,在每一个象限,y随x的增大而增大,不符合题意;④y=-x2,在对称轴的左侧,y随x的增大而增大,在对称轴的右侧,y 随x的增大而减小,符合题意.故答案为①④.6.> [解析] 抛物线y=12x2-2,当x7.A 8.B 9.D10.解:解方程x2-2x-24=0,得x1=-4,x2=6.因为函数y=ax2+c有最大值,所以a<0.而a和c分别是方程x2-2x-24=0的两个根,所以a=-4,c=6,所以该二次函数的关系式是y=-4x2+6.11.D [解析] A项,由n2≥0,可知直线与y轴的交点在原点或y轴的正半轴上,错误.B项,由二次函数y=x2+m的二次项系数为1,可知二次函数图象的开口向上,错误.C项,由抛物线与y轴的交点在y轴的负半轴上,可知m<0,由直线可知,-可知,-m>0,即m12. C [解析] 如图,根据y=2x2-3的图象,分析可得,当x=0时,y取得最小值,且最小值为-3;当x=2时,y取得最大值,且最大值为2×22-3=5.故选C.13.C [解析] y=x2+1,图象开口向上,对称轴是y轴,顶点坐标是(0,1),当x≥-1时,B,C,D正确;y=2x,图象在第一、三象限,当x<-1时,C正确.故选C.14.A [解析] ∵二次函数y=ax2+k的图象关于y轴对称,∴点A(-3,y1)的对称点(3,y1)在二次函数图象上.∵当横坐标115.2 [解析] 根据表格给出的各点坐标可得出,该函数图象的对称轴为直线x =0,进而可得函数关系式为y=3x2-1,则当x=2与x=-2时取值相同,为11.故这个算错的y值所对应的x=2.16.8 [解析] ∵抛物线y=ax2+4与y轴交于点A,∴点A的坐标为(0,4).当y=4时,14x2=4,解得x=±4,∴点B的坐标为(-4,4),点C的坐标为(4,4),∴BC =4-(-4)=8.17.解:能.设将函数y=12x2的图象向上平移c个单位后,所得新图象过点(4,-2),所得新图象为抛物线y=12x2+c.将(4,-2)代入y=12x2+c,得-2=12×16+c,c=-10,∴将函数y=12x2的图象向下平移10个单位后,所得新图象过点(4,-2).18.解:设将抛物线y=12x2向下平移b(b>0)个单位,得到的抛物线的关系式为y=12x2-b.不妨设点A在点B的左侧,由题意可得A(-2b,0),B(2b,0),C(0,-b).∵△ABC是直角三角形,∴OB=OC=OA,即2b=b,解得b=0(舍去)或b=2,∴若△ABC是直角三角形,则原抛物线应向下平移2个单位.19.解:(1)将交点坐标(3,5)代入y=ax2-4,得9a-4=5,解得a=1.故抛物线所对应的函数关系式为y=x2-4.(2)在y=x2-4中,令y=0可得x2-4=0,解得x1=-2,x2=2.故抛物线与x轴的交点坐标为(-2,0)和(2,0).(3)需分两种情况进行讨论:①当直线y=kx+b经过点(-2,0)时,由题意可知-2k+b=0,3k+b=5,解得k=1,b=2,故该直线所对应的函数关系式为y=x+2;②当直线y=kx+b经过点(2,0)时,由题意可知2k+b=0,3k+b=5,解得k =5,b=-10,故该直线所对应的函数关系式为y=5x-10.26.2.3二次函数y=a(x-h)2的图象与性质1.将抛物线y=x2向________平移________个单位得到抛物线y=(x+5)2;将抛物线y=x2向________平移________个单位得到抛物线y=(x-5)2.2.下列方法可以得到抛物线y=25(x-2)2的是( )A.把抛物线y=25x2向右平移2个单位B.把抛物线y=25x2向左平移2个单位C.把抛物线y=25x2向上平移2个单位D.把抛物线y=25x2向下平移3.顶点是(-2,0),开口方向、形状与抛物线y=12x2相同的抛物线是( )A.y=12(x-2)2 B.y=12(x+2)2C.y=-12(x-2)2 D.y=-12(x+2)2知识点2 二次函数y=a(x-h)2的图象与性质4.抛物线y=12(x+3)2的开口向______;对称轴是直线________;当x=______时,y有最______值,这个值为________;当x________时,y随x的增大而减小.5.对于任意实数h,抛物线y=(x-h)2与抛物线y=x2( )A.开口方向相同B.对称轴相同C.顶点相同D.都有最高点6.关于二次函数y=-2(x+3)2,下列说法中正确的是( )A.其图象开口向上B.其图象的对称轴是直线x=3C.其图象的顶点坐标是(0,3)D.当x>-3时,y随x的增大而减小7.在平面直角坐标系中,函数y=-x+1与y=-32(x-1)2的图象大致是( )8.已知函数y=-(x-1)2的图象上的两点A(2,y1),B(a,y2),其中a>2,则y1与y2的大小关系是y1______y2.(填“ ”“>”或“=”)9.在平面直角坐标系中画出函数y=-12(x-3)2的图象.(1)指出该函数图象的开口方向、对称轴和顶点坐标;(2)说明该函数图象与二次函数y=-12x2的图象的关系;(3)根据图象说明,何时y随x的增大而减小.10.如图是二次函数y=a(x-h)2的图象,则直线y=ax+h不经过的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限11.已知二次函数y=-(x-h)2,当x<-3时,y随x的增大而增大;当x>-3时,y随x的增大而减小.当x=0时,y的值为( )A.-1 B.-9 C.1 D.912.将抛物线y=ax2-1平移后与抛物线y=a(x-1)2重合,抛物线y=ax2-1上的点A(2,3)同时平移到点A′的位置,那么点A′的坐标为( )A.(3,4) B.(1,2) C.(3,2) D.(1,4)13.已知抛物线y=a(x-h)2的形状及开口方向与抛物线y=-2x2相同,且顶点坐标为(-2,0),则a+h=________.14.二次函数y=a(x-h)2的图象如图所示,若点A(-2,y1),B(-4,y2)是该图象上的两点,则y1________y2.(填“>”“<”或“=”)15.若点A-134,y1,B-54,y2,C14,y3为二次函数y=(x-2)2图象上的三点,则y1,y2,y3的大小关系为____________.16.已知直线y=kx+b经过抛物线y=-12x2+3的顶点A和抛物线y=3(x-2)2的顶点B,求该直线的函数关系式.17.已知二次函数y=(x-3)2.(1)写出该二次函数图象的开口方向、对称轴、顶点坐标和该函数的最值.(2)若点A(x1,y1),B(x2,y2)位于对称轴右侧的抛物线上,且x1(3)抛物线y=(x+7)2可以由抛物线y=(x-3)2平移得到吗?如果可以,请写出平移的方法;如果不可以,请说明理由.18.一条抛物线的形状与抛物线y=2x2的形状相同,对称轴与抛物线y=12(x +2)2的对称轴相同,且顶点在x轴上,求这条抛物线所对应的函数关系式.19.已知抛物线y=13x2如图所示.(1)抛物线向右平移m(m>0)个单位后,经过点A(0,3),试求m的值;(2)画出(1)中平移后的图象;物线的对称轴上找出一点P,使BP+CP的值最小,并求出点P的坐标.参考答案1.左 5 右 52.A [解析] 根据平移规律“左加右减”,得抛物线y=25(x-2)2可以由抛物线y=25x2向右平移2个单位得到.3.B [解析] ∵开口方向、形状与抛物线y=12x2相同,∴a=12.∵抛物线的顶点是(-2,0),4.上x=-3 -3 小0 -35.A [解析] 抛物线y=(x-h)2与抛物线y=x2,A.a=1>0,都开口向上,此说法正确;B.抛物线y=(x-h)2的对称轴为直线x=h,抛物线y=x2的对称轴为直线x=0,说法错误;C.抛物线y=(x-h)2的顶点是(h,0),抛物线y=x2的顶点是(0,0),说法错误;D.a>0,都有最低点,说法错误.故选A.6.D [解析] 由a=-2<0,可知图象开口向下,故A错误;y=-2(x+3)2=因为图象开口向下,对称轴为直线x=-3,所以当x>-3时,y随x的增大而减小,故D正确.故选D.7.D [解析] 抛物线y=-32(x-1)2的对称轴是直线x=1,可排除选项B和C;直线y=-x+1交y轴于点(0,1),排除选项A.选项D满足题意.故选D.8.> [解析] 因为二次项系数为-1,小于0,所以在对称轴直线x=1的左侧,y随x的增大而增大;在对称轴直线x=1的右侧,y随x的增大而减小.因为a>2>1,所以y1>y2.故答案为“>”.9.解:图略.(1)该函数图象的开口向下,对称轴为直线x=3,顶点坐标为(3,0).(2)二次函数y=-12(x-3)2的图象是由二次函数y=-12x2的图象向右平移3个单位得到的.(3)当x>3时,y随x的增大而减小.10.B [解析] 由图象可知a>0,h11.B [解析] 由题意知二次函数y=-(x-h)2的图象的对称轴为直线x=-3,故h=-3.把h=-3代入二次函数y=-(x-h)2可得y=-(x+3)2,当x=0时,y =-9.故选B.12.A [解析] ∵抛物线y=ax2-1的顶点坐标是(0,-1),抛物线y=a(x-1)2的顶点坐标是(1,0),∴将抛物线y=ax2-1向右平移1个单位,再向上平移1个单位得到抛物线y=a(x-1)2,∴将点A(2,3)向右平移1个单位,再向上平移1个单位得到点A′的坐标为(3,4).故选A.13.-414.=[解析] 由图象可知抛物线的对称轴为直线x=-3,所以点A和点B关于对称轴对称,所以y1=y2.15.y1>y2>y3 [解析] ∵二次函数y=(x-2)2的图象开口向上,对称轴为直线x=2,∴当x<2时,y随x的增大而减小,又∵-134<-54<14<2,∴y1>y2>y3.16.解:抛物线y=-12x2+3的顶点A的坐标为(0,3),抛物线y=3(x-2)2的顶点B的坐标为(2,0).∵直线y=kx+b经过点A,B,∴b=3,2k+b=0,解得k=-32,b=3,∴该直线的函数关系式为y=-32x+3.17.解:(1)因为a=1>0,所以该二次函数的图象开口向上,对称轴为直线x=3,顶点坐标为(3,0);当x=3时,y最小值=0,没有最大值.(2)因为当x>3时,y随x的增大而增大.又因为3(3)可以.将抛物线y=(x-3)2向左平移10个单位可以得到抛物线y=(x+7)2.18.解:根据题意设这条抛物线所对应的函数关系式为y=a(x-k)2.∵这条抛物线的形状与抛物线y=2x2的形状相同,∴|a|=2,即a=±2.又∵这条抛物线的对称轴与抛物线y=12(x+2)2的对称轴相同,∴k=-2,∴这条抛物线所对应的函数关系式为y=2(x+2)2或y=-2(x+2)2.19.解:(1)平移后得到的抛物线对应的函数关系式为y=13(x-m)2,把(0,3)代入,得3=13(0-m)2,解得m1=3,m2=-3.因为m>0,所以m=3.(2)如图所示.32,34,点C的坐标为(6,3),点P为直线BC与抛物线y=13(x-3)2的对称轴(直线x=3)的交点.设直线BC所对应的函数关系式为y=kx+b,则32k+b=34,6k +b=3,解得k=12,b=0,即直线BC所对应的函数关系式为y=12x,当x=3时,y=32,因此点P的坐标为3,32.26.2.4二次函数y=a(x-h)2+k的图象与性质1.二次函数y=-3x-42+2的图象是由抛物线y=-3x2先向________(填“左”或“右”)平移________个单位,再向________(填“上”或“下”)平移________个单位得到的.2.将抛物线y=2x2向右平移3个单位,再向下平移5个单位,得到的抛物线的A.y=2(x-3)2-5 B.y=2(x+3)2+5C.y=2(x-3)2+5 D.y=2(x+3)2-53.抛物线y=(x+2)2-3可以由抛物线y=x2平移得到,则下列平移过程正确的是( )A.先向左平移2个单位,再向上平移3个单位B.先向左平移2个单位,再向下平移3个单位C.先向右平移2个单位,再向上平移3个单位D.先向右平移2个单位,再向下平移3个单位4.在同一平面直角坐标系内,将抛物线y=(x-2)2+5先向左平移2个单位,再向下平移1个单位后,所得抛物线的顶点坐标为( )A.(4,4) B.(4,6)C.(0,6) D.(0,4)5.抛物线y=3(x-2)2+3的开口________,顶点坐标为________,对称轴是________;当x>2时,y随x的增大而________,当x6.如图所示为二次函数y=a(x-h)2+k的图象,则a________0,h________0,k________0.(填“>”“<”或“=”)7.二次函数y=(x-2)2-1的图象不经过的象限为( )C.第三象限D.第四象限8.设二次函数y=(x-3)2-4的图象的对称轴为直线l,若点M在直线l上,则点M的坐标可能是( )A.(1,0) B.(3,0)C.(-3,0) D.(0,-4)9.已知二次函数y=-(x+1)2+2,则下列说法正确的是( )A.其图象开口向上B.其图象与y轴的交点坐标为(-1,2)C.当x<1时,y随x的增大而减小D.其图象的顶点坐标是(-1,2)10.二次函数y=-(x-b)2+k的图象如图所示.(1)求b,k的值;(2)二次函数y=-(x-b)2+k的图象经过怎样的平移可以得到二次函数y=-x2的图象?11.已知二次函数y=34(x-1)2-3.(1)画出该函数的图象,并写出图象的开口方向、对称轴、顶点坐标及y随x的变(2)函数y有最大值还是最小值?并写出这个最大(小)值;(3)设函数图象与y轴的交点为P,求点P的坐标.12.若抛物线y=(x-1)2+2不动,将平面直角坐标系xOy先沿水平方向向右平移1个单位,再沿铅直方向向上平移3个单位,则原抛物线的关系式变为( )A.y=(x-2)2+3 B.y=(x-2)2+5C.y=x2-1 D.y=x2+413.如图,将函数y=12(x-2)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(1,m),B(4,n)平移后的对应点分别为点A′,B′.若曲线段AB扫过的面A.y=12(x-2)2-2 B.y=12(x-2)2+7C.y=12(x-2)2-5 D.y=12(x-2)2+414.已知二次函数y=a(x-1)2-c的图象如图所示,则一次函数y=ax+c的大致图象可能是图26-2-21中的( )15.已知二次函数y=-(x-h)2(h为常数),当自变量x的值满足2≤x≤5时,与其对应的函数y的最大值为-1,则h的值为( )A.3或6 B.1或6C.1或3 D.4或616.已知二次函数y=-(x+k)2+h,当x>-2时,y随x的增大而减小,则k 的取值范围是________.17.已知抛物线y=x+m-12+m+2的顶点在第二象限,试求m的取值范围.18.如图,抛物线y=-(x-1)2+4与y轴交于点C,顶点为D.(1)求顶点D的坐标;(2)求△OCD的面积.(1)求出该抛物线与y轴的交点C的坐标;(2)求出该抛物线与x轴的交点A,B的坐标;(3)如果抛物线的顶点为D,试求四边形ABCD的面积.参考答案1.右 4 上 2再向下平移5个单位所得对应点的坐标为(3,-5),所以平移后得到的抛物线的表达式为y=2(x-3)2-5.故选A.3.B [解析] 由抛物线平移的规律“左加右减,上加下减”可以得出,应先向左平移2个单位,再向下平移3个单位.所以选B.4.D5.向上(2,3) 直线x=2 增大减小 2 小 36.> >7.C [解析] 根据题意可得该函数图象的顶点坐标为(2,-1),与y轴交于(0,3),且开口向上,故抛物线不经过第三象限,故选C.8.B [解析] 由题意可知二次函数的图象的对称轴为直线x=3,所以点M的横坐标为3,对照选项可知选B.9.D [解析] ∵y=-(x+1)2+2,∴二次函数的图象开口向下,顶点坐标为(-1,2),对称轴为x=-1,故A错误,D正确;当x<-1时,y随x的增大而增大,当x >-1时,y随x的增大而减小,故C错误;在y=-(x+1)2+2中,令x=0可得y =1,∴图象与y轴的交点坐标为(0,1),故B错误.故选D.10.解:(1)由图象可得二次函数y=-(x-b)2+k的图象的顶点坐标为(1,3).因为二次函数y=-(x-b)2+k的图象的顶点坐标为(b,k),所以b=1,k=3.(2)把二次函数y=-(x-b)2+k的图象向左平移1个单位,再向下平移3个单位可得到二次函数y=-x2的图象(其他平移方法合理也可).11.解:(1)画函数图象略.∵a=34>0,∴图象的开口向上,对称轴为直线x=1,顶点坐标为(1,-3).当x1时,y随x的增大而增大.(2)∵a=34>0,∴函数y有最小值,最小值为-3.(3)令x=0,则y=34×(0-1)2-3=-94,所以点P的坐标为0,-94.12.C [解析] ∵y=(x-1)2+2,∴原抛物线的关系式变为y=(x-1+1)2+2-3=x2-1.故选C.13.D [解析] 连结AB,A′B′,则S阴影=S四边形ABB′A′.由平移可知,AA′=BB′,AA′∥BB′,所以四边形ABB′A′是平行四边形.分别延长A′A,B′B交x轴于点M,N.因为A(1,m),B(4,n),所以MN=4-1=3.因为S▱ABB′A′=AA′·MN,所以9=3AA′,解得AA′=3,即函数y=12(x-2)2+1的图象沿y轴向上平移了3个单位,所以新图象的函数表达式为y=12(x-2)2+4.14.A [解析] 由二次函数的图象开口向上得a>0.因为-c是二次函数图象顶点的纵坐标,所以c>0.所以一次函数y=ax+c的大致图象经过第一、二、三象限.15.B [解析] 如图,当h<2时,有-(2-h)2=-1,解得h1=1,h2=3(舍去);当2≤h≤5时,y=-(x-h)2的最大值为0,不符合题意;当h>5时,有-(5-h)2=-1,解得h3=4(舍去),h4=6.综上所述,h的值为1或6.故选B.16.k≥2[解析] 抛物线的对称轴为直线x=-k,因为a=-1<0,所以抛物线开口向下,所以当x>-k时,y随x的增大而减小.又因为当x>-2时,y随x的增大而减小,所以-k≤-2,所以k≥2.17.解:因为y=x+m-12+m+2=[x-(-m+1)]2+(m+2),所以抛物线的顶点坐标为(-m+1,m+2).因为抛物线的顶点在第二象限,所以-m+10,即m>1,m>-2,所以m>1.18.解:(1)顶点D的坐标为(1,4).(2)把x=0代入y=-(x-1)2+4,得y=3,所以△OCD的面积为12×3×1=32.19.解:(1)当x=0时,y=-9,所以点C的坐标为(0,-9).(2)当y=0时,3x+12-12=0,解得x1=-3,x2=1,所以点A的坐标为(-3,0),点B的坐标为(1,0).(3)由抛物线所对应的函数关系式可知点D的坐标为(-1,-12),设对称轴与x 轴交于点E,则点E的坐标为(-1,0),所以S四边形ABCD=S△ADE+S梯形OCDE +S△BOC=12×2×12+12×1×(9+12)+12×1×9=27.26.2.5二次函数y=a +bx+c的图象与性质1.已知二次函数y=ax2﹣2x+2(a>0),那么它的图象一定不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.抛物线y=2x2,y=﹣2x2,y= x2共有的性质是()A.开口向下 B.对称轴是y轴 C.都有最低点 D.y的值随x的增大而减小3.抛物线y=2x2+1的顶点坐标是()A.(2,1) B.(0,1) C.(1,0) D.(1,2)4.对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是()A.开口向下 B.对称轴是x=﹣1 C.顶点坐标是(1,2) D.与x轴有两个交点5.二次函数y=ax2+bx+c(a≠0)的大致图象如图,关于该二次函数,下列说法错误的是()A.函数有最小值 B.对称轴是直线x= C.当x<,y随x的增大而减小 D.当﹣1<x<2时,y>0二.填空题6.抛物线y=2x2﹣1在y轴右侧的部分是(填“上升”或“下降”).7.二次函数y=x2﹣4x﹣5图象的对称轴是直线.。
部编数学九年级下册26.1二次函数及其图象同步练习新人教版含答案

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!26.1 二次函数及其图象专题一 开放题1.请写出一个开口向上,与y 轴交点纵坐标为﹣1,且经过点(1,3)的抛物线的解析式 .(答案不唯一)2.(1)若是二次函数,求m 的值;(2)当k 为何值时,函数是二次函数?专题二 探究题3.如图,把抛物线y =x 2沿直线y =x 平移个单位后,其顶点在直线上的A 处,则平移后抛物线的解析式是( )A .B .C .D .4.如图,若一抛物线y =ax 2与四条直线x =1、x =2、 y =1、y =2围成的正方形有公共点,求a的取值范围.22()m m y m m x -=+221(1)(3)k k y k x k x k --=++-+21)1(2-+=x y 1)1(2++=x y 1)1(2+-=x y 1)1(2--=x y专题三 存在性问题5.如图,抛物线与x 轴交于A 、B 两点,与y 轴交于点C ,且OA =2,OC =3.(1)求抛物线的解析式;(2)若点D (2,2)是抛物线上一点,那么在抛物线的对称轴上,是否存在一点P ,使得△BDP的周长最小?若存在,请求出点P 的坐标;若不存在,请说明理由.注:二次函数(≠0)的对称轴是直线=. =6.如图,二次函数的图象与x 轴分别交于A 、B 两点,顶点M 关于x 轴的对称点是M′.(1)若A (-4,0),求二次函数的关系式;(2)在(1)的条件下,求四边形AMBM′的面积;(3)是否存在抛物线,使得四边形AMBM′为正方形?若存在,请求出此抛物线的函数关系式;若不存在,请说明理由.c bx ax y ++=2a x ab 2-c x x y +-=221212y x x c =-+c bx x y ++-=221【知识要点】1.二次函数的一般形式(其中a ≠0,a ,b ,c 为常数).2.二次函数的对称轴是y 轴,顶点是原点,当a >0时,抛物线的开口向上, 顶点是抛物线的最低点,a 越大,抛物线的开口越小;当a <0时,抛物线的开口向下,顶点是抛物线的最高点,a 越大,抛物线的开口越大.3.抛物线的图象与性质:(1)二次函数的图象与抛物线形状相同,位置不同,由抛物线平移可以得到抛物线.平移的方向、距离要根据h ,k 的值确定.(2)①当时,开口向上;当a <0时,开口向下;②对称轴是直线;③顶点坐标是(h ,k ).4.二次函数y=ax 2+bx+c 的对称轴是直线x =,顶点坐标为.【温馨提示】1.二次函数的一般形式y=ax 2+bx+c 中必须强调a ≠0.2.当a <0时,a 越小,开口越小,a 越大,开口越大.3.二次函数的增减性是以对称轴为分界线的.4.当a >0时,二次函数有最小值,若自变量取值范围不包括顶点的横坐标,则距离对称轴最近处,取得函数的最小值;当a <0时,二次函数有最大值,若自变量取值范围不包括顶点的横坐标,则距离对称轴最近处,取得函数的最大值.【方法技巧】1.一般地,抛物线的平移规律是 “上加下减常数项,左加右减自变量”.2.如已知三个点求抛物线解析式,则设一般式y=ax 2+bx+c .3.若已知顶点和其他一点,则设顶点式.c bx ax y ++=22y ax =2()y a x h k =-+2()y a x h k =-+2y ax =2y ax =2()y a x h k =-+0a >x h =ab 2-)44,2(2a b ac a b --2()y a x h k =-+参考答案1.答案不唯一,如y=x 2+3x﹣1等.【解析】设抛物线的解析式为y=ax 2+bx+c ,∵ 开口向上,∴a >0. ∵其与y 轴交点纵坐标为﹣1,∴c =﹣1.∵经过点(1,3),∴a+b -1=3.令a =1,则b =3,所以y=x 2+3x ﹣1.2.解:(1)由题意,得解得m =2. (2)由题意,得解得k =3.3.C 【解析】把抛物线y=x 2沿直线y=x个单位,即是将抛物线向上平移一个单位长度后再向右移1个单位长度,再根据“上加下减常数项,左加右减自变量”即可得到平移后的抛物线的解析式为,答案为C.4.解:因为四条直线x =1、 x =2、 y =1、 y =2围成正方形ABCD ,所以A (1,2),C (2,1).设过A 点的抛物线解析式为y =a 1x 2,过C 点的抛物线解析式为y =a 2x 2,则a 2≤a ≤a 1.把A (1,2),C (2,1)分别代入,可求得a 1=2,a 2=14.所以a 的取值范围是14≤a ≤2. 5.解:(1)将A (-2,0), C (0,3)代入=得 解得b = 12,c = 3.∴此抛物线的解析式为 y = x 2+x +3. (2) 连接AD 交对称轴于点P ,则P 为所求的点.设直线AD 的解析式为y =kx +b.由已知得解得k= ,b =1.∴直线AD 的解析式为y =x +1. 对称轴为直线x =-= .当x = 时,y = ,∴ P 点的坐标为(,).6.解:(1) 把A (-4,0)代入,解出c =-12.∴二次函数的关系式为. (2)如图,⎪⎩⎪⎨⎧=+=-,0,222m m m m ⎩⎨⎧≠+=--,01,2122k k k 2(1)1=-+y x y c bx x ++-221⎩⎨⎧=+--=,022,3c b c 21-21⎩⎨⎧=+=+-,22,02b k b k 2121a b 22121452145c x x y +-=22112212--=x x y令y =0,则有,解得,,∴A (-4,0),B (6,0), ∴AB =10.∵,∴M (1, ), ∴M ′(1, ), ∴MM′=25.∴四边形AMBM′的面积=AB·MM′=×10×25=125.(3) 存在.假设存在抛物线,使得四边形AMBM′为正方形.令y =0,则,解得.∴A (,0),B (,0),∴AB =.),AMBM′211202x x --=14x =-26x =225)1(21122122--=--=x x x y 225-2251221c x x y +-=2210212=+-=c x x y c x 211-±=c 211--c 211-+c 212-c。
初三九年级数学下册:第26章二次函数 同步学习检测(一)填空题

第26章二次函数 同步学习检测(一)班级 座号 姓名 ___ 得分一、填空题:注意:填空题的答案请写在下面的横线上, (每小题2分,共80分)1、 ;2、 ;3、 ;4、 ;5、 ;6、 ;7、 ;8、 ;9、 ;10、 ; 11、 ;12、 ;13、 ;14、 ;15、 ; 16、 ;17、 ;18、 ;19、 ;20、 ; 21、 ; 22、 ;23、 ; 24、 ; 25、 ; 26、 ;27、 ;28、 ;29、 ;30、 ; 31、 ;32、 ;33、 ;34、 ;35、 ; 36、 ;37、 ;38、 ;39、 ;40、 ;1、(2009年北京市)若把代数式223x x --化为()2x m k -+的形式,其中,m k 为常数,则m+k= __________ .2、(2009年安徽)已知二次函数的图象经过原点及点(12-,14-),且图象与x 轴的另一交点到原点的距离为1,则该二次函数的解析式为3、(2009 黑龙江大兴安岭)当=x 时,二次函数222-+=x x y 有最小值.4、(2009年郴州市)抛物线23(1)5y x =--+的顶点坐标为_______________________. 5、(2009年上海市)将抛物线22y x =-向上平移一个单位后,得以新的抛物线,那么新的抛物线的表达式是 ______________ .6、(2009年内蒙古包头)已知二次函数2y ax bx c =++的图象与x 轴交于点(20)-,、1(0)x ,,且112x <<,与y 轴的正半轴的交点在(02),的下方.下列结论:①420a b c -+=;②0a b <<;③20a c +>;④210a b -+>.其中正确结论的个数是 _____ 个. 7、(2009湖北省荆门市)函数(2)(3)y x x =--取得最大值时,x =____________.8、(2009年齐齐哈尔市)当x =_____________时,二次函数222y x x =+-有最小值.9、(2009年贵州省黔东南州)二次函数322--=x x y 的图象关于原点O (0, 0)对称的图象的解析式是_________________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
26.1 二次函数
知|识|目|标
1.通过对教材“问题1”“问题2”中所列函数关系式共同点的探索,归纳出二次函数的定义,并会判断一个函数是不是二次函数.
2.类比根据实际问题列出一次函数关系式的方法,能根据实际问题或几何图形写出二次函数的关系式及自变量的取值范围.
目标一能识别二次函数
例1 教材补充例题下列函数:①y=x+2;②y=2x2;③y=ax2+bx+c(a,b,c是常数);
④y=3
x2;⑤y=x(x+1);⑥y=-
1
3
x2-x+2;⑦y=(x+1)2-x(x+1).其中y一定是x的
二次函数的有哪些?请指出二次函数中相应的a,b,c的值.
【归纳总结】
1.一个函数是二次函数必须同时满足:
(1)函数关系式是整式;(2)化简后自变量的最高次数是2;(3)二次项系数不等于零.三者缺一不可.
2.确定二次函数中各项系数时,应先将关系式化为一般形式,注意各项系数应包括它前面的符号.
目标二会列二次函数关系式
例2 教材练习第1题针对训练如图26-1-1,有长为30 m的篱笆,现一面利用墙(墙的最大可用长度为15 m)围成中间隔有一道篱笆的长方形菜园.设菜园的一边AB=x m,总面积为S m2,求S关于x的函数关系式,并确定自变量x的取值范围.
图26-1-1
【归纳总结】列二次函数关系式“三步法”:
(1)审清题意,找到实际问题中的已知量(常量)和未知量(变量),分析各量之间的关系,找出等量关系.
(2)根据实际问题中的等量关系,列出二次函数关系式,并化成一般形式.
(3)根据实际问题的意义及所列函数关系式,确定自变量的取值范围.
知识点一 二次函数的概念
定义:形如__________________________________的函数叫做二次函数.
其中x 是自变量,ax 2,bx ,c 分别是二次函数的二次项、一次项和常数项.a ,b ,c 分别是
二次函数的二次项系数、一次项系数和常数项.自变量x 的取值范围是__________. 知识点二 列二次函数关系式
根据题意用自变量表示出题目中的相关量,然后列出函数关系式.列出函数关系式后,要注意标明自变量的取值范围.
当m 为何值时,y =(m +1)是关于x 的二次函数?
解:令x 的指数是2,即m 2-3m -2=2,
解得m 1=-1,m 2=4.
所以当m =-1或m =4时,y =(m +1)是关于x 的二次函数.
以上解答过程正确吗?若不正确,请指出错误,并给出正确的解答过程.
教师详解详析
【目标突破】
例1[解析] ①自变量的最高次数是1,不是二次函数;②是二次函数,a =2,b =0,c =0;③当a =0时不是二次函数;④函数关系式不是整式,故不是二次函数;⑤是二次函数,a =1,
b =1,
c =0;⑥是二次函数,a =-13
,b =-1,c =2;⑦化简得y =x +1,不是二次函数. 解:y 一定是x 的二次函数的有②⑤⑥.
②y =2x 2:a =2,b =0,c =0;
⑤y =x(x +1):a =1,b =1,c =0;
⑥y =-13x 2-x +2:a =-13
,b =-1,c =2. 例2[解析] 因为AB =x m ,所以BC =(30-3x)m .利用长方形的面积公式可以写出S 关于x 的关系式,再利用给定墙的长度及篱笆长度可以求得自变量x 的取值范围.
解:由题意,得AB =x m ,则BC =(30-3x)m ,
∴S =x ·(30-3x)=-3x 2+30x.
又∵3AB =3x<30,且BC =30-3x ≤15,
∴x<10且x ≥5,
即自变量x 的取值范围是5≤x<10.
∴S =-3x 2+30x(5≤x <10).
备选目标 利用二次函数的关系式进行简单计算
例 已知二次函数y =ax 2+2x -3,当x =1时,y =0.
(1)求a 的值;
(2)若x =2,求y 的值;
(3)若y =-4,求x 的值.
解:(1)把x =1,y =0代入y =ax 2+2x -3中,解得a =1.
(2)由(1)知y =x 2+2x -3.把x =2代入y =x 2+2x -3中,得y =22+2×2-3=5.
(3)把y =-4代入y =x 2+2x -3中,得x 2+2x -3=-4,解得x =-1.
【总结反思】
[小结] 知识点一 y =ax 2+bx +c(a ,b ,c 是常数,a ≠0) 全体实数
[反思] 不正确.根据二次函数的定义,要使y =(m +1) 是关于x 的二次函数,
m 不但应满足m 2-3m -2=2,而且还应满足m +1≠0,二者缺一不可.在解题过程中忽略了m
+1≠0这一条件,所以解答过程不正确.
正解:根据题意知m 应满足的条件是m 2-3m -2=2,且m +1≠0,解得m =4.
所以当m =4时,y =(m +1) 是关于x 的二次函数.。