电力系统暂态分析课件赵书强

合集下载

电力系统暂态分析课件 第一章

电力系统暂态分析课件 第一章

超导体闭合回路磁链守恒原理
什么是磁链?
磁场交链线圈回路的多少就是磁链
磁链表达: Li N
变化的磁链引起感应电势 e d
dt
运动电势:由于磁场运动在线圈中引起的电势 变压器电势:磁场不动但磁场大小(If变化)变化而
在线圈中引起的电势 自感电势:线圈本身的电流变化在线圈中引起的电势
第二节 同步发电机突然三相短路 后的物理过程及短路电流近似分析
影响电力系统动态特性的最主要元件是同步发 电机,不充分了解同步发电机的特性,谈论电力系统 的特性是完全无意义的。
————关根泰次
本节在实测的短路电流波形基础上,应用同步发电机的双反 应原理和超导回路的磁链守恒原理,对短路后的物理过程和短 路电流的表达式作近似分析。
110kV
k
10.5kV
S
100km X0=0.4Ω/km
STN =50MVA UK%=10.5
PGN=40MW cosф=0.8 X”d=0.25
第一节 短路的一般概念
假设:
(1) 忽略磁路饱和、磁滞、涡流等的影响 (2)电机转子的结构分别相对于直轴和交轴对称 (3)定子的三相绕组的空间位置互差120电角度,在结构上 完全相同,它们均在气隙中产生正弦分布的磁动势。 (4)电机空载、转子恒速旋转时,转子绕组的磁动势在定子 绕组所感应的空载电动势是时间的正弦函数 (5)定子和转子的槽和通风沟不影响定子和转子的电感
第一节 短路的一般概念
二、短路计算的作用和若干简化假设
作用:
(1)选择电气设备 (2)合理配置继电保护和自动装置并正确整定其参数 (3)在设计电力系统电气主接线时,确定是否需要采取限制 短路电流的措施 (4)进行暂态稳定计算、研究短路对用户工作的影响

电力系统暂态分析第五章课件

电力系统暂态分析第五章课件

电力系统暂态分析第五章 不对称故障的分析计算第一节 不对称短路时故障处的短路电流和 电压 第二节 非故障处电流、电压的计算 第三节 非全相运行的分析计算Exit第1页电力系统暂态分析第一节 不对称短路时故障处的短路电流和电压Exit第2页电力系统暂态分析U f |0| − U f (1) = I f (1) zΣ (1)0 − U f ( 2 ) = I f ( 2 ) zΣ ( 2 )第3页Exit电力系统暂态分析0 − U f ( 0 ) = I f ( 0 ) zΣ ( 0 )三序电压平衡方程U f |0| − U f (1) = I f (1) zΣ (1) ⎫ ⎪ ⎪ 0 − U f ( 2 ) = I f ( 2 ) zΣ ( 2 ) ⎬ ⎪ 0 − U f ( 0 ) = I f ( 0 ) zΣ ( 0 ) ⎪ ⎭Exit第4页电力系统暂态分析一、单相接地短路f(1)(1)基本相选择 选择特殊相a相作为分析计算的基本相。

(2)建立故障边界条件方程I fb = I fc = 0Ufa= 0序量表示的故障边界条件:U f (1) + U f ( 2 ) + U f ( 0 ) = 0I f (1) = I f ( 2 ) = I f ( 0 )Exit第5页电力系统暂态分析(3)构建复合序网(4)计算故障处各序电流、电压I f (1) = I f ( 2 ) = I f ( 0 ) = U f |0| zΣ (1) + zΣ ( 2 ) + zΣ ( 0 ) 3U f |0| zΣ (1) + zΣ ( 2 ) + zΣ ( 0 )Exit故障相短路电流I f = I f (1) + I f ( 2 ) + I f ( 0 ) =第6页电力系统暂态分析U f (1) = U f |0| − I f (1) zΣ (1) ⎫ ⎪ ⎪ U f ( 2 ) = 0 − I f ( 2 ) zΣ ( 2 ) ⎬ ⎪ U f ( 0 ) = 0 − I f ( 0 ) zΣ ( 0 ) ⎪ ⎭忽略电阻,则U fb = a 2 (U fa|0| − I f (1) jxΣ (1) ) + a( − I fa ( 2 ) jxΣ ( 2 ) ) + ( − I f ( 0 ) jxΣ ( 0 ) )= a 2U fa|0| − (a 2 + a ) I f (1) jxΣ (1) − I f (1) jxΣ ( 0 ) = U fb|0| − I f (1) j( xΣ ( 0 ) − xΣ (1) )= U fb|0| − U fa|0| j ( 2 xΣ (1) + xΣ ( 0 ) ) j ( xΣ ( 0 ) − xΣ (1) )x∑(1)=x∑(2)k0 − 1 = U fb|0| − U fa|0| 2 + k0k0=x∑(0)/x∑(1)Exit第7页电力系统暂态分析同理• 讨论:低 k0=0k0 − 1 U fc = U fc|0| − U fa|0| 2 + k0k0=x∑(0)/x∑(1)▪ (1) k0<1,即x∑(0)<x∑(1)时,非故障相电压较正常时▪ (2) k0=1,即x∑(0)=x∑(1)时,非故障相电压等于正常 时电压第8页Exit电力系统暂态分析▪ (3) k0>1,即x∑(0) > x∑(1)时,非故障相电压较正 常时高U fc = U fc|0| − U fa|0| k0 − 1 2 + k0▪ (4) k0=∞,即x∑(0) = ∞时,非故障相电压最高U fb = U fb|0| − U fa|0| = 3U fb|0|∠ − 30° U fc = U fc|0| − U fa|0| = 3U fc|0|∠ 30°即:对于中性点不接地系统,发生单相接地短路时,中 性点电位升至相电压,非故障相电压升高为线电压。

电力系统暂态分析第二章 260页PPT文档

电力系统暂态分析第二章 260页PPT文档

&& &
&
U|0| jI|0|xqjId|0|(xdxq) EQ|0| jId(xd xq)
&& & EQ U|0| jI|0|xq
由于E q |0|
&
、jId|0| (xd xq )
&
均在q轴方向,所以E Q |0 |也必在q轴方
向,据此即可确定q轴方向。
d轴和q轴方向的确定
1、同步发电机结构特点
同步发电机简化等值图
气隙
定子 转子
定子上3个等效绕组
B相绕组
A相绕组
C相绕组
转子上3个等效绕组
q轴等效的阻 尼绕组
励磁绕组
d轴等效的阻 尼绕组
同步发电机简化为:定子3个绕组、转子3个绕组、 气隙、定子铁心、转子铁心组成的6绕组电磁系统。
同步发电机的特点:
转子是旋转的。 绕组是分散的。 存在磁饱和现象。
定子:按去磁规律来定义; 转子:按助磁规律来定义; 绕组电压方向: 定子:发电机规律来定义; 转子:电动机规律来定义
2电压同方程步:电机的电压方程、磁链方程
ra
rf
rD
Z
Z
rQ
Z
u a uf
--
a iarua
定子侧:
uf rfif f
转子侧:
0rDiDD
直轴阻尼绕组: 0rQiQQ
(3)空载电动势的确定
对于隐极机可以从正常运行时的电压和电流以及相角
求出 E q |0|
;对于凸极机需要知道I& d
|
0
、&
| I q |0
|
、U& d

电力系统暂态分析课件

电力系统暂态分析课件

x' d
2
xq
x' d
x x' q d
sin2δ
简化
PE '
E'U xd'
sinδ'
暂态磁阻功率
(3)发电机端电压为常数
2
xd xq sin2δ xd xq
磁阻功率
(与励磁无关)
磁阻功率的影响:
(1)使功率极限略有增加; (2)使极限功率在δ<90°时出现
第二节 同步发电机组的机电特性
(2) 以暂态电动势和暂态电抗表示发电机
E
' q
Uq
I
d
x
' d
0 U d I q xq
PE 'q
Eq'U sinδ U 2
第一节 电力系统运行稳定性 的基本概念
T
G
电网
调速系统
励磁系统
负荷
微分方程 代数方程 负荷模型
第一节 电力系统运行稳定性 的基本概念
一、稳定的基本概念
电力系统运行稳定性问题就是当系统在某一正常运行状态下 受到某种干扰后,能否经过一定时间后回到原来的运行状态 或者过渡到一个新的稳态运行状态的问题。如果能够,则认 为系统在该正常运行状态下是稳定的。反之,若系统不能回 到原来的运行状态或者不能建立一个新的稳态运行状态,则 说明系统的状态变量没有一个稳态值,而是随着时间不断增 大或振荡,系统是不稳定的。
SB MBB )
(2)式两边除以MB:
2Wk
2 0
SB
d dt
2Wk SB0
d dt
M*
0
将机械角速度Ω转换成电气角速度ω,
2Wk

电力系统暂态分析全部课件

电力系统暂态分析全部课件
第一节 概述
故障,事故,短路故障:正常运行情况以外的相与相之间或相与地之间的连接。 1.故障类型(电力系统故障分析中) 名称 图示 符号 ⑴ 三相短路 f (3 ) f :fault
⑵ 二相短路
f
(2 )
⑶ 单相短路接地
f (1 )
⑷ 二相短路接地
f
(1 。1 )
⑸ 一相断线
⑹ 二相断线
形式上又可称为短路故障、断线故障(非全相运行) 分析方法上:不对称故障、对称故障(f (3 ) ) 计算方法上:并联型故障、串联性故障 简单故障:在电力系统中只发生一个故障。 复杂故障:在电力系统中的不同地点(两处以上)同时发生不对称故障。 第二节 标幺制 一 标幺值(P.U.) 标幺值= 有名值 基准值
第六章
稳定性问题概述和各元件的机电特性 第一节 第二节 第三节 第六章 概述
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 66
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 66
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 80
暂态稳定概述 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 80 简单系统的暂态稳定分析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 80 自动调节系统对暂态稳定的影响 提高暂态稳定的措施 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 84 87 87

电力系统暂态分析课件ppt

电力系统暂态分析课件ppt
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
第四章
电力系统运行稳定性的基本 概念和各元件的机电特性
第一节 电力系统运行稳定性的基本概念
第二节 同步发电机组的机电特性 第三节 发电机励磁系统与原动机系统
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
第一节
电力系统运行稳定性 的基本概念
静态稳定:是指电力系统受到小干扰后,不发生非周期性失
步或自发振荡,自动恢复到初始运行状态的能力。
暂态稳定:是指电力系统受到大干扰后,各同步发电机组保
转子运动方程还可以用电角度表示dδ dt Nhomakorabeaω
ω
0
d 2δ

dt 2
dt
TJ ω0
d2δ dt
M*
考虑到发电机惯性较大,一般机械角速度变化不是很大,所
电力系统运行稳定性问题就是当系统在某一正常运行状态下 受到某种干扰后,能否经过一定时间后回到原来的运行状态 或者过渡到一个新的稳态运行状态的问题。如果能够,则认 为系统在该正常运行状态下是稳定的。反之,若系统不能回 到原来的运行状态或者不能建立一个新的稳态运行状态,则 说明系统的状态变量没有一个稳态值,而是随着时间不断增 大或振荡,系统是不稳定的。
电力系统运行稳定性 的基本概念
➢功角稳定问题的原因——转矩不平衡
原动机转矩
电磁转矩
转子
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用

电力系统暂态分析讲义

电力系统暂态分析讲义

电力系统暂态分析讲义第八章电力系统暂态稳定第一节暂态稳定概述暂态稳定分析:不宜作线性化的干扰分析,例如短路、断线、机组切除(负荷突增)、甩负荷(负荷突减)等。

能保持暂态稳定:扰动后,系统能达到稳态运行。

分析暂态稳定的时间段:起始:0~1,保护、自动装置动作,但调节系统作用不明显,发电机采用、PT恒定模型;中间:1~5,AVR、PT的变化明显,须计及励磁、调速系统各环节;后期:5~min,各种设备的影响显著,描述系统的方程多。

本书中重点讨论起始阶段。

基本假定:⑴网络中,ω=ω0(网络等值电路同稳态分析)⑵只计及正序基波分量,短路故障用正序增广网络表示一.物理过程分析~发电机采用E’模型。

故障前:电源电势节点到系统的直接电抗故障中,j某Δ故障切除后:PPIPⅢfeaPT=P0kdacbPⅡ功角特性曲线为:δhδmδ0δcδ●故障发生后的过程为:运行点变化原因结果a→b短路发生PT>PE,加速,ω上升,δ增大b→cω上升,δ增大ω>ω0,动能增加c→e故障切除PT<PE,开始减速,但ω>ω0,δ继续增大e→f动能释放减速,当ωf=ω0,动能释放完毕,δm角达最大f→kPT<PE,减速δ,减小经振荡后稳定于平衡点k结论:①若最大摇摆角,系统可经衰减的振荡后停止于稳定平衡点k,系统保持暂态稳定,反之,系统不能保持暂态稳定。

②暂态稳定分析与初始运行方式、故障点条件、故障切除时间、故障后状态有关。

③电力系统暂态稳定分析是计算电力系统故障及恢复期间内各发电机组的功率角的变化情况(即δ–t曲线),然后根据角有无趋向恒定(稳定)数值,来判断系统能否保持稳定,求解方法是非线性微分方程的数值求解。

P二.等面积定则daPT=P0PI●故障中,机组输入的机械功率>发电机输出的电磁功率,发电机加速,cbPⅡδδ0δcP积分得:左侧=转子在相对运动中动能的增量;右侧=过剩转矩对相对位移所做的功――线下方的阴影面积――称为加速面积;●故障切除后PⅢfdaPT=P0PⅡδcδcδm∵时,,∴右侧=制动转矩对相对角位移所做的功=线上方的阴影面积(称为减速面积)●因减速过程中,转速恢复同步转速(即加速过程中的动能释放完毕)时δ角达最大,所以加速面积=减速面积――等面积定则。

暂态分析第二章

暂态分析第二章



IF1

IF2

Uf 0
ZFF 1ZFF 22zf
三、纵向不对称故障
(一)单相断开



Ia 0, Ub z f Ib 0


Ub z f Ic 0
与两相接地短路的边界条件完全相似。因此,两相接地短路 的复合序网及故障口各序电流的算式都可用于单相断开的计 算,只是故障口自阻抗和开路电压的计算不同而已
第一节 概述
用计算机进行故障分析时,主要有以下两条基本假设: 1)系统各元件的参数是恒定的,因而可以应用叠加原理 2) 除了发生不对称故障的局部以外,系统其余部分各元件的
三相参数是对称的 商业化的计算软件: PSASP、BPA
第二节 电力系统故障计算 的等效网络
一、系统等效网络
(一) 等效网络 1.电源
-
任何一条支路可以表示成 电压源的形式
+
U mZ m ImE m
这一方程只反映了各支路特性, 并不反映这些支路的连接情况, 一般称为网络的原始支路阻抗 矩阵
第二节 电力系统故障计算 的等效网络
z11
Zm


z21
zm1
z12 z1m
z22 z2m
zm2
二、横向不对称故障
(一)单相接地短路


IF1
ZFF 1
Uf 0 ZFF 2 ZFF 0
3zf



Iijk
UikUjk zijk
k1,2,0
(二)两相接地短路


IF1
ZFF1zf
Uf 0 ZFF2zf ZFF0zf 3zg
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档