电路的暂态分析讲解学习

合集下载

第三章 电路的暂态分析1培训资料

第三章 电路的暂态分析1培训资料

第三章电路的暂态分析1培训资料电路的暂态分析是电路理论中的重要内容,它研究电路在初始状态或在切换瞬间的瞬态响应。

在本章中,我们将介绍电路暂态分析的基本概念、方法和应用。

一、电路暂态分析的基本概念电路暂态分析是指在电路切换瞬间或在初始状态下,电路中各元件的电流、电压和功率的瞬态变化情况。

电路暂态分析是电路理论中的基础知识,它对于理解电路的动态行为和瞬态响应具有重要意义。

二、电路暂态分析的方法1. 瞬态响应方程瞬态响应方程是描述电路在切换瞬间或初始状态下的电流、电压和功率变化的数学方程。

通过求解瞬态响应方程,可以得到电路在瞬态过程中的电流、电压和功率的变化规律。

2. 拉普拉斯变换法拉普拉斯变换法是求解电路暂态响应的一种常用方法。

通过将电路中的元件和信号用拉普拉斯变量表示,可以将电路暂态分析转化为求解代数方程的问题,从而得到电路的瞬态响应。

3. 数值模拟方法数值模拟方法是通过计算机仿真来求解电路暂态响应的一种方法。

通过建立电路的数学模型,并利用数值计算方法进行仿真计算,可以得到电路在瞬态过程中的电流、电压和功率的变化情况。

三、电路暂态分析的应用1. 电路开关过程的分析在电路中,开关的切换过程会引起电路中电流、电压和功率的瞬态变化。

通过电路暂态分析,可以研究开关过程中电路的动态行为,为电路设计和故障诊断提供依据。

2. 电源启动过程的分析电源启动过程是指电源从初始状态到正常工作状态的过程。

在电源启动过程中,电路中的电流、电压和功率会发生瞬态变化。

通过电路暂态分析,可以研究电源启动过程中电路的瞬态响应,为电源设计和调试提供参考。

3. 电路故障诊断在电路中,故障会引起电路中的电流、电压和功率的异常变化。

通过电路暂态分析,可以分析故障引起的瞬态响应,从而判断故障的位置和原因,为电路的修复和维护提供指导。

总结:电路暂态分析是电路理论中的重要内容,它研究电路在初始状态或在切换瞬间的瞬态响应。

电路暂态分析的方法包括瞬态响应方程、拉普拉斯变换法和数值模拟方法。

电路的暂态分析全篇

电路的暂态分析全篇

解:(1)
由t
=
0-电路求
uC(0–)、iL
t=
(0–)
0
-等效电路
换路前电路已处于稳态:电容元件视为开路;
由t = 0-电路可求得: 电感元件视为短路。
iL(0 )
R1 R1 R3 R
U R1 R3
4
4
4
2
U 4
4
1A
R1 R3
44
例2:
R
+ 2
U
_
8V
i1
t =0 ic
R1 4
uL(0 ) u1(0 ) U (uL(0 ) 0) u2(0 ) 0
例2:换路前电路处稳态。
试求图示电路中各个电压和电流的初始值。
R
R
+ 2
U
_
8V
i1
t =0 iC
R1 4
u+_C
R2 iL R3 + 2 i1
4
4
U
+ u_ L
_ 8V
iC
R2 iL R3
4 4
R41 u+_C C
+ u_ L L
换路: 电路状态的改变。如: 电路接通、切断、 短路、电压改变或参数改变
产生暂态过程的原因: 由于物体所具有的能量不能跃变而造成
在换路瞬间储能元件的能量也不能跃变

C
储能:WC
1 2
CuC2

L储能:WL
1 2
LiL2
\ uC 不能突变
\ i L不 能 突 变
4.产生过渡过程的电路
电阻电路
K
+ E
电感电路:iL (0 ) iL (0 )

电工学:第2章 电路的暂态分析

电工学:第2章 电路的暂态分析

= 2.2μs
三、 RC电路的完全响应 ——uC(0-) = UO≠0
K
R
q
t=0
uR
设uC(0-) =UO
US
i
C uC
换路后, 微分方程为 方程的通解为 待定系数A为 所以
uR+ uC = US 或 Ri + uC = US RCduC/dt + uC = US uC (t)= US + Ae(-t/τ) A= U0 – US uC (t)= US + (U0 – US)e(-t/τ)
例3 零状态
设开关K闭合前,L、C均未储能
——初始储能为零 ——零初始状态 ——零状态
iC
K uC
i1
R2 10Ω
iL
t=0
R1 5Ω
uR
L uL
US 10V
uC(0-) = 0, iL(0-)= 0 ——零初始状态
零状态举例——先确定 uC 、iL
i=?
R2 10Ω
uC =0
i1=?
US 10V
第2章 电路的暂态分析
§2–1 暂态分析的基本概念
一、稳态、暂态和换路
1、稳态——电路稳定的状态 2、暂态——一种稳态→另一种稳态——过渡过程
3、换路——改变电路状态,结构或参数
4、原因——能量不能突变! R
K
q
t=0
US
C uC
uC
US
t
O
电路中的过渡过程很短暂 ——暂态过程 ——暂态分析
二、激励和响应
三、R、L、C 的 u – i 关系小结
R u = Ri L u = Ldi/dt C i = Cdu/dt

第5章 电路的暂态过程分析

第5章  电路的暂态过程分析

第五章电路的暂态过程分析初始状态过渡状态新稳态t 1U Su ct0?动态电路:含有动态元件的电路,当电路状态发生改变时需要经历一个变化过程才能达到新的稳态。

上述变化过程习惯上称为电路的过渡过程。

iRU SKCu C +_R i +_U S t =0一、什么是电路的暂态过程K 未动作前i = 0u C = 0i = 0u C = U s K 接通电源后很长时间C u C +_R i+_U S二、过渡过程产生的原因。

(1). 电路内部含有储能元件L 、M 、C能量的储存和释放都需要一定的时间来完成(2). 电路结构、状态发生变化支路接入或断开,参数变化(换路)三、动态电路与稳态电路的比较:换路发生后的整个变化过程动态分析微分方程的通解任意激励微分方程稳态分析换路发生很长时间后重新达到稳态微分方程的特解恒定或周期性激励代数方程一、电容元件§5-1 电容与电感元件uCi+_q i)()(t Cu t q =dtdu Cdt dq i ==任何时刻,通过电容元件的电流与该时刻的电压变化率成正比。

电荷量q 与两极之间电压的关系可用在q -u 平面上可用一条曲线表示,则称该二端元件称为电容元件。

二、电感元件+–u (t)i (t)Φ(t)N uLi+_()()()()t Li t d di t u t Ldt dtψψ===任何时刻,电感元件两端的电压与该时刻的电流变化率成正比。

Φi交链的磁通链与产生该磁通的电流的关系可用在Ψ-i 平面上可用一条曲线表示,则称该二端元件为电感元件。

§5-2 换路定则与初值的确定t = 0+与t = 0-的概念设换路在t =0时刻进行。

0-换路前一瞬间0+ 换路后一瞬间00(0)lim ()t t f f t -→<=00(0)lim ()t t f f t +→>=初始条件为t = 0+时u ,i 及其各阶导数的值。

0-0+0tf (t )基本概念:一、换路定则1()()d tC u t i C ξξ-∞=⎰0011()d ()d t i i C C ξξξξ---∞=+⎰⎰01(0)()d tC u i C ξξ--=+⎰t = 0+时刻001(0)(0)()d C C u u i C ξξ++--=+⎰当i (ξ)为有限值时u C (0+) = u C (0-)电荷守恒结论:换路瞬间,若电容电流保持为有限值,则电容电压(电荷)换路前后保持不变。

电路的暂态分析基础知识讲解

电路的暂态分析基础知识讲解

E
u2 R2
u2 (0) uC (0) 0 V
i2
i2(0) 0A u1(0) E
返回
上一节
上一页
下一页
第2章 电路的暂态分析
u1 i1
R1
S
iC
E
u2 R2 C
uC
i 2
iC () 0
E i1() i2 () R1 R2
uC
()
u2 ()
E
R2 R1 R2
u1 ( )
E
uC / V iL / A
4
1
4
1
iC / A uL / V
00
1 11
3
3
换路瞬间,uC、iL 不能跃变,但 iC、uL可以跃变。
第2章 电路的暂态分析
2.5 一阶电路暂态分析的三要素法
一阶电路:凡是含有一个储能元件或经等效简化 后含有一个储能元件的线性电路,在进行暂态分析 时,所列出的微分方程都是一阶微分方程式。
者在内部储能的作用下产生的电压和电流。
响应分类:
产生 原因
零输入响应 零状态响应
全响应
全响应 = 零输入响应 + 零状态响应
激励 波形
阶跃响应 ——阶跃激励
u
正弦响应 脉冲响应
0, t 0 U u(t) U , t 0 O
t
返回
下一节
上一页
下一页
第2章 电路的暂态分析
2.2 换路定律
电容电压、电感电流在换路瞬间不能突变。
+ u_c
R
R2 iL R3 + 2 i1
4
4
U
C
+ u_ L L
_ 8V

电工电子技术第5章一阶电路的暂态分析

电工电子技术第5章一阶电路的暂态分析


dW ≠∞ dt
→W(t) 是连续函数(不能跃变)。
结论 ①具有储能的电路在换路时产生暂态是一种自然现象。 ②无论是直流电路还是交流电路均有暂态。
三、名词术语
激励:电路从电源(包括信号源)输入的信号 统称为激励。 响应:电路在外部激励的作用下,或者在内部 储能的作用下产生的电压和电流统称为响应。 阶跃激励
例5.3 已知 U0 = 18 V, S 合上前电路为稳 态,当 t = 0 时将 S 合上。求 uC (t) 和 i (t) 。
解:(1) 求 uC (t) ∵ S 合上前电路为稳态,
∴ uC (0-) = 0 则 uC (0+) = uC (0-) = 0 原电路等效为右下图,
磁场能量:
WL =∫p dt
=∫u i dt
=
1 2L
i
2
结论
① 当 i = 0 时,WL = 0;当 u = 0 时,WL ≠ 0 。 ② 电感电流是电感的状态变量。
i +- ue L -+
2. 电容(线性电容) q=Cu
dq
du
i = dt = C dt
瞬时功率: du
p = u i = C u dt
iS i2 R2 6
例5.2 图示电路,已知 S 合上前电路为稳
态,当 t = 0 时将 S 合上。求 iL 和 uL 的初始值 和稳态值。
解:(1) 求初始值 对于稳态直流电路
uL (0-) = 0
R1
iL
10 k +
IS
L uL -
S 30 mA
iL (0-) =
RR1+2=IR1S02 mA
p=-
1 RC
时间常数 = RC (s)

电工学:第9讲电路暂态分析之三要素法

电工学:第9讲电路暂态分析之三要素法

C
_
Page 36
6-36
解:第一阶段 (t = 0 ~ 20 ms,K:31) 初始值
3
K R1 1k
1
+ 3V
E1 _
R1
i
+i
+
2k 3μ +
R2
uC
C_
E1 _ 3V
R2
_uC
uC 0 uC 0 0 V
i0 E 3 mA R1
Page 37
6-37
第一阶段(K:31) 稳态值
2
1
R1
K R2
IS 3A t=0 2
R3 +
L 1H
uL
_
uL () 0 V
Page 32
R1
R3
R2
+
_ uL
t=时等 效电路
6-32
第三步:求时间常数
2
1
R1
K R2
IS
3A
t=0 2
R3
+
u L
1H
L
_
R R1 || R2 R3
L 1 0.5(s)
R' 2
Page 33
R1
uR
uL
t
Page 21
RL 电路的零输入响应
2 t=0 + uR-
+1 U-
S
R
L +-uiLL
(1) iL 的变化规律
iL iL () [iL (0 ) iL ()] e t (三要素公式)
1) 2) 3)
确定初始值 iL(0 ) iL(0 ) iL(0
确定稳态值iL() iL() 0

《电路的暂态分析 》课件

《电路的暂态分析 》课件

暂态分析的重要性
理解电路在不同工作 状态下的性能表现。
为电路设计和优化提 供依据。
预测电路在不同工作 条件下的响应。
暂态分析的基本方法
时域分析法
通过建立和求解电路的微分方程来分析暂态过 程。
频域分析法
通过将电路转换为频域表示,利用频率特性来 分析暂态过程。
状态空间分析法
通过建立和求解电路的状态方程来分析暂态过程。
03
了解电路暂态分析在电子设备和电力系统 中的应用实例。
04
提高学生对电气工程学科的认识和理解, 培养其解决实际问题的能力。
CHAPTER
02
电路暂态的基本概念
暂态与稳态
01
暂态
电路从一个稳定状态过渡到另一 个稳定状态的过程。
02
03
稳态
暂态分析
电路中各变量不再随时间变化的 状态。
研究电路在暂态过程中的行为和 特性。
分析方法
采用时域和频域分析方法,研究电机启动过程中的电压和 电流波形,分析电路中的阻抗和传递函数,计算电路的响 应时间和超调量等参数。
应用价值
电机广泛应用于工业生产和电力系统中,通过暂态分析可 以更好地理解其工作原理和性能特点,为实际应用提供理 论支持。
数字信号处理中的暂态分析
数字信号处理中的暂态分析
开关电源的暂态分析
01 02
开关电源的暂态分析
开关电源在启动、关闭或负载变化时,电路中的电压和电流会经历暂态 过程。通过暂态分析,可以了解开关电源的性能,优化电路设计,提高 电源的稳定性和效率。
分析方法
采用时域和频域分析方法,研究开关电源的电压和电流波形,分析电路 中的阻抗和传递函数,计算电路的响应时间和超调量等参数。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

开关闭合前 iL 0 A
设 t i L ( 0 ), u L (0 )
UiL(0)RuL(0)
u L(0)2 002V 0
例2 电路原已稳定,t=0时开关断开,求 iC(0+) 。
+ i 10k 40k
- 10V K
+
iC
uC -
(2) 由换路定则
解:(1) 由0-电路求 uC(0-)。
i 不能突变 L
* 从电路关系分析
K Ri
+
_E
uC
C
u 若 c发生突变,
则 duc
dt
K 闭合后,列回路电压方程:
i
EiR uCdRuC ddC utuC (iC )
dt
所以电容电压
不能跃变
初始值的确定
初始值:电路中 u、i 在 t=0+时的大小。
求解要点:
1. uC(0 ) uC(0 )
+ 10k - 10V 40k
+
u uC(0-)=8V
C
-
uC (0+) = uC (0-)=8V
i(0+)
(3) 由0+等效电路求 iC(0+)。 +
10k
+ 8V
iC(0)110080.2mA-
10V
iC(0+)
t=0+等效电路
-
iC(0--)=0 iC(0+)
{end}
6.2 RC电路的响应
6.2.1 RC电路的零输入响应
t=0 1K
+
E -
2R
C uC
RCduC dt
uC
0
uC0 U0
微分方程是一阶的,则该电路为一阶电路(一 阶电路中一般仅含一个储能元件。)
RCduC dt
uC
0
特征方程 RCp10p 1
RC
微分方程通解:uC AeptAeR1Ct
由初始条件 uC0 U0确定A:
t≥0时电路 1Ώ
iC
+
1Ώ 1F
u -
C
uC(0)uC(0)5V
(11)12s
t
uC(t)5e2V t0
iC(t)
uC(t) 2
t
2.5e 2
A
t 0
例2 电路如图所示,t=0时开关打开,求 uab (t) ,t 0。
1F + 10V -
9
+Ώ uC -
9
Ώ4
R eq
Ώ
8 Ώ
解:该电路为求零输入响应
{end}
概述
“稳态”与 “暂态”的概念:
KR
R
+
E
_
uC C
+
_E
uC
电路处于旧稳态
过渡过程 : 旧稳态 新稳态
电路处于新稳态
uC
暂态 稳态
E
t
产生过渡过程的电路及原因?
电阻电路
K
+ E
_
t=0 I
R
I
无过渡过程 t
电阻是耗能元件,其上电流随电压成比例变化, 不存在过渡过程。
电容电路
KR
储能元件
AU0
t
t
uCU0e RCU0e
RC具有时间的量纲, 称为时间常数。
t 2 3 4 5
uC0.368U00.050U00.018U00.007U0 0.002U0
uC U0
uC U0
时间常数决定了 过渡过程的快慢
1 2
36.8%U0
1 2 t 0.368U0
O
t
O
2 1
小结:
(1) 一阶RC电路的零输入响应是由储能元件的 初始储能所引起的响应,为由初始值衰减为零的指 数衰减函数。
第6章 电路的暂态分析
6.0 概述 6.1 换路定则与电压和电流初始值的确定 6.2 RC电路的响应 6.3 一阶线性电路暂态分析的三要素法 6.4 微分电路与积分电路 6.5 RL电路的响应
第6章 电路的暂态分析
本章要求: 1.理解电路的暂态与稳态,以及电路时间常数的物理 意义; 2. 掌握一阶线性电路的零输入响应及在阶跃激励下的 零状态响应和全响应的分析方法。
换路: 电路状态的改变。如:
1 . 电路接通、断开电源 2 . 电路中电源电压的升高或降低 3 . 电路中元件参数的改变
…………..
换路定则: 在换路瞬间,电容上的电压、 电感中的电流不能突变。
设:t=0 时换路
0 --- 换路前瞬间 0 --- 换路后瞬间
则: uC (0 ) uC ((0 )
t
y(t) y(0 )e
(2) 衰减快慢取决于时间常数 = RC
R为换路后从电容两端看进去所对应 无源网络的等效电阻。
(3) 同一电路中所有响应具有相同的时间常数。
例1 t=0时,开关从a投向b,求电容电压和电流。
a

解:该电路为求零输入响应
+ 5V-
b
iC +
1Ώ 1F
u -
C
t
uC(t)uC(0)e 由电路得:
研究过渡过程的意义:过渡过程是一种自然现象, 对它的研究很重要。过渡过程的存在有利有弊。有 利的方面,如电子技术中常用它来产生各种特定的 波形或改善波形;不利的方面,如在暂态过程发生 的瞬间,可能出现过压或过流,致使电气设备损坏, 必须采取防范措施。
{end}
6.1 换路定则与电压和电流初始值的确定 换路定则
iL (0 ) iL (00 ))
换路瞬间,电容上的电压、电感中的电流不能突 变的原因:
* 自然界物体所具有的能量不能突变,能量的积累或
衰减需要一定的时间。所以
电容C存储的电场能量(Wc 1 Cuc2)
W C 不能突变
u2 不能突变 C
电感L储存的磁场能量 (WL
1 2
LiL2)
W L 不能突变
uC
+ _E
uC C
E
t
电容为储能元件,它储存的能量为电场能量 ,
其大小为:
WC0tuid t 1 2Cu 2
因为能量的存储和释放需要一个过程,所以有 电容的电路存在过渡过程。
电感电路
KR
储能元件
+ t=0 E
_
iL L
iL
t
电感为储能元件,它储存的能量为磁场能量,
其大小为:
WL tudi t1L2i
iL(0 ) iL(0 )
2. 根据电路的基本定律和换路后的等效
电路,确定其它电量的初始值。
+ uC(0+)
-
iL(0+)
例1
解: 根据换路定则
K
t=0 U
uR iL
uL
iL(0)iL(0)0A
t=0+时等效电路:
已知: R=1kΩ, L=1H , U=20 V、
uR(0+)
iL(0+)
U
uL(()+)
43 Ώa b Ώ
t
uC(t)uC(0)e 由电路得:
81 ΏΏ
uC(0)uC(0 )1V 0
ReqC
R eq 为换路后从电容两端看进去的等效电阻
3 Ώ
Req 12
0
2
因为能量的存储和释放需要一个过程,所以有电 感的电路存在过渡过程。
结论
有储能元件(L、C)的电路在电路状态发生 变化时(如:电路接入电源、从电源断开、电路 参数改变等)存在过渡过程;
没有储能作用的电阻(R)电路,不存在过渡 过程。
电路中的 u、i在过渡过程期间,从“旧稳态”进 入“新稳态”,此时u、i 都处于暂时的不稳定状态, 所以过渡过程又称为电路的暂态过程。
相关文档
最新文档