数学建模_湖水污染问题(1)

合集下载

水污染防治问题的数学模型研究

水污染防治问题的数学模型研究

水污染防治问题的数学模型研究章节一:引言1.1 研究背景1.2 研究目的1.3 文献综述1.4 研究意义章节二:水污染防治的数学模型2.1 水污染的来源和分类2.2 水污染防治的思路和方法2.3 建立数学模型的基本思路和方法章节三:基于质量平衡方程的水污染预测模型3.1 质量平衡方程的基本原理3.2 建立水污染预测模型的步骤及思路3.3 模型的求解方法和求解过程章节四:基于质量动力学方程的水污染治理模型4.1 质量动力学方程的基本原理4.2 建立水污染治理模型的步骤及思路4.3 模型的求解方法和求解过程章节五:模型应用5.1 模型验证及精度分析5.2 应用范围和局限性5.3 实际应用案例分析及成效章节六:结论与展望6.1 研究成果归纳6.2 研究不足与展望6.3 研究的实际应用前景第一章:引言随着工业化和城市化进程的加速,水污染成为全球性的环境问题。

水污染不仅损害水体生态环境,还会直接威胁人类的健康和生命安全。

为了保护水资源,维护生态平衡,保障人民健康,水污染防治已成为各国政府和科学家共同关注的重要议题。

水污染防治问题需要多学科的参与,其中数学在该领域的应用越来越广泛。

基于数学模型,可以实现对水污染渗透、污染物迁移扩散、控制措施效果等一系列问题的实现,反映更真实的水污染现象及其防治策略。

因此,建立水污染防治的数学模型具有深远的意义和实际意义。

本论文通过对水体污染防治问题的数学模型进行研究,旨在提高数学模型的精度和应用范围,为实现水污染宏防治提供技术支持。

1.1 研究背景水源污染损害水资源的质量,加剧了水环境危机。

当前经济社会发展和人口增长放大了水污染问题的性质和规模,不仅采水用水受到威胁,还给生态环境带来灾难性的后果。

此外,在当前环保法规逐步健全与完善的背景下,研究建立数学模型对于指导污染防治、制定环境政策和措施、协调环境经济与社会发展等方面具有重要意义。

1.2 研究目的本论文旨在通过建立水污染防治的数学模型,实现如下目的:1. 研究水污染防治的基本策略和思路,为建立数学模型提供理论基础。

数学建模_湖水污染问题 (1)

数学建模_湖水污染问题 (1)

湖水污染问题一.问题提出下图是一个容量为2000m3的一个小湖的示意图,通过小河A水以 0.12m3 /s的速度流入,以相同的流量湖水通过B流出。

在上午8:00,因交通事故,一辆运输车上一个盛有毒性化学物质的容器倾翻,在图中X点处注入湖中。

在采取紧急措施后,于上午9:00事故得到控制,但数量不详的化学物质Z已泻入湖中,初步估计Z的数量在5m3至20m3之间。

(1)请建立一个数学模型,通过它来估计湖水污染程度随时间的变化;(2)估计湖水何时到达污染高峰;(3)何时污染程度可降至安全水平(<=0.05%)。

二.模型假设1、湖水流量为常量,湖水体积为常量;2、流入流出湖水水污染浓度为常量三.问题分析分析:湖水在时间t时污染程度,可用污染度F(t)表示,即每立方米受污染的水中含有Fm3的化学污染物质和(1-F)m3的清洁水。

用分钟作为时间t的单位。

在0<t<60的时间内,污染物流入湖中的速率是Z/60(m3*min-1),而排出湖外的污染物的速率是60*0.12F(m3*min-1)。

因为每立方流走的水中含有Fm3的污染物,而湖水始终保持2000m3的容积不变。

四.模型的建立湖水中含污染物的变化率=污染物流入量-污染物排出量2000*(dF/dt)=Z/60-7.2FF(0)=0;2000F’=Z/60-7.2F2000F’+7.2F=Z/60F’+7.2F/2000=Z/120000所以:P(t)=7.2/2000,Q(t)=Z/120000;y= []=[(Z/120000)(2000/7.2)*+C]=Z/432+C*又因为:F(0)=0所以:C=-Z/432所以:y=Z/432[1- ]求得以特解为:F(t)= Z/432[1- ]在0<t<60之间求t为多少时,F(t)最大。

显然是t=60时,污染达到高峰。

此时污染浓度为:F(60)=Z/432(1-)= 4.497*10-4Z然后污染物被截断,故方程为:2000*dF/dt=-7.2F,F(t)=F(60);当它达到安全水平时,即F(t)=0.05%,可求出t=D。

数学建模污水处理问题1

数学建模污水处理问题1

数学建模污水处理问题摘要:污水处理问题属于优化类模型,本文先建立了一般情况下的使江面上所有地段的水污染达到国家标准和使江旁边居民点上游的水污染达到国家标准的污水处理的PL 模型,然后通过具体问题对模型求解。

求解模型采用了求解PL 模型的经典求解算法 — 单纯形法,通过专业求解PL 模型得Lingo 软件使计算实现此算法。

使江面上所有地段的水污染达到国家标准的PL 模型求解结果为:污水处理厂1、处理厂2和处理厂3出口的浓度依次为41.01 mg/l 、21.06 mg/l 和50.00 mg/l 时,江面上所有地段的水污染达到国家标准,且最小处理费用为489.67万元;使江旁边居民点上游的水污染达到国家标准的污水处理的PL 模型求解结果为:在处理厂1、处理厂2和处理厂3出口的浓度依次为63.33 mg/l 、60 mg/l 和50 mg/l 时,为三个居民点上游的水污染达到国家标准,且最小处理费用为183.36万元。

在对模型结果进行分析中,得知污水处理厂2在使江旁边居民点上游的水污染达到国家标准的污水处理的PL 模型中可不工作;污水处理厂3在两种模型中均不工作。

最后本文结合求解结果,对模型结果和模型建立过程中提到的:由于江水的自净能力,第n (11n m ≤-≤)个污水处理厂对面江水的污水浓度总是大于第n+1居民点上游的污水浓度,即江面污水的浓度总是在污水处理厂对面时达到一个较大值,进行了检验。

本模型是针对一般问题建立的,因此模型自壮性好,应用广泛。

但是,模型表达式复杂,若为工厂较多情况下,求解需对模型进行标准化,使得模型效益降低。

关键词:优化 LP 模型 单纯形法 Lingo一.问题提出如下图,有若干工厂的污水经排污口流入某江,各口有污水处理站,处理站对面是居民点。

工厂1上游江水流量和污水浓度,国家标准规定的水的污染浓度,以及各个工厂的污水流量和污水浓度均已知道。

设污水处理费用与污水处理前后的浓度差和污水流量成正比,使每单位流量的污水下降一个浓度单位需要的处理费用(称处理系数)为已知.处理后的污水与江水混合,流到下一个排污口之前,自然状态下的江水也会使污水浓度降低一个比例系数(称自净系数),该系数可以估计.试确定各污水处理站出口的污水浓度,使在符合国家标准规定的条件下总的处理费用最小.先建立一般情况下的数学模型,再求解以下的具体问题:设上游江水流量为12100010l min ⨯ ,污水浓度为0.8 mg/l,3个工厂的污水流量均为55010l min⨯,污水浓度(从上游到下游排列)分别为100,60,50(mg/l),处理系数均为1万元(12(10l min)⨯(mg/l)),3个工厂之间的两段江面的自净系数(从上游到下游)分别为0.9和0.6.国家标准规定水的污染浓度不能超过1mg/l.(1) 为了使江面上所有地段的水污染达到国家标准,最少需要花费多少费用?(2)如果只要求三个居民点上游的水污染达到国家标准最少需要花费多少费用?二.符号说型和模型分析1 . 符号说明i —某江上有到下游的工厂、处理厂和居民点的序号;F —总污水处理费用;i F —第i 个处理厂的污水处理费用; s L —某江上游江水流量;i L —第i 个工厂排放的污水流量;s ρ—某江上游污水浓度;b ρ—国家标准规定的水的污染浓度; pi ρ—第i 个工厂排放的污水浓度;ci ρ—第i 个污水处理厂出口的污水浓度; si ρ—第i 个居民点上游的污水浓度;ri ρ—第i 个污水处理厂对面江水的污水浓度;i C —第i 个处理厂的处理系数;i K —第i —1到i 工厂之间的江面自净系数(此时2i ≥)。

数学与环境保护水质污染模型

数学与环境保护水质污染模型

数学与环境保护水质污染模型数学与环境保护:水质污染模型水质污染是当今全球环境面临的重要问题之一。

随着工业化和城市化进程的加快,水质污染对生态系统和人类健康造成了严重威胁。

数学作为一门强大的学科,可以为环境保护提供有效的解决方案。

本文将介绍数学在水质污染模型中的应用,从而展示了数学与环境保护的密切关系。

一、数学建模水质污染模型是一种基于数学方法的工具,用于预测和分析水体受污染过程中的变化。

通过建立数学模型,我们可以定量地描述水污染过程中的关键因素和影响因素,从而更好地了解污染物在水环境中的行为。

1.1 动力学模型数学建模的一个重要方面是动力学模型,它使用微分方程来描述污染物在水体中的传输和转化过程。

例如,可以使用扩散方程来表示污染物在水体中的扩散过程,使用反应速率方程来描述污染物的降解和转化过程。

通过求解这些微分方程,我们可以获得污染物浓度随时间和空间的变化规律。

1.2 空间分布模型除了动力学模型,空间分布模型也是水质污染模型的重要组成部分。

通过将水域划分为网格或单元,我们可以将水体的特性在空间上进行离散表示。

通过建立适当的数学关系,我们可以推导出水体各个网格或单元之间的污染物传输过程,进而分析水体中的污染物分布情况。

二、数学方法的应用在水质污染模型中,数学方法具有广泛的应用。

下面将介绍几种常见的数学方法及其在水质污染模型中的应用。

2.1 偏微分方程偏微分方程是描述污染物在水体中扩散和传输的重要数学工具。

通过求解偏微分方程,我们可以获得污染物的浓度随时间和空间的变化规律。

常见的偏微分方程有扩散方程、对流-扩散方程等。

通过偏微分方程求解,我们可以对水体中的污染物行为进行准确的预测和分析。

2.2 参数估计参数估计是水质污染模型中的重要环节。

通过合理地选择模型参数,我们可以更准确地描述污染物在水体中的行为。

数学方法可以应用于参数估计的过程中,例如最小二乘法、最大似然估计等,以提高模型的精确度和可靠性。

2.3 数值模拟数值模拟是将数学模型转化为计算机可处理的形式,通过计算机模拟水体中污染物的传输和转化过程。

最新湖水污染分析模型

最新湖水污染分析模型

......摘要在两种情况下分析湖水中的污染物,分别建立模型即理论模型和实际模型。

理论模型是根据伊利湖和安大略湖各自的污染物流入流出的关系建立污染物量关于时间的差分方程:伊利湖的污染物总量a n+10.62a n,安大略湖的污染物总量 b n6129.0323 0.62n7020.3360 0.87 n192.3077,b n在n时趋于一个定值 192.3077 ,这个定值就是安大略湖系统的平衡值;当 n35 时b n 245.95 安大略湖的污染程度减少到目前水平的10% ;当 3 n 1 是系统的污染物的量是一直增加的,当 20 n 3 系统的污染物量急剧减少,大约从n40开始系统的污染物量几乎保持不变。

实际模型中首先根据湖水的实际更新情况重新确定湖水流入和流出占湖水总量的百分数,又由于湖水中污染物的浓度时刻变化,所以用时间微元的方法对实际污染物流出的比例进行修正。

分析铝厂排放的污染物时,铝厂排放的污染物是赤泥,根据赤泥的物化性质利用重力沉降原理求得赤泥颗粒从湖面沉降到湖底的时间t ,把一年分成多份 t ,同时将铝厂每年向湖水中排放的污染物量25 单位按t分成多份,每一个单位时间铝厂排放到湖里的污染物量是q 0.3 单位,则安大略湖的湖水中将始终保持有0.3 单位的赤泥,其余的赤泥都将在湖底沉积。

综合安大略湖中赤泥和伊利湖流入的污染物的情况预测了未来十年内的情况。

模型中重力沉降原理指出颗粒的直径影响沉降速度间接影响赤泥的排出量直径越小排出量越大,同时直径是最可能实现改进的因素。

在直径小于 20um 时赤泥的排出量急剧增加。

为减少安大略湖的污染尽量把颗粒直径做小。

二、问题分析伊利湖的湖水每年有38% 的更新,湖水的更新引起湖内污染物量的变化。

假设流入伊利湖的湖水是不含有污染物的,而流出伊利湖的湖水又将携带污染物,那么伊利湖是一个没有污染物注入只有污染物排除的系统,污染物的量逐渐减少,根据污染物排除的情况获得伊利湖污染物量随时间变化的关系。

数学建模-湖水的自我净化问题剖析

数学建模-湖水的自我净化问题剖析

数学建模与数学实验课程设计学院数理学院专业数学与应用数学班级学号学生姓名指导教师2015年6月湖水的自我净化问题摘要问题:本题是一容积为V的大湖受到某种物质污染,从某时刻起污染源被切断,湖水开始更新,更新速率为r,建立求污染物浓度下降至原来的5%需要多长时间的数学模型问题。

模型:解决本问题需要用到微元法建模。

方法:假设在很小的时间内流出的湖水污染物浓度不变,然后利用湖水中污染物的变化量等于流出湖水的污染量建立等式关系,对该等式求导后得出一个微分方程,利用Matlab中dsolve函数解该微分方程。

结果:求得污染物浓度下降至原来的5%所需时间为398.3天。

一.问题重述1)背景资料与条件设一个容积为V (m 3)的大湖受到某种物质的污染,污染物均匀的分布在湖中。

若从某时刻起污染源被切断,设湖水更新的速率是r (m 3/天)。

试建立求污染物浓度下降至原来的5%需要多长时间的数学模型。

2)需要解决的问题美国密西根湖的容积为4871⨯109(m 3),湖水的流量为 3.663 959 132⨯1010(m 3/天),求污染中止后,污染物浓度下降到原来的5%所需要的时间。

二.模型假设1)假设一:湖水体积V 保持不变。

2)假设二:污染物始终均匀分布在湖中。

3)假设三:在很小的时间内污染物浓度不变。

三.分析与建立模型1)符号说明w(t):t 时刻湖水中污染物的浓度。

w(0):表示初始时刻湖水中的污染物浓度。

t :表示污染源切断后湖水更新的时间(单位:天)。

2)分析2.1假设的合理性分析如果湖水体积变化,那么题目就没法做了,因此这个假设是必要的且是合理的。

污染物始终均匀的分布在湖中,题目条件中已给出,所以此假设合理可靠。

在很小的时间内污染物浓度不变,这是利用微元法的思想,故假设的合理性毋庸置疑。

2.2模型的误差分析本模型的误差主要在数字的处理上,即保留几位的问题上,也就是说存在舍入误差,本题在最后结果中保留了一位小数。

2019全国数学建模竞赛夏令营题目---水污染-7页文档资料

2019全国数学建模竞赛夏令营题目---水污染-7页文档资料

2019年全国大学生数学建模夏令营题目A题:垃圾分类处理与清运方案设计垃圾分类化收集与处理是有利于减少垃圾的产生,有益于环境保护,同时也有利于资源回收与再利用的城市绿色工程。

在发达国家普遍实现了垃圾分类化,随着国民经济发展与城市化进程加快,我国大城市的垃圾分类化已经提到日程上来。

2019年5月国家发改委、住房和城乡建设部、环境保护部、农业部联合印发了《关于组织开展城市餐厨废弃物资源化利用和无害化处理试点工作的通知》,并且在北京、上海、重庆和深圳都取得一定成果,但是许多问题仍然是垃圾分类化进程中需要深入研究的。

在深圳,垃圾分为四类:橱余垃圾、可回收垃圾、有害垃圾和其他不可回收垃圾,这种分类顾名思义不难理解。

其中对于居民垃圾,基本的分类处理流程如下:在垃圾分类收集与处理中,不同类的垃圾有不同的处理方式,简述如下:1)橱余垃圾可以使用脱水干燥处理装置,处理后的干物质运送饲料加工厂做原料。

不同处理规模的设备成本和运行成本(分大型和小型)见附录1说明。

2)可回收垃圾将收集后分类再利用。

3)有害垃圾,运送到固废处理中心集中处理。

4)其他不可回收垃圾将运送到填埋场或焚烧场处理。

所有垃圾将从小区运送到附近的转运站,再运送到少数几个垃圾处理中心。

显然,1)和2)两项中,经过处理,回收和利用,产生经济效益,而3)和4)只有消耗处理费用,不产生经济效益。

本项研究课题旨在为深圳市的垃圾分类化进程作出贡献。

为此请你们运用数学建模方法对深圳市南山区的分类化垃圾的实现做一些研究,具体的研究目标是:1)假定现有垃圾转运站规模与位置不变条件下,给出大、小型设备(橱余垃圾)的分布设计,同时在目前的运输装备条件下给出清运路线的具体方案。

以期达到最佳经济效益和环保效果。

2)假设转运站允许重新设计,请为问题1)的目标重新设计。

仅仅为了查询方便,在题目附录2所指出的网页中,给出了深圳市南山区所有小区的相关资料,同时给出了现有垃圾处理的数据和转运站的位置。

数学建模_湖水污染问题(1)

数学建模_湖水污染问题(1)

[(Z/120000) (2000/7.2 ) +C]•问题提出下图是一个容量为2000nm 的一个小湖的示意图,通过小河 A 水以0.12m 3 /s 的 速度流入,以相同的流量湖水通过 B 流出。

在上午8:00,因交通事故,一辆运 输车上一个盛有,毒性化学物质的容器倾翻,在图中X 点处注入湖中。

在采取紧急 措施后,于上午9: 00事故得到控制,但数量不详的化学物质 Z 已泻入湖中,初步估计Z 的数量在5m 至2om 之间。

(1) 请建立一个数学模型,通过它来估计湖水污染程度随时间的变化;(2) 估计湖水何时到达污染高峰;(3) 何时污染程度可降至安全水平(<=0.05%)。

二. 模型假设1、 湖水流量为常量,湖水体积为常量;2、 流入流出湖水水污染浓度为常量三. 问题分析分析:湖水在时间t 时污染程度,可用污染度 F (t )表示,即每立方米受污染 的水中含有Fm 的化学污染物质和(1-F )m 的清洁水。

用分钟作为时间t 的单位。

在0<t<60的时间内,污染物流入湖中的速率是Z /60 (m*min -1),而排出湖外的 污染物的速率是60*0.12F (m*min -1)。

因为每立方流走的水中含有 Fn ^的污染物, 3而湖水始终保持2000m 的容积不变。

四. 模型的建立湖水中含污染物的变化率二污染物流入量-污染物排出量2000*(dF/dt)=Z/60-7.2FF(0)=0 ;2000F ' =Z/60-7.2F2000F ' +7.2F=Z/60F ' +7.2F/2000=Z/120000所以:P(t)=7.2/2000,Q(t)=Z/120000;厂 .y=湖水污染问题[]=Z/432+C*又因为:F(0)=0所以:C=-Z/432所以:y=Z/432[1- ]求得以特解为:F (t) = Z/432[1- ]在0<t<60之间求t为多少时,F (t)最大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖水污染问题
一.问题提出
下图是一个容量为2000m3的一个小湖的示意图,通过小河A水以 /s的速度流入,以相同的流量湖水通过B流出。

在上午8:00,因交通事故,一辆运输车上一个盛有毒性化学物质的容器倾翻,在图中X点处注入湖中。

在采取紧急措施后,于上午9:00事故得到控制,但数量不详的化学物质Z已泻入湖中,初步估计Z的数量在5m3至20m3之间。

(1)请建立一个数学模型,通过它来估计湖水污染程度随时间的变化;
(2)估计湖水何时到达污染高峰;
(3)何时污染程度可降至安全水平(<=%)。

二.模型假设
1、湖水流量为常量,湖水体积为常量;
2、流入流出湖水水污染浓度为常量
三.问题分析
分析:湖水在时间t时污染程度,可用污染度F(t)表示,即每立方米受污染的水中含有Fm3的化学污染物质和(1-F)m3的清洁水。

用分钟作为时间t 的单位。

在0<t<60的时间内,污染物流入湖中的速率是Z/60(m3*min-1),而排出湖外的污染物的速率是60*(m3*min-1)。

因为每立方流走的水中含有Fm3的污染物,而湖水始终保持2000m3的容积不变。

四.模型的建立
湖水中含污染物的变化率=污染物流入量-污染物排出量
2000*(dF/dt)=Z/
F(0)=0;
2000F’=Z/
2000F’+=Z/60
F’+2000=Z/120000
所以:P(t)=2000,Q(t)=Z/120000;
y= []
=[(Z/120000)(2000/)*+C]
=Z/432+C*
又因为:F(0)=0
所以:C=-Z/432
所以:y=Z/432[1- ]
求得以特解为:
F(t)= Z/432[1- ]
在0<t<60之间求t为多少时,F(t)最大。

显然是t=60时,污染达到高峰。

此时污染浓度为:F(60)=Z/432(1-)
= *10-4Z
然后污染物被截断,故方程为:
2000*dF/dt=,
F(t)=F(60);
当它达到安全水平时,即F(t)=%,可求出t=D。

F(60)=%
.=Z
(t-60)/2000=lnZ)
t=-(2000/lnZ)+60
所以:D=-(2000/lnZ)+60。

相关文档
最新文档