对流扩散方程的求解

合集下载

扩散模型数学推导

扩散模型数学推导

扩散模型数学推导
扩散模型是描述物质扩散过程的数学模型,其基本原理是根据物质的浓度梯度,通过扩散系数来描述物质从高浓度向低浓度方向扩散的过程。

在数学上,扩散模型可以用偏微分方程来表示,常见的扩散模型包括热传导方程、扩散方程、对流扩散方程等。

对于热传导方程,其数学表达式为:
$$frac{partial u}{partial t}=k
abla^2 u$$
其中,$u$表示温度,$k$表示热传导系数,$
abla^2$表示拉普拉斯算子。

该方程描述了物质在热传导过程中的扩散行为。

类似地,对于扩散方程,其数学表达式为:
$$frac{partial u}{partial t}=D
abla^2 u$$
其中,$u$表示物质浓度,$D$表示扩散系数。

该方程描述了物质在扩散过程中的扩散行为。

而对于对流扩散方程,其数学表达式为:
$$frac{partial u}{partial t}=D
abla^2 u -
ablacdot(textbf{v}u)$$
其中,$textbf{v}$表示流体速度。

该方程描述了物质在流体中同时受到扩散和对流的影响。

除了以上三种模型,还有许多其他的扩散模型,例如非线性扩散方程、弛豫扩散方程等。

这些模型的数学推导都需要借助偏微分方程和相关数学工具来完成。

哈尔滨工业大学 计算传热学 第五章 对流-扩散方程的离散格式-2013

哈尔滨工业大学 计算传热学 第五章 对流-扩散方程的离散格式-2013

aPP aEE aWW
Fe Fw exp( Pw ) aE , aW exp( Pe ) 1 exp( Pw ) 1
(D)
aP aE aW (Fe Fw )
区别就在函数 aE和aW
aE De
Pe aE De exp( Pe ) 1
aE Pe De
该格式计算量比指数小,且指数格式的解差别很小。
§ 5-3
为了在讨论中引入 PE 记
通用表达式
x
i
J*
i+1 i+1/2
x
1 界面i+ 上的值可以用界面两侧节点值表示 2
J * Bi Ai 1 (y)
系数A和B的性质的讨论 (1)当 i i 1 时,扩散量=0, J *完全由对流造成,即

aPP aEE aW W
显然不论那种格式,仅仅是 A(| P |) 表达式的区别。
A( P )
A(|P |)
中心 1 0.5 | P | 迎风 1 混合 [| 0,1 0.5 | P | |] 指数 | P | [exp(| P |) 1]
1.0
迎风
指数 乘方
乘方 | 0, (1 0.1| P |)5 |
中心
混合
P
§ 5-4
原始的假扩散概念
关于假扩散的讨论
一维非稳态对流方程(纯对流,没有扩散)
u t x
显示迎风差分格式
in1 in
t
u
in in 1
x
, o(x, t )
将上式在(i,n)点做Taylar级数展开,保留二阶。
上述若对任何成立,必得
B( P ) A( P ) A( P ) B( P )

第五章对流扩散问题(一维稳态对流扩散问题)

第五章对流扩散问题(一维稳态对流扩散问题)
差分方程应 满足相邻系 数之和准则
第五章 对流扩散问题———一维稳态对流扩散问题
a P P a E E a W W
中心节点系数
相邻节点系数
aP aE , a W aP aE a W (Fe Fw )
考虑到连续方程
Fe-Fw=0
满足相邻系 数之和准则
a P aE a W
扩散项和以前的处理方法一样,即有:
(u) e e (u) w w e ( E P ) ( x ) e w ( P E ) ( x ) w
而控制容积界面上的变量值取其相应上风侧网格 节点上的值。即:
第五章 对流扩散问题———一维稳态对流扩散问题
第五章 对流扩散问题———一维稳态对流扩散问题 5.2 一维稳态对流扩散问题
5.2.1 基本方程与差分方程
du d d ( ) dx dx dx
(x)w
其中,u已知,且满
d u 足: 0 或u 常数 dx
( x ) e
( x ) e ( x ) e
w W
e P x
a P P a E E a W W
aE 1 4 1 2 4 aW 1 3 2 a P 1 3 4 4 2
2P E 3W
De Dw 1 Fe Fw 4
E 200, W 100
E 100 W 200
2 P 0.25E 1.75 W
De D w 1 Fe Fw 1.5
E 200, W 100
E 100 W 200
P 187.5
P 112.5
某问题 结果合理
第五章 对流扩散问题———一维稳态对流扩散问题

对流扩散方程的解

对流扩散方程的解

对流扩散方程的解
对流扩散方程是一种常用的数学模型,用于描述物质在流体中的运动。

其一般形式为:
∂C/∂t + ∇(vC) = D∇²C
其中,C是所考虑的物质的浓度,t是时间,v是流体的速度,D是物质的扩散系数。

解决对流扩散方程的常用方法有两种:
数值方法:使用计算机模拟流体运动,通过求解方程的差分形式来解决方程。

解析方法:使用数学方法求解方程的解析解。

对于特定的对流扩散方程,可能存在多种解析解,具体的求解方法取决于方程的特征以及所要求解的问题。

常用的解析方法包括:
●牛顿迭代法
●高斯消元法
●光滑积分法
●微扰法
●重心法
●四点法等
最后,请注意,解决对流扩散方程并不是一件简单的任务,通常需要具有较强的数学背景知识和丰富的经验才能做到。

对流方程及其解法

对流方程及其解法

对流方程及其解法对流方程是描述流体运动的最基本方程之一,涉及热、动量、物质等的传递现象,对于各种物理问题的研究都具有重要意义。

本文将从对流方程的基本形式和意义出发,探讨其常见解法及相关应用。

一、对流方程的基本形式与意义对流方程是描述流体中质量、热量和动量传递的方程,其基本形式可以写作:$$ \frac{\partial\phi}{\partial t} + (\mathbf{v}\cdot\nabla)\phi =\nabla\cdot(\Gamma\nabla\phi) $$其中,$\phi$为描述流体量的变量,如温度、密度、浓度等;$\mathbf{v}$为流体的流速,$\Gamma$为扩散系数。

对该方程的解析求解较为困难,故通常采用数值方法进行求解。

下面介绍几种常见的数值解法。

二、有限差分法有限差分法是在连续方程的基础上,利用有限差分代替导数,将微分方程变为代数方程组,从而利用计算机求解的方法。

其基本思想是将求解区域划分为有限个网格,对每个网格内的量用差分代替导数,从而得到有限差分方程。

以简单的二维对流扩散为例,其对流方程为:$$ \frac{\partial\phi}{\partial t} + u\frac{\partial\phi}{\partial x} + v\frac{\partial\phi}{\partial y} = \Gamma\frac{\partial^2\phi}{\partial x^2} + \Gamma\frac{\partial^2\phi}{\partial y^2} $$其中,$u$和$v$分别代表$x$和$y$方向的流速。

对该方程进行离散,假设$\phi_{i,j}$为$x=i\Delta x$,$y=j\Delta y$处的$\phi$值,则可以得到:$$ \frac{\phi^{k+1}_{i,j} - \phi^k_{i,j}}{\Delta t} +u\frac{\phi^k_{i+1,j} - \phi^k_{i-1,j}}{2\Delta x} +v\frac{\phi^k_{i,j+1} - \phi^k_{i,j-1}}{2\Delta y} $$$$ = \frac{\Gamma\Delta t}{(\Delta x)^2}(\phi^k_{i+1,j} -2\phi^k_{i,j} + \phi^k_{i-1,j}) + \frac{\Gamma\Delta t}{(\Deltay)^2}(\phi^k_{i,j+1} - 2\phi^k_{i,j} + \phi^k_{i,j-1}) $$其中,$k$为时刻,$\Delta x$和$\Delta y$分别为$x$和$y$方向的网格间距。

一类二维稳态对流——扩散方程的有限差分法

一类二维稳态对流——扩散方程的有限差分法

一类二维稳态对流——扩散方程的有限差分法一维稳态扩散方程描述了物质在一维空间中的扩散行为。

然而,在某些情况下,我们需要研究物质在二维平面中的扩散行为,例如热传导、流体传输等。

本文将介绍一类二维稳态对流-扩散方程的有限差分法。

二维稳态对流-扩散方程可以写作:∇·(D∇u) + ∇·(cu) + fu = 0 —— (1)其中,D是扩散系数,c是速度场,u是待求解的物理量,f是源项。

在这个方程中,第一项表示物质的扩散项,第二项表示对流项,第三项表示源项。

我们需要求解方程(1),找到u的分布。

为了应用有限差分法来求解二维稳态对流-扩散方程,需要将二维空间离散化为一个网格。

假设我们将x方向离散为Nx个等距的节点,y方向离散为Ny个等距的节点,那么我们可以得到一个(Nx+1)×(Ny+1)的网格。

我们在网格节点上定义未知量u,然后将方程(1)对节点处的u进行离散化。

首先,我们对方程(1)的扩散项进行离散化。

我们使用五点差分格式来近似二维Laplace算符∇·(D∇u)。

对于网格节点(x,y),我们可以得到以下差分格式:(Dij(xi+1,yj)ui+1,j + Dij(xi-1,yj)ui-1,j +Dij(xi,yj+1)ui,j+1 + Dij(xi,yj-1)ui,j-1 -4Dij(xi,yj)ui,j) / ∆x^2 + (Dij(xi,yj)ui,j) / ∆y^2其中,∆x和∆y是网格步长,Dij是扩散系数。

接下来,我们对方程(1)的对流项进行离散化。

我们使用中心差分格式来近似二维梯度算符∇·(cu)。

对于网格节点(x,y),我们可以得到以下差分格式:(cxi+1/2,yj(ui+1,j - ui,j)) / ∆x + (cxi-1/2,yj(ui,j - ui-1,j)) / ∆x + (cyi,j+1/2(ui,j+1 - ui,j)) / ∆y + (cyi,j-1/2(ui,j - ui,j-1)) / ∆y其中,cxi+1/2,yj、cxi-1/2,yj、cyi,j+1/2和cyi,j-1/2是速度场在节点(x,y)处的中心点处的x和y分量。

第五章对流扩散问题(一维稳态对流扩散问题)

第五章对流扩散问题(一维稳态对流扩散问题)
扩散项:扩散项的处理方式和以前一样,即在计 算扩散项中的梯度时仍采用了线性分布 假设 对流项:对流项中,控制容积界面上变量值按下 列假设计算:控制容积界面上的变量值 等于上风侧网格节点上的值。
第五章 对流扩散问题———一维稳态对流扩散问题
对控制方程在P点的控制容积积分后,得到如下方程
(u ) e (u ) w ( d d ) e ( )e dx dx
第五章 对流扩散问题———一维稳态对流扩散问题
所以,当 F 2D,即意味着两节点对其间变量分布 的影响特性是受扩散控制的,当 F 2D时,即意味 着两节点对其间变量分布的影响特性是受对流控 制的。对于前者,两节点之间的变量分布偏离线 性分布,但尚不显著,而对于后者两节点之间的 变量分布则严重偏离线性分布。
P<<-1
P=-1
P=0
P=1 P>>1
0
0 L/2 L
第五章 对流扩散问题———一维稳态对流扩散问题
说明
由图很容易看出,只有在贝克列数为零的极限条 件下,即对纯扩散问题或导热问题,变量在任意 两点之间的变化才是线性的。即在没有流动的情 况下,我们假定变量在任意两个节点之间的线性 分布才是可以接受的。 当贝克列数不为零时,即存在对流过程时,变量 在任意两点之间的变化是偏离线性的。贝克列数 的绝对值越大,这种偏离越严重。所以我们在用 控制容积法推导差分方程时,假定任意两个节点 之间变量呈线性变化显然是有问题的。
e P e E
如果 Fe 0 如果 Fe
0
同样
w W
w P
如果 Fw 0
如果 Fw 0
为了能写出差分方程,我们定义一个新的算子,如下:
A, B AMAX( A, B)

(参考资料)一维对流扩散方程的数值解法

(参考资料)一维对流扩散方程的数值解法

一维对流扩散方程的数值解法对流-扩散方程是守恒定律控制方程的一种模型方程,它既是能量方程的表示形式,同时也可以认为是把压力梯度项隐含到了源项中去的动量方程的代表。

因此,以对流-扩散方程为例,来研究数值求解偏微分方程的相容性、收敛性和稳定性具有代表性的意义。

1 数学模型本作业从最简单的模型方程,即一维、稳态、无源项的对流扩散方程出发,方程如下: 22, 02f f fU D x t x x∂∂∂+=≤≤∂∂∂ (1)初始条件 (),0sin(2)f x t A kx π==(2)解析解()()()224,sin 2Dk tf x t eA k x Ut ππ-=-(3)式中,1,0.05,0.5,1U D A k ====函数(3)描述的是一个衰减波的图像,如图1所示t=0 t=0.5 t=1图1 函数()()()224,sin 2Dk tf x t ek x Ut ππ-=- 的图像(U=1,D=0.05,k=1)2 数值解法2.1 数值误差分析在网格点(),i n 上差分方程的数值解ni f 偏离该点上相应的偏微分方程的精确解(),f i n 的值,称为网格节点上的数值误差。

当取定网格节点数21N =时,观察差分方程的解与微分方程的解在不同时间步长下的趋近程度,其中时间步长分别取值0.05,0.025,0.0125,0.0005t ∆=。

(a )21,0.05N t =∆= (b )21,0.025N t =∆=(c )21,0.0125N t =∆= (d )201,0.0005N t =∆=图2 数值误差随步长的变化情况从图2的(a)~(d)可以定性的看出,数值误差与步长的大小有关。

在满足稳定性条件的前提下,数值误差随着时间步长的减小而减小,同时,图(d )表示增大网格的分辨率也有助于减小网格误差。

为了对数值误差有一个定量的认识,接下来取定时间步长为0.0005t ∆=,分别算出11,21,41,61,81,101,121,161N =时,指标E =1所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

个人收集整理-ZQ
对流扩散问题地有效数值解法一直是计算数学中重要地研究内容,求解对流扩散方程地数值方法主要是有限差分法()、有限元法()、有限体积法()、有限解析法()、边界元法()、谱方法() 等多种方法.但是对于对流占优问题,用通常地差分法或有限元法进行求解将出现数值震荡.为了克服数值震荡,年代,.和等提出特征修正技术求解对流扩散占优地对流扩散问题,与其它方法相结合,提出了特征有限元方法、特征有限差分方法、特征混合元方法;和提出过一种沿流线方向附加人工黏性地间断有限元法,称为流线扩散方法().有限差分法、有限元法、有限体积法是工程应用中地主要方法.
对流扩散方程地特点
对流扩散方程右端第一项为扩散项,左端第二项则是对流项.由于其方程本身地特点,给建立准确有效地数值求解方法带来一定地困难.对流和扩散给流体中由流体携带地某种物理量地变化过程,可以通过一个无量纲地特征参数(数)来描述,数地定义为:ν.这里是来流速度,是特征长度,是物质地扩散系数.如果数较小,即对流效应相对较弱,这类问题中,扩散占主导地位,方程是椭圆型或抛物线型;如果数较大,即溶质分子地扩散相对于流体速度而言是缓慢地,这类问题中,对流占优,方程具有双曲型方程地特点.对于对流占优问题地求解,采用常规地有限元方法,为了避免求解结果产生数值振荡,获得稳定解,则应使每个单元地局部数,ν≤,这里为单元地最大尺寸,为单元中地最大速度分量值.因此,用本文方法求解对流占优对流扩散问题,要得到稳定解,则要通过加密有限元网格来实现.资料个人收集整理,勿做商业用途
1 / 1。

相关文档
最新文档