航天系统技术成熟度等级及评价准则定义.

合集下载

航天产品三个成熟度的内涵与界面2010-12-22

航天产品三个成熟度的内涵与界面2010-12-22

航天产品三个成熟度的内涵与界面1概述产品成熟度,是在航天产品工程背景下,以推动产品的专业化研发和培育,实现产品持续完善和优选供应为目标,依据产品的设计、生产、试验和应用情况,度量其产品的质量与可靠性以及可应用程度,表征了产品的完备程度,为产品选用提供了权衡比较的参考依据。

产品成熟度是航天产品工程研究与实践的重要环节,对构建航天产品专业化发展模式、支撑基于成熟产品选用集成的航天型号研制模式以及产品研发、培育和应用等工作有着非常重要的作用。

1.1产品成熟度基本概念1).成熟度目前中文“成熟度’’一词对应的英文术语单词有两个,maturity和readiness。

其中maturity可直译为成熟度,readiness可译为准备度或完备度,但目前国内许多论文和文献资料均将两者统一译为成熟度。

在国内论述的常见“技术成熟度”标准中,“成熟度”的英文单词常译为readiness,而“产品成熟度’’中成熟度使用的英文单词是maturity。

作为技术成熟度评估技术应用的指导性文件,按照美国国防部2004年发布的《国防采办指南》描述,技术成熟度(‘technology maturity)被定义为“所提出的关键技术满足项目目标程度的一种度量方法,也是项目风险的重要组成元素。

"在该文件同一章节中还描述了技术准备度评估(’rechnologyReadiness Assessment,’I'RA)的内涵,即“通过检查项目方案、技术需求和经演示验证的技术能力,确定技术准备度”的活动。

在2005年美国国防部发布的《技术准备度评估(TRA)手册》中指出,技术准备度评估能够获得被评估的关键技术要素的准备度等级。

此手册中分别给出了硬件、软件和制造技术各自的9个技术准备度等级(TRL)定义和描述,即目前国内普遍研究和讨论的技术成熟度9级标准。

值得说明的是,2009年5月,美国国防部组织编制了《制造准备度评估(MRA)手册》草案,将制造成熟度等级更新为10级。

trl技术成熟度 等级条件

trl技术成熟度 等级条件

trl技术成熟度等级条件TRL技术成熟度等级条件技术成熟度等级(Technology Readiness Level,简称TRL)是对新技术或新产品开发阶段的评估,用于衡量该技术或产品的成熟度和可行性。

TRL技术成熟度等级条件由美国国家航空航天局(NASA)于1970年代末提出,并在之后被广泛应用于航天、国防和工业领域。

TRL技术成熟度等级共有九个等级,分别为TRL 1至TRL 9。

下面将对每个等级的条件进行详细描述。

1. TRL 1:基本原理确定在TRL 1阶段,技术或产品的基本原理已经确定。

这个阶段通常是通过实验室科研活动获得的,还没有实际应用的证据。

此时,技术或产品的可行性和潜在效益尚未验证。

2. TRL 2:技术概念或应用证明在TRL 2阶段,技术概念或应用证明已经完成。

这个阶段通常是通过实验室实验或计算模拟得到的结果。

虽然还没有实际应用,但已经有初步的证据表明技术或产品的可行性。

3. TRL 3:实验室验证在TRL 3阶段,技术或产品在实验室环境中进行了验证。

这个阶段通常是通过实验室测试和原型开发得到的。

虽然还没有在实际应用中进行验证,但已经有初步的证据表明技术或产品可以实现预期的功能。

4. TRL 4:实验室验证及关键技术验证在TRL 4阶段,技术或产品在实验室环境中进行了验证,并且关键技术已经验证。

这个阶段通常是通过实验室测试和原型开发来验证技术或产品的性能和可行性。

5. TRL 5:实验室验证及关键技术验证在TRL 5阶段,技术或产品在实验室环境中进行了验证,并且关键技术已经验证。

这个阶段通常是通过实验室测试和原型开发来验证技术或产品的性能和可行性。

6. TRL 6:系统模型或原型验证在TRL 6阶段,技术或产品在实际环境中进行了系统模型或原型验证。

这个阶段通常是通过实际测试和验证来评估技术或产品的性能、可靠性和可行性。

7. TRL 7:原型验证在TRL 7阶段,技术或产品的原型已经在实际环境中进行了验证。

ISO16290航天系统技术成熟度等级及评价准则定义标准

ISO16290航天系统技术成熟度等级及评价准则定义标准

ISO 16290《航天系统技术成熟度等级及评价准则定义》标准浅析国际标准化组织(ISO)2013年11月正式出版了由欧洲宇航局/欧洲空间研究与技术中心(ESA/ESTEC)组织编写的《航天系统:技术成熟度等级及评价准则定义》标准,编号为ISO 16290,对国际航天领域的技术成熟度活动进行了规范。

这是世界范围内的第一份国际性的技术成熟度标准,是技术成熟度方法在世界各国科研管理中推广应用的重大事件,标志着技术成熟度思想与方法已在世界范围内得到广泛认可。

一、ISO TRL标准编制背景20世纪70年代美国宇航局(NASA)提出技术成熟度等级(TRL)的概念以来,经过多年发展,NASA于1995年颁布了白皮书,规范了航天项目的TRL定义及描述。

这一科研管理工具迅速被美国政府问责办公室(GAO)接受,并逐步推广至美国国防部(DoD)国防采办项目和能源部(DoE)重大项目管理当中。

2000年后,技术成熟度思想与方法在世界各国得到大力推广应用,以英国国防部(UK MOD)、法国宇航局(CNES)、欧洲宇航局(ESA)、日本宇航局(JAXA)等为代表的诸多机构积极在各自领域开展相关的研究和实践工作。

然而,由于世界各国在国防科研管理、工程实践上的差异,以及对技术成熟度评价标准、评价流程、评价结果的应用等方面认知的不同,各国解决技术成熟度适用性问题面临着不小的挑战。

为此,NASA、ESA、CNES、JAXA等萌生了通过制定ISO标准来统一规范的设想,经过充分酝酿,成立了由ESA/ESTEC牵头的技术成熟度标准编制组,负责整个标准的编制工作。

编制组成员包括美国、法国、日本、英国、德国、巴西和乌克兰等7个国家约30名代表。

自2010年5月11日,编制组在伦敦的英国标准协会召开首次工作会,统一了成熟技术度相关术语的定义后,又相继召开了5轮技术研讨会;2012年10月向ISO提交了标准草案;在依据ISO标准出版流程广泛征求意见后,于2013年11月1日正式发布。

GJB7688-2012装备技术成熟度等级划分及定义

GJB7688-2012装备技术成熟度等级划分及定义

GJB 7688-2012前言本标准的附录A是资料性附录。

本标准由中国人民解放军总装备部电子信息基础部提出。

本标准起草单位:总装备部电子信息基础部标准化研究中心、总装备部装备论证研究中心、中国航空工业发展研究中心、中国航空工业集团科学技术委员会、空军装备研究院装备总体论证研究所、中国航天科技集团第五研究院、中国航天工程咨询中心。

本标准主要起草人:曾相戈、黄仲文、蒋林波、蔡小斌、彭楚明、褚恒之、孟雪松、朱毅麟、于晓伟、许胜、程文渊。

IGJB 7688-2012装备技术成熟度等级划分及定义1范围本标准规定了装备技术成熟度的等级划分及定义。

本标准适用于装备技术成熟度评价。

2引用文件下列文件中的有关条款通过引用而成为本标准的条款。

凡注日期或版次的引用文件,其后的任何修改单(不包含勘误的内容)或修订版本都不适用于本标准,但提倡使用本标准的各方探讨使用其最新版本的可能性。

凡不注日期或版次的引用文件,其最新版本适用于本标准。

GJB 431-1988 产品层次、产品互换性、样机及有关术语GJB 3206A-2010 技术状态管理3定义和术语GJB 431-1988和GJB 3206A-2010确立的以及下列术语和定义适用于本标准。

3.1技术成熟度technology readiness技术满足预期的装备应用目标的程度。

3.2技术成熟度等级technology readiness levels用于衡量技术成熟程度的尺度。

3.3使用环境operational environment产品实际使用时的环境,包括外部接口条件、环境条件和使用条件。

3.4相关环境relevant environment模拟使用环境关键因素的试验环境,一般用于验证产品的关键性能或其主要组成部分的关键性能。

3.5实验室环境laboratory environment仅演示技术原理和功能的试验环境3.6原理样品breadboard仅演示技术原理和功能,不考虑性能数据获取的试验品。

航天系统技术成熟度等级及 评价准则定义

航天系统技术成熟度等级及    评价准则定义

应用
应用
Technology concept 2 and/or application formulated
Technology
Technology
Technology
concept and/or concept and/or concept and/or
application
application
⚫ 性能 需求定 义,包 括使用 环境定 义 ⚫ 模型 定义与 实现 ⚫ 模型 试验计 划 ⚫ 模型 试验结 果
⚫ 建造
飞行模型
8
完成实际系统,并获 准飞行(由飞行资 质)
通过鉴 定,并集 成到整装 待飞的最
终系统
中。
飞行模 型,并 集成到 最终系 统 ⚫ 获得 最终系 统的飞 行许可
技术成熟
了。技术
主要的改动集中在TRL4~TRL8:
⚫TRL4,由“确认(validation)”修改为“功能验证
(verification)”。
⚫TRL5,由“确认(validation)”修改为“关键功能验证
(verification)”。
⚫TRL6,技术/验证载体由“系统/子系统的模型或原型”修改为“能够
演示验证(demonstration)单元关键功能的模型”,且不强调“地面
⚫ 1911年,H.Kamerlingh Onnes发现了超导电性,即某种物质在
一定温度条件下电阻降为零的性质。
⚫ 2010年10月,研究人员声称发现了世界第二种巨病毒——
CroV。这种病毒,可以感染海洋单细胞生物,科学家称之为巨病
毒,是由于其基因组非常多,大约有73万个碱基对,大概是世界
上已知最大的“普通”病毒的两倍。
国际标准化组织(ISO)2013年11月正式出版了由欧洲宇航局/欧洲 空间研究与技术中心(ESA/ESTEC)组织编写的《航天系统: 技术成熟度等级及评价准则定义》标准,编号为ISO 16290,对 国际航天领域的技术成熟度活动进行了规范。这是世界范围内的

GJB 装备技术成熟度等级划分及定义

GJB 装备技术成熟度等级划分及定义

GJB 7688-2012前言本标准的附录A是资料性附录。

本标准由中国人民解放军总装备部电子信息基础部提出。

本标准起草单位:总装备部电子信息基础部标准化研究中心、总装备部装备论证研究中心、中国航空工业发展研究中心、中国航空工业集团科学技术委员会、空军装备研究院装备总体论证研究所、中国航天科技集团第五研究院、中国航天工程咨询中心。

本标准主要起草人:曾相戈、黄仲文、蒋林波、蔡小斌、彭楚明、褚恒之、孟雪松、朱毅麟、于晓伟、许胜、程文渊。

IGJB 7688-2012装备技术成熟度等级划分及定义1范围本标准规定了装备技术成熟度的等级划分及定义。

本标准适用于装备技术成熟度评价。

2引用文件下列文件中的有关条款通过引用而成为本标准的条款。

凡注日期或版次的引用文件,其后的任何修改单(不包含勘误的内容)或修订版本都不适用于本标准,但提倡使用本标准的各方探讨使用其最新版本的可能性。

凡不注日期或版次的引用文件,其最新版本适用于本标准。

GJB 431-1988 产品层次、产品互换性、样机及有关术语GJB 3206A-2010 技术状态管理3定义和术语GJB 431-1988和GJB 3206A-2010确立的以及下列术语和定义适用于本标准。

3.1技术成熟度technology readiness技术满足预期的装备应用目标的程度。

3.2技术成熟度等级technology readiness levels用于衡量技术成熟程度的尺度。

3.3使用环境operational environment产品实际使用时的环境,包括外部接口条件、环境条件和使用条件。

3.4相关环境relevant environment模拟使用环境关键因素的试验环境,一般用于验证产品的关键性能或其主要组成部分的关键性能。

3.5实验室环境laboratory environment仅演示技术原理和功能的试验环境3.6原理样品breadboard仅演示技术原理和功能,不考虑性能数据获取的试验品。

技术成熟度评价标准

技术成熟度评价标准

技术成熟度评价标准技术成熟度评价标准,这听起来可能有点枯燥,但其实它就像是一个指南针,帮助我们找到科技发展的方向。

咱们生活中处处都有科技,手机、家电,甚至是你手里的咖啡机,都离不开这些技术。

那么,怎么评估这些技术的成熟度呢?接下来,让我们一起深入探讨。

一、技术成熟度的定义1.1 什么是技术成熟度?技术成熟度,简单来说,就是一个技术从初始阶段到成熟阶段的成长过程。

想象一下,种一棵树。

刚开始,种子在土里悄悄发芽,慢慢地长出嫩芽。

随着时间推移,它逐渐长成参天大树。

这其中的每一步,都能反映出它的成长状态。

1.2 技术成熟度的层级技术成熟度通常分为几个层级。

每个层级都有自己的特征。

初始阶段的技术可能不稳定,像个小孩子,不时摔倒。

随着发展,它逐渐走向成熟,变得可靠。

最后,成熟阶段的技术就像一位经验丰富的老手,稳健而有智慧。

二、评价标准的具体内容2.1 可靠性首先,我们说说可靠性。

一个技术如果经常出现问题,那肯定不行。

就像你开车,车子老是抛锚,谁敢放心呢?可靠性就是要确保技术在各种情况下都能正常运行。

它能否应对突发情况,能否长时间工作而不出问题,这些都是考量标准。

2.2 可重复性然后是可重复性。

技术的好坏,不光在于它能不能用,更在于能不能经得起时间的考验。

比如,做菜时你得保证每次都能做出同样好吃的味道。

这就需要我们在操作中,保持一致性。

可重复性就是确保每次都能获得相似的结果。

2.3 创新性当然,创新性也是不可忽视的一个因素。

科技发展离不开创新。

没有创新,技术就会停滞不前。

想想手机的发展,从功能机到智能机,这可都是创新的结果。

一个成熟的技术应该能不断适应变化,保持活力。

三、技术成熟度的影响因素3.1 市场需求市场需求是一个重要因素。

科技发展和市场紧密相连。

消费者的需求直接影响技术的方向。

技术如果能顺应市场,满足用户的需求,就能快速成长。

试想一下,大家都喜欢无线耳机,那些有线耳机的日子可就不好过了。

3.2 研发投入再来谈谈研发投入。

航天系统级产品成熟度评价方法研究与实践

航天系统级产品成熟度评价方法研究与实践

2023年·第06期45航天工业管理王俊伟等* /北京特种工程设计研究院航天系统级产品成熟度评价方法研究与实践产品成熟度是对产品在研制、生产及使用环节等全生命周期所有技术要素的合理性、完备性以及在一定功能、性能水平下质量稳定性的一种度量。

产品成熟度等级是指对产品成熟度进行度量和评测的一种标准。

它是为提升航天产品资源利用效率,提高产品通用性,以更加适应航天产品小批量、多品种的研制发展趋势,提供针对航天产品的一套切合可行的通用性度量。

现有航天产品成熟度评价方法和标准主要针对单机级产品,此外在航天工程实践中也陆续开展了针对地面设备、卫星及共用平台、航天元器件、火箭发动机等特定产品的产品成熟度模型及方法研究。

而针对航天系统级产品,在不能简单套用单机级产品成熟度理论和方法的前提下,需要开展体系化的通用性成熟度理论方法研究。

一、航天系统级产品成熟度定义按照结构层次,航天产品硬件主要分为系统、分系统、单机、组件、部件和零件。

航天系统级∗其他作者:王萌、刘瑜(中国航天系统科学与工程研究院),朱雄峰(北京特种工程设计研究院),杨超(中国航天系统科学与工程研究院)2023年·第06期46航天工业管理产品主要指卫星、飞船、火箭等,研制工作涉及系统结构、分系统、单机、零部件等产品层次。

对于系统级产品评价内容的权衡相对更加复杂,且其内部的单机产品成熟与否对系统级产品的成熟度状态有直接影响,因此在研究系统级产品成熟度时,不仅要结合研制进程从整体角度考量其具体成熟度状态,还必须将其内部单机的产品成熟度纳入考虑。

面向航天系统级产品成熟照单机产品成熟度的等级划分,对系统级产品成熟度等级建立映射关系,如图1所示。

在系统级产品成熟度的每个等级中,将对应产品研制阶段的关键工作作为各等级的核心标志内容,应用典型成熟度评价方法,给出确定的系统级产品成熟度的评价等级定义(见表1)。

参照单机产品成熟度的等级划分,系统级产品成熟度分为7级,对应产品状态是原理度的研究背景,将试验鉴定作为产品研制过程中的重要阶段,遵循系统级产品的生命周期规律,以“方案论证—初样研制—正/试样研制—首飞—多次飞行—状态固化—批生产”为关键链条。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

国际标准化组织(ISO)2013年11月正式出版了由欧洲宇航局/欧洲空间研究与技术中心(ESA/ESTEC)组织编写的《航天系统:技术成熟度等级及评价准则定义》标准,编号为ISO 16290,对国际航天领域的技术成熟度活动进行了规范。

这是世界范围内的第一份国际性的技术成熟度标准,是技术成熟度方法在世界各国科研管理中推广应用的重大事件,标志着技术成熟度思想与方法已在世界范围内得到广泛认可。

一、ISO TRL标准编制背景20世纪70年代美国宇航局(NASA)提出技术成熟度等级(TRL)的概念以来,经过多年发展,NASA于1995年颁布了白皮书,规范了航天项目的TRL定义及描述。

这一科研管理工具迅速被美国政府问责办公室(GAO)接受,并逐步推广至美国国防部(DoD)国防采办项目和能源部(DoE)重大项目管理当中。

2000年后,技术成熟度思想与方法在世界各国得到大力推广应用,以英国国防部(UK MOD)、法国宇航局(CNES)、欧洲宇航局(ESA)、日本宇航局(JAXA)等为代表的诸多机构积极在各自领域开展相关的研究和实践工作。

然而,由于世界各国在国防科研管理、工程实践上的差异,以及对技术成熟度评价标准、评价流程、评价结果的应用等方面认知的不同,各国解决技术成熟度适用性问题面临着不小的挑战。

为此,NASA、ESA、CNES、JAXA等萌生了通过制定ISO标准来统一规范的设想,经过充分酝酿,成立了由ESA/ESTEC牵头的技术成熟度标准编制组,负责整个标准的编制工作。

编制组成员包括美国、法国、日本、英国、德国、巴西和乌克兰等7个国家约30名代表。

自2010年5月11日,编制组在伦敦的英国标准协会召开首次工作会,统一了成熟技术度相关术语的定义后,又相继召开了5轮技术研讨会;2012年10月向ISO提交了标准草案;在依据ISO 标准出版流程广泛征求意见后,于2013年11月1日正式发布。

二、ISO TRL标准内容概述标准主要包括四部分:适用范围、术语定义、TRL定义、TRL说明,着重描述术语解释和TRL 定义,并辅以注释和举例说明。

(一)适用范围主要用于航天系统的硬件产品,其他领域参照使用。

TRL的定义约定了达到各级技术成熟度等级所需的条件,为实现精准的技术成熟度评价提供了标准。

(二)术语定义该部分针对原理样机、单元的关键功能、单元的关键部件、单元、单元功能、功能性能需求、实验室环境、成熟技术、任务运行、模型、运行环境、使用性能需求、性能、性能需求、过程、相关环境、可重复的过程、需求、技术、验证、确认等21个术语进行了定义。

(三)TRL定义该部分包括概述和正文两部分。

概述部分,首先界定了TRL9的状态,又解释了技术成熟度评价中的具体对象(单元)的选取问题,最后就技术成熟度评价中易引起误解的一些原则性问题进行了说明,如:技术成熟度评价的作用及局限性、技术成熟度评价的相对性和时效性、单元的TRL不能高于其子单元的TRL等。

正文部分,分别针对TRL1~9级的定义进行了详细描述,并辅以举例说明。

例如,关于TRL1(基本原理被发现和报道),就分为描述和举例说明两个部分。

1、TRL1描述对与技术相关的,现有的科学研究成果进行评估,并开始转向应用研究与发展。

通过学术研究,发现基本的科学原理,并发表论文进行报道。

总体上说,已经识别出技术潜在的应用方向,但性能需求尚未确定。

2、举例说明下列就是TRL1的例子:键功能验证(verifi cation)建造用于在相关环境下验证性能的原理样件(非全尺寸),受制于尺寸效应。

● 识别和分析技术单元的关键功能● 对技术单元进行初步设计,由用于关键功能验证的合适模型提供支撑● 关键功能试验计划,分析缩放比效应● 原理样件试验报告6在相关环境下用模型演示技术单元的关键功能验证技术单元的关键功能,在相关环境下通过典型模型(外形、安装、功能)演示性能● 性能需求和相关环境的定义● 识别和分析技术单元的关键功能● 对技术单元进行设计,由用于关键功能验证的合适模型提供支撑● 关键功能试验计划,分析缩放比效应● 用于验证关键功能的模型定义● 模型试验报告7用模型演示技术单元在使用环境下的性能在地面或空间环境下演示使用环境下的性能。

建造并试验能够反映飞行模型设计的所有因素的典型模型,为在使用环境中演示性能留足余量。

● 性能需求定义,包括使用环境定义● 模型定义与实现● 模型试验计划● 模型试验结果8完成实际系统,并获准飞行(由飞行资质)飞行模型通过鉴定,并集成到整装待飞的最终系统中。

● 建造飞行模型,并集成到最终系统● 获得最终系统的飞行许可9实际系统通过成功执行任务而得到“飞行验证”技术成熟了。

技术单元成功开始服役,在实际使用环境中执行飞行任务。

● 运行初期阶段的试运转● 在轨运行报告三、与现有TRL规范的对比分析该标准在编制过程中广泛参考了NASA、DoD、CNES等机构现行的各种技术成熟度规范。

在行文格式上,参考了NASA白皮书的形式;在内容上,主要继承了各个规范中TRL定义的核心要点。

本文以NASA 1995年发表的TRL白皮书、DoD 的TRA手册(2009年版)、ESA的TRL手册为对象,从TRL定义、术语说明、评价准则、评价流程等方面进行对比分析。

(一)TRL定义这4套TRL定义的主要差异集中于TRL4~TRL8中技术载体、验证环境等术语上,具体如下:1、ESA直接沿用了NASA的TRL定义;DoD则是在TRL6~TRL9级的验证环境方面,根据实际情况做了适应性调整,例如,TRL6级不强调“地面或空间”,TRL7级由“空间环境”改为“使用环境”,TRL8级不强调“地面或空间”和“飞行鉴定”,TRL9级不强调“飞行验证”。

2、ISO则是在这几个版本TRL定义的基础上,进行了大量的统一,主要的改动集中在TRL4~TRL8:●TRL4,由“确认(validation)”修改为“功能验证(verification)”。

●TRL5,由“确认(validation)”修改为“关键功能验证(verification)”。

●TRL6,技术/验证载体由“系统/子系统的模型或原型”修改为“能够演示验证(demonstration)单元关键功能的模型”,且不强调“地面或空间”环境。

●TRL7,技术/验证载体由“系统原型机”修改为“能够演示验证(demonstration)使用环境下单元性能的模型”。

●TRL8,由强调验证过程的“通过试验和演示验证获得飞行资格”修改为强调结果的“获得飞行许可”。

这4套TRL定义的TRL1~TRL9级的技术状态是基本对应,且内涵也都一致,都是强调技术(单元)以不同的载体形式(原理样件、模型样件、模型、实际系统等)在不同的验证环境下(实验室环境、相关环境、使用环境等)进行演示验证的过程,以实现对技术风险的步进式控制。

然而,也不难看出,在对各国工程术语进行统一的基础上,ISO的TRL定义中更强调了在整个技术研发过程中技术载体(单元)的独立性,尤其是在TRL7~TRL8级不要求其集成于最终系统进行验证,以此来区分TRL与集成成熟度和系统成熟度的差异。

个环境类(实验室环境、使用环境等)、5个试验类(试验台、仿真台、验证等)和29个研发类术语(原理样件、模型、原型等)。

ISO标准在工程术语方面,考虑到其作为国际性标准,用户范围非常广,类型也非常多(这一点与DoD涉及到航空、航天、舰船、核、兵器、电子等非常相似),通用性是首要考虑的因素。

同时,由于是针对航天器的标准,又要兼顾专业性,在一定程度上体现航天技术专业特色。

因此,ISO标准中对DoD和ESA提出的工程术语进行了折衷,在DoD基础上进行了细化,同时在ESA基础上进行了综合,共提出了21个工程术语。

从中不难看出,除了TRL6和TRL7级更突出强调是技术的模型外,ISO标准基本还是以DoD的定义为参考依据。

(三)评价准则早期的NASA和DoD都以TRL定义作为判定某项技术的TRL的准则,美国空军实验室(AFRL)以TRL计算器的形式推出了一套详细的涵盖TRL、MRLs和PRLs(项目管理成熟度等级)的评价准则,并为DOE、DHS、NASA广泛借鉴,而ESA在其TRL手册则采用一系列关键问题作为评价准则。

不难看出,仅靠TRL定义是很难实现复杂系统研制项目中某项技术的TRL的精确评定。

因此,各个机构都在致力于研究符合自身科研实际的、更为细化的评价准则。

而ISO标准中,将TRL中各级的要点(表1)作为评价准则,这与早期的NASA和DoD的做法基本一致,却有别于ESA和AFRL的做法。

究其原因,主要有两个方面:(1)可操作性和难易程度方面。

作为国际性标准,对TRL定义进行规范已经是困难重重,若要制定出可操作的、详细的评价准则,不仅要规范工程术语,还要统一各国的科研流程,这是极为不现实的。

(2)实际效果方面。

评价准则必须要在通用性和专用性方面进行权衡,通用性过强,在实际操作过程中的专用性就欠佳,反之,通用性太差,其适用范围就受限。

因此,ISO选择这样一种先易后难、先点后面、循序渐进的思路来发展TRL系列标准,不失为一种非常巧妙、高明的策略。

(四)评价流程DoD和ESA都通过其相关文件对TRL的评价流程进行了规范,其中最关键的步骤无疑就是确定具体的评价对象——技术单元(DoD称之为关键技术元素,CTE),而一次完整的技术成熟度评价还包含对一组技术单元实施评价,并形成报告。

考虑到各国的管理体系与机制、科研管理流程和实际评价需求的差异,ISO标准中仅对TRL评价的对象——技术单元进行了明确定义,未对评价流程进行规范,仅仅指出交由各国主责评价活动的组织/机构负责制定适应自身实际的评价流程。

四、总结与思考ISO标准是技术成熟度领域三十多年来在世界各发达国家理论研究与应用实践的结晶,是世界范围内第一份国际性技术成熟度标准。

理论与实例结合的行文方式极大的提升了其可操作性,对于目前正在制定的技术成熟度国家军用标准系列实施指南具有非常重要的指导意义;对于工程术语和等级定义的机理分析与描述,更加强调了整体的普适性,为GJB 7688-2012/GJB7689-2012标准的修订工作也提出了研究方向。

该标准的出台规范了航天领域TRL的定义和评价准则,为国际航天领域TRL评价提供了一份非常好的参考标准,同时也标志着TRL作为一种管理思想、方法和工具,其作用和地位已经在世界范围内得到了广泛认可,真正成为了一种国际性的通用语言,可以预见,未来必将在科研管理领域发挥越来越重要的作用,必然走向一条专业化的发展道路。

相关文档
最新文档