核酸的结构和功能

合集下载

核酸的结构与功能

核酸的结构与功能

核酸的结构与功能核酸,这个生物体的基本组成部分,以其独特的结构和功能,影响着生物体的生命活动。

它包括DNA和RNA两种主要类型,各有其独特的特点和功能。

一、核酸的结构核酸是由磷酸、核糖和四种不同的碱基组成。

这四种碱基分别是腺嘌呤(A)、鸟嘌呤(G)、胸腺嘧啶(T)和尿嘧啶(U)。

它们通过特定的方式连接在一起,形成DNA或RNA。

DNA,也被称为脱氧核糖核酸,是生物体遗传信息的主要载体。

它是由两条相互旋转的链组成的双螺旋结构,其中碱基通过氢键以特定的配对方式连接,即A与T配对,G与C配对。

这种配对方式保证了DNA 的稳定性和遗传信息的正确复制。

RNA,也被称为核糖核酸,是生物体内重要的信息传递者和调节者。

它通常是由单链结构组成,也可以是双链结构。

与DNA不同,RNA的碱基配对方式相对简单,通常是A与U配对,G与C配对。

二、核酸的功能1、遗传信息的储存和传递:DNA是生物体遗传信息的主要载体,负责储存和传递生物的遗传信息。

这些信息通过DNA的复制传递给下一代,并指导生物体的生长和发育。

2、基因表达的调控:RNA在基因表达中起着重要的调控作用。

它可以通过碱基配对原则识别并携带DNA中的遗传信息,将遗传信息从DNA传递到蛋白质合成的地方。

同时,一些RNA还可以作为调节分子,影响基因的表达。

3、蛋白质合成:RNA不仅是遗传信息的载体,还是蛋白质合成的模板。

在蛋白质合成过程中,RNA将DNA中的遗传信息翻译成蛋白质中的氨基酸序列。

4、细胞内的信号传导:某些RNA分子可以作为分子开关,调控细胞内的信号传导通路。

这些RNA可以结合并调控蛋白质的活性,从而影响细胞内的生物化学反应。

5、免疫反应的调节:某些RNA分子还可以作为免疫反应的调节剂。

它们可以影响免疫细胞的活性,从而影响免疫反应的强度和持续时间。

总结起来,核酸是生物体中至关重要的分子,其结构和功能共同保证了生物体的正常生长和发育。

从DNA中的遗传信息传递到RNA的信息载体作用,再到蛋白质的合成和细胞内信号传导的调控,核酸都发挥着不可或缺的作用。

核酸的结构和功能

核酸的结构和功能

核酸的结构和功能核酸是生命体中的重要有机分子,承载着遗传信息传递和储存的功能。

本文将介绍核酸的结构和功能,并探讨其在生物体内的重要作用。

一、核酸的结构核酸主要由核苷酸单元组成,每个核苷酸由糖、磷酸和碱基三个部分组成。

1. 糖基核酸的糖基可以是核糖(RNA)或脱氧核糖(DNA)。

两者的化学结构略有差异,核糖分子上有一个羟基(-OH),而脱氧核糖则没有。

2. 磷酸基核酸的磷酸基连接在糖基上,形成糖磷酸骨架。

这些磷酸基在核酸的结构中起到支撑和稳定作用。

3. 碱基核酸的碱基分为嘌呤和嘧啶两类。

嘌呤包括腺嘌呤(A)和鸟嘌呤(G),它们具有双环结构。

嘧啶包括胸腺嘧啶(T,DNA中)或尿嘧啶(U,RNA中)以及胞嘧啶(C),它们是单环结构。

通过糖基和碱基的结合,核苷酸单元可以形成线性或环状的核酸分子。

二、核酸的功能1. 遗传信息传递与储存核酸是生物体内传递和储存遗传信息的重要分子。

DNA是细胞内遗传信息的主要储存库,而RNA则将这些信息从DNA中传递到蛋白质的合成过程中。

2. 蛋白质合成RNA在蛋白质合成过程中起着重要的角色。

其中,转录过程将DNA上的信息转录成RNA分子,而翻译过程则利用RNA的遗传信息来合成特定的蛋白质。

3. 酶的活性调节某些RNA分子本身具有催化活性,称为核糖酶。

这些核糖酶可以催化特定的生化反应,从而调节细胞内的代谢和信号传递过程。

4. 调控基因表达RNA通过调控基因表达来控制细胞的发育和功能。

其中,小干扰RNA(siRNA)和微小RNA(miRNA)等RNA分子可以与特定的mRNA结合,从而抑制或加强特定基因的转录和翻译过程。

5. 病毒的复制与感染一些病毒利用RNA作为基因材料进行复制和传播。

例如,HIV等病毒具有RNA基因组,通过感染宿主细胞并复制RNA来使病毒持续存在。

三、核酸的重要性核酸作为生命体中的重要分子,在生物体内扮演着关键的角色。

它们不仅负责生物体遗传信息的传递和储存,还参与了细胞代谢的调控和基因表达的调节。

第二单元 核酸的结构和功能

第二单元   核酸的结构和功能
DNA分子中出现的碱基有A、T、C和G,糖为脱氧核糖。RNA分子中所含的碱基是A、U、C和G,糖为核糖。DNA分子由2条脱氧核糖核苷酸链组成,RNA分子由1条核糖核苷酸链组成。
(1~2题共用备选答案)
A.G、C、T、U
Bቤተ መጻሕፍቲ ባይዱG、A、C、T
C.A、G、C、U
D.G、A、T、U
E.I、C、A、U
【助理】
1RNA分子中所含的碱基是
四、DNA的功能
DNA是遗传的物质基础,表现生物性状的遗传信息贮存在DNA分子的核苷酸序列中。当细胞分裂时,生物遗传信息通过复制从亲代(细胞)传递给子代(细胞),使物种得以延续。因此,DNA与细胞增生、生物体传代有关。DNA还可通过转录指导RNA(包括mRNA)合成,将遗传信息传递给mRNA;继而以mRNA为模板合成特异的蛋白质分子。蛋白质赋予生物体或细胞特异的生物表型和代谢表型,使生物性状遗传。
C.DNA双螺旋以右手螺旋的方式围绕同一轴有规律地盘旋
D.两股单链的5′至3′端走向在空间排列上相同
E.两碱基之间的氢键是维持双螺旋横向稳定的主要化学键
答案:D
三、DNA的三级结构
原核生物没有细胞核,其DNA分子在双螺旋基础上进一步扭转盘曲,形成超螺旋,使体积压缩。超螺旋结构就是DNA的三级结构。
在真核生物的染色体中,DNA的三级结构与蛋白质的结合有关。与DNA结合的蛋白质有组蛋白和非组蛋白两类。组蛋白有H1,H2A,H2B,H3和H4共5种,它们都是含有丰富的赖氨酸和精氨酸残基的碱性蛋白质。组蛋白H2A、H2B、H3和H4各两分子形成八聚体,八聚体之外绕有近1圈约140至146个碱基对的DNA,构成一个核小体。H1位于核小体与核小体之间的连接区,并与约75至100个碱基对的DNA结合,组成串珠状结构。在核小体结构基础上,DNA链进—步折叠,形成染色(单)体。人类细胞核中有46条(23对)染色体,这些染色体的DNA总长达1.7m,经过折叠压缩,46条染色体总长也仅200nm左右。

核酸的结构和功能

核酸的结构和功能

核酸的结构和功能核酸是生物体内的重要生物大分子之一,其结构和功能对于生物体的正常生理活动具有重要意义。

核酸主要包括核糖核酸(RNA)和脱氧核糖核酸(DNA),它们在细胞中扮演着信息传递、遗传、调控等方面的重要角色。

本文将详细介绍核酸的结构和功能。

一、核酸的结构核酸是由核苷酸单元组成的长链分子。

核苷酸由一个含氮碱基、糖分子和磷酸组成。

核苷酸通过磷酸二酯键连接成链状结构,相邻核苷酸之间的磷酸二酯键被称为链的磷酸骨架。

在DNA中,糖分子是脱氧核糖(deoxyribose),而在RNA中则是核糖(ribose)。

碱基分为嘌呤(鸟嘌呤和胸腺嘧啶)和嘧啶(腺嘌呤、鸟嘌呤和尿嘧啶)两类。

在DNA中,鸟嘌呤和胸腺嘧啶以氢键的方式通过碱基配对相互结合,形成双螺旋结构。

而在RNA中,核糖和碱基之间没有形成稳定的双螺旋结构。

二、核酸的功能1.存储遗传信息:DNA是生物体内存储遗传信息的主要分子。

通过DNA的序列编码了生物体内所有蛋白质的合成信息。

每一个DNA分子都包含了生物体所有的遗传信息,它能够准确地复制自身,并通过遗传信息的传递实现后代群体的生存和繁殖。

2.转录和翻译:DNA的遗传信息通过转录作用被转录成一种中间产物RNA,即RNA的合成过程。

在细胞质中,RNA通过读取DNA上的密码信息并翻译成蛋白质序列,从而实现遗传信息的传递。

这个过程被称为翻译。

3.转运和储存能量:核酸还能承担转运和储存能量的功能。

例如,三磷酸腺苷(ATP)是细胞内的一种重要能量转移分子,在胞吞、细胞呼吸等细胞代谢过程中转运和释放能量。

4. 催化作用:部分RNA分子具有催化作用,被称为酶RNA (ribozyme)。

酶RNA能够在特定条件下催化化学反应,例如:RNA酶能够剪切RNA链,还能参与核酸的合成和修复等生物化学过程。

5.调控基因表达:除了DNA编码蛋白质的功能外,核酸还能调控基因表达过程。

RNA在细胞内扮演着信使RNA、转运RNA和核糖体RNA等不同角色,参与调控基因表达的过程,例如:转录因子通过与一些基因的调控区域结合,将DNA转录为RNA,进而调控该基因的表达。

第二章 核酸的结构与功能

第二章 核酸的结构与功能
第二章
核酸的结构与功能
❖ 1868年,瑞士外科医生Fridrich从外科手术绷带上的脓细胞的细 胞核中分离出一种溶于碱而不溶于酸的酸性有机化合物,其分子 中含磷2.5%、含氮14%,该物质被命名为核酸。
❖ 根据核酸分子中所含戊糖的差别: (一)脱氧核糖核酸(DNA):主要存在于细胞核中(真核细胞的 线粒体中也存在不少量的DNA),携带着决定个体基因型的遗传信 息,是遗传信息的贮存和携带者; (二)核糖核酸(RNA):主要存在于细胞核和细胞质中,参与细
比DNA复制得多,这与它的功能多样化密切相关。
一、mRNA是蛋白质合成中的模板
❖ 1960年,Jacob 和 Monod 等人用放射性核素示踪实验证实: 一类大小不同的RNA才是细胞内合成蛋白质的真正模板,于 1961年首先提出了信使RNA(mRNA)这个概念。
❖ 在各种RNA分子中,mRNA约占细胞内RNA总量的2~5%,种类 最多,分子大小相差很大;
N H
❖DN生称AN物为稀体有的D碱N基A8 N和79NH。RN45 AN36分12 子N 中NH2还含有一些65含1N4 3量2N 很O 少H的3C碱基65 1,N4 32
N
O
鸟嘌呤
RNA
胞嘧啶
胸腺嘧啶

HOCH2
4´ H
OH O
H 1´
H
H


OH OH
β-D-核糖(构成RNA)

HOCH2
遗传的相对稳定性,又可发生各种重组和突变,适应环境的 变迁,为自然选R型择细提菌供:无机毒会型。肺炎球菌
S型细菌:有毒型肺炎球菌
肺炎球菌转化实验
第三节
RNA 的结构与功能
❖ RNA和蛋白质共同担负着基因的表达和表达调控功能。 ❖ RNA通常以单链形式存在,但可通过链内的碱基配对形成

核酸的结构和功能

核酸的结构和功能

核酸的结构和功能核酸是生命体内十分重要的一种生物大分子,它不仅可以储存遗传信息,还可以传递遗传信息和控制遗传信息的表达。

核酸的结构和功能一直是生物学研究中备受关注的重要领域,本文将从核酸的结构和功能两个方面进行探讨。

一、核酸的结构核酸是由核苷酸单元组成的,每个核苷酸单元由一个糖分子、一个碱基和一个磷酸基团组成。

糖分子是五碳糖,对于RNA来说,是核糖,对于DNA来说,是脱氧核糖。

碱基有四种类型,分别为腺嘌呤、鸟嘌呤、胸腺嘧啶和胞嘧啶,它们可以自由地组合在一起,形成不同的核苷酸单元。

核苷酸单元通过磷酸基团的连接形成了核酸链。

RNA是单链结构,而DNA是双链结构,其中一条链具有正向朝向,另一条链具有反向朝向。

DNA两条链通过氢键相互串联在一起,即A碱基配对T碱基,C碱基配对G碱基,这种配对方式保证了DNA两条链互补性,且不同的DNA序列具有不同的特异性。

RNA在一些特殊情况下可以形成双链结构,例如siRNA和微小RNA可以通过与靶序列的互补配对来抑制基因表达。

二、核酸的功能核酸的功能主要包括储存遗传信息、传递遗传信息和控制遗传信息的表达。

1. 储存遗传信息DNA作为遗传物质的载体,在细胞分裂和繁殖的过程中,能够确保一定程度的遗传稳定性和连续性。

它能够储存所有生物的遗传信息,并且在细胞复制过程中保持遗传信息的准确复制。

当细胞分裂时,DNA能够在细胞的两个子细胞之间进行遗传信息的传递,从而保证遗传信息的传承。

2. 传递遗传信息RNA作为DNA的转录产物,能够通过核糖体进行翻译,合成蛋白质。

RNA分为mRNA、tRNA和rRNA三类,其中mRNA是将DNA上的遗传信息转录并运送到核糖体的,tRNA是将氨基酸运送到核糖体,rRNA是核糖体的主要构成部分之一。

RNA通过转录和翻译过程,将DNA上的遗传信息传递到蛋白质上,控制蛋白质的合成和功能性质。

3. 控制遗传信息的表达DNA序列中含有许多启动子和基因调控元件,它们能够通过结合转录因子调节基因的表达。

核酸的结构与功能

核酸的结构与功能

核酸研究的发展简史
1868年 Fridrich Miescher 从脓细胞中提取核 素。
1944年 Avery等人证实DNA是遗传物质。 1953年 Watson和Crick发现DNA的双螺旋结构。 1968年 Nirenberg发现遗传密码。 1975年 Temin和Baltimore发现逆转录酶。 1981年 Gilbert和Sanger建立DNA测序方法。 1985年 Mullis发明PCR技术。 1990年 美国启动人类基因组计划(HGP)。 1994年 中国人类基因组计划启动。 2001年 美英等国完成人类基因组计划。
相同的碱基组成。
不同生物来源DNA碱基组分和相对比例
A
G
C
T A/T G/C G+C 嘌呤/嘧啶
大肠杆菌 26.0 24.9 25.2 23.9 1.09 0.99 50.1
1.04
结核杆菌 15.1 34.9 35.4 14.6 1.03 0.99 70.3
1.00
酵母 31.7 18.3 17.4 32.6 0.97 1.05 35.7
NH N
酯键 N
碱基
O
N
HN
NO
N
H
H
O
磷酸 O P O H HOCH2
O
OH O
H2O
糖苷键
H2O
OH OH
戊糖
酯键
5`
碱基连接(糖苷键)
4` 3`
1` 2`
(DNA为H)
OH
H
腺嘌呤核苷酸( AMP)
脱氧腺嘌呤核苷酸(dAMP)
Adenosine monophosphate Deoxyadenosine monophosphate

【高中生物】核酸的结构与生物学功能

【高中生物】核酸的结构与生物学功能

(生物科技行业)核酸的结构与生物学功能核酸的结构与生物学功能核酸是生物体内极其重要的生物大分子,是生命的最基本的物质之一。

最早是瑞士的化学家米歇尔于1870年从脓细胞的核中分别出来的,由于它们是酸性的,并且最先是从核中分其他,故称为核酸。

核酸的发现比蛋白质晚得多。

核酸分为脱氧核糖核酸(简称DNA)和核糖核酸(简称RNA )两大类,它们的基本结构单位都是核苷酸(包含脱氧核苷酸)。

1 .核酸的基本单位——核苷酸每一个核苷酸分子由一分子戊糖(核糖或脱氧核糖)、一分子磷酸和一分子含氮碱基组成。

碱基分为两类:一类是嘌呤,为双环分子;另一类是嘧啶,为单环分子。

嘌呤一般均有A、G2种,嘧啶一般有C、 T、 U3种。

这 5 种碱基的结构式以以下图所示。

由上述结构式可知:腺嘌呤是嘌呤的 6 位碳原子上的 H 被氨基取代。

鸟嘌呤是嘌呤的 2 位碳原子上的 H 被氨基取代, 6 位碳原子上的 H 被酮基取代。

3 种嘧啶都是在嘧啶 2 位碳原子上由酮基取代 H ,在 4 位碳原子上由氨基或酮基取代 H 而成,对于 T,嘧啶的 5 位碳原子上由甲基取代了 H 。

凡含有酮基的嘧啶或嘌呤在溶液中可以发生酮式和烯醇式的互变异构现象。

结晶状态时,为这类异构体的容量混杂物。

在生物体内则以酮式占优势,这对于核酸分子中氢键结构的形成特别重要。

比方尿嘧啶的互变异构反应式以以下图。

酮式( 2 , 4–二氧嘧啶)烯酸式( 2 , 4 –二羟嘧啶)在一些核酸中还存在少量其他修饰碱基。

由于含量很少,故又称微量碱基或稀有碱基。

核酸中修饰碱基多是 4 种主要碱基的衍生物。

tRNA 中的修饰碱基种类很多,如次黄嘌呤、二氢尿嘧啶、 5 –甲基尿嘧啶、 4 –硫尿嘧啶等, tRNA 中修饰碱基含量不一,某些tRNA中的修饰碱基可达碱基总量的10 %或更多。

核苷是核糖或脱氧核糖与嘌呤或嘧啶生成的糖苷。

戊糖的第 1 碳原子( C1)平时与嘌呤的第 9 氮原子或嘧啶的第 1 氮原子相连。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

核酸的结构和功能
考分预测
·核酸的分子结构
·DNA的结构与功能
·RNA的分类与功能
一、核酸基本单位-核苷酸
(一)核苷酸元素组成
C、H、O、N、P(含量较多,相当恒定占9~10%)
(二)核苷酸分子组成
核-核糖(戊糖)
(三)核酸种类(DNA和RNA)
记忆:两种核酸有异同。

腺胞鸟磷能共用;RNA中独含尿,DNA中仅含胸。

RNA所含碱基:AUCG。

DNA所含碱基:ATCG。

二、DNA的结构与功能
(一)DNA碱基组成的规律:
DNA分子中A与T摩尔数相等,C与G摩尔数相等,即 A=T,C≡G。

所以A+G=T+C ,A/T=G/C 。

一级结构:核苷酸的排列顺序(碱基的序列)
二级结构:双螺旋结构(弹簧)
三级结构:超螺旋结构(电话线)
(二)DNA的一级结构
1.概念:核苷酸在核酸长链上的排列顺序。

由于核苷酸间的差异主要是碱基不同,所以也称为碱基序列。

2.化学键:酯键。

3.骨架:戊糖和磷酸。

4.最恒定的元素:P。

(三)DNA双螺旋结构(二级结构)
·氢键配对(A=T; G C)相互平行,但走向相反,右手螺旋。

·螺旋直径为2.37nm,形成大沟及小沟。

·相邻碱基螺距3.54nm,一圈10.5对碱基。

·氢键维持双链横向稳定性,碱基堆积力维持双链纵向稳定性。

(四)DNA的高级(超螺旋)结构
·DNA双螺旋链再盘绕即形成超螺旋结构。

·真核生物染色体由DNA和蛋白质构成,其基本单位是核小体。

(五)DNA的功能
1.DNA的基本功能是以基因的形式荷载遗传信息,并作为基因复制和转录的模板。

它是生命遗传的物质基础,也是个体生命活动的信息基础。

2.基因从结构上概念是指DNA分子中的特定区段,其中的核苷酸排列顺序决定了基因的功能。

三、DNA的理化性质及其应用
1.DNA的变性:在某些理化因素作用下,DNA双链解开成两条单链的过程,其本质是双链间氢键的断裂。

变性后①OD260增高(增色效应):对波长260nm的光吸收增强的现象。

②黏度下降。

③生物活性丧失。

2.DNA复性:变性DNA经退火恢复原状的过程称变性DNA的复性。

伴随复性,DNA溶液紫外吸收减弱,称减色效应。

3.核酸的紫外线吸收:核酸分子的碱基含有共轭双键,在260nm波长处有最大紫外吸收,可以利用这
一特性对核酸进行定量和纯度分析。

四、RNA的分类及特点
mRNA(信使)tRNA(搬运)rRNA(核糖体)
功能蛋白质合成模板氨基酸转运的载体蛋白质合成的场所
含量占RNA的2-5%占RNA的15% 占RNA的80%分子量大小各异分子量最小差异较大
分布细胞核细胞质细胞质细胞质
二级结构 - 三叶草
三级结构 - 倒L型
结构特点5′端帽子结构3′端多聚A尾带有遗
传信息密码
含有稀有碱基、反密码子。

3′端
为-CCA
核糖体大、小亚

(一)mRNA结构特点与功能
1.结构特点
(1)5′末端:帽子结构:m7Gppp。

(2)3′末端:多聚核苷酸结构:多聚A尾。

(3)共同维持mRNA的稳定性。

2.结构功能:是蛋白质合成模板。

(二)tRNA的结构与功能
1.结构特点:①含10-20%稀有碱基,如DHU(双氢尿嘧啶)②3′末端为—CCA-OH,结合氨基酸。

③反密码环。

识别mRNA上的密码。

④分子量最小⑤一级结构:核苷酸的排列序列。

⑥二级结构:三叶草形。

三级结构:倒L形。

2.结构功能:活化、搬运氨基酸到核糖体的载体。

(三)rRNA的结构与功能
有核糖体大、小亚基。

1.结构特点
2.结构功能
参与组成核糖体,作为蛋白质合成的场所。

(四)其他小分子RNA
·除了上述三种RNA外,生物细胞内还含有多种非编码RNA。

1.核内小RNA(snRNA):参加mRNA前体hnRNA中内含子的剪接。

2.微RNA(microRNA):通过结合于mRNA抑制翻译过程或导致mRNA的降解,因而参加转录后的基因表达调控。

参与构成蛋白质合成场所的RNA是
A.信使RNA
B.核糖体RNA
C.核内小RNA
D.催化性RNA
E.转运RNA
『正确答案』B
『答案解析』。

相关文档
最新文档