5闭环系统的极点和零点汇编

合集下载

现代控制理论试卷答案3套

现代控制理论试卷答案3套

现代控制理论试卷 1一、(10分)判断以下结论,若是正确的,则在括号里打√,反之打×(1)用独立变量描述的系统状态向量的维数是唯一。

()(2)线性定常系统经过非奇异线性变换后,系统的能观性不变。

()(3)若一个系统是李雅普诺夫意义下稳定的,则该系统在任意平衡状态处都是稳定的。

()(4)状态反馈不改变被控系统的能控性和能观测性。

()(5)通过全维状态观测器引入状态反馈来任意配置系统的闭环极点时,要求系统必须同时能控和能观的。

()二、(12分)已知系统1001010,(0)00121x x x⎛⎫⎛⎫⎪ ⎪==⎪ ⎪⎪ ⎪⎝⎭⎝⎭,求()x t.三、(12分) 考虑由下式确定的系统:2s+2(s)=43Ws s++,求其状态空间实现的能控标准型和对角线标准型。

四、(9分)已知系统[]210020,011003x x y⎡⎤⎢⎥==⎢⎥⎢⎥-⎣⎦,判定该系统是否完全能观?五、(17分) 判断下列系统的能控性、能观性;叙述李亚普诺夫稳定性的充要条件并分析下面系统的稳定性.[]xy u x x 11103211=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡--=六、(17分)已知子系统1∑ 111121011x x u -⎡⎤⎡⎤=+⎢⎥⎢⎥-⎣⎦⎣⎦,[]1110y x = 2∑ []22222110,01011x x u y x -⎡⎤⎡⎤=+=⎢⎥⎢⎥-⎣⎦⎣⎦求出串联后系统的状态模型和传递函数.七、(15分)确定使系统2001020240021a x x u b -⎡⎤⎡⎤⎢⎥⎢⎥=-+⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦为完全能控时,待定参数的取值范围。

八、(8分)已知非线性系统 ⎩⎨⎧--=+-=2112211sin 2x a x xx x x试求系统的平衡点,并确定出可以保证系统大范围渐近稳定的1a 的范围。

现代控制理论 试卷 1参考答案一、(10分)判断以下结论,若是正确的,则在括号里打√,反之打× (1) 用独立变量描述的系统状态向量的维数是唯一。

控制工程基础_课后答案

控制工程基础_课后答案

控制工程基础习题解答第一章1-5.图1-10为张力控制系统。

当送料速度在短时间内突然变化时,试说明该控制系统的作用情况。

画出该控制系统的框图。

由图可知,通过张紧轮将张力转为角位移,通过测量角位移即可获得当前张力的大小。

当送料速度发生变化时,使系统张力发生改变,角位移相应变化,通过测量元件获得当前实际的角位移,和标准张力时角位移的给定值进行比较,得到它们的偏差。

根据偏差的大小调节电动机的转速,使偏差减小达到张力控制的目的。

框图如图所示。

1-8.图1-13为自动防空火力随动控制系统示意图及原理图。

试说明该控制系统的作用情况。

题1-5 框图电动机给定值角位移误差张力-转速位移张紧轮滚轮输送带转速测量轮测量元件角位移角位移(电压等)放大电压测量 元件>电动机角位移给定值电动机图1-10 题1-5图该系统由两个自动控制系统串联而成:跟踪控制系统和瞄准控制系统,由跟踪控制系统获得目标的方位角和仰角,经过计算机进行弹道计算后给出火炮瞄准命令作为瞄准系统的给定值,瞄准系统控制火炮的水平旋转和垂直旋转实现瞄准。

跟踪控制系统根据敏感元件的输出获得对目标的跟踪误差,由此调整视线方向,保持敏感元件的最大输出,使视线始终对准目标,实现自动跟踪的功能。

瞄准系统分别由仰角伺服控制系统和方向角伺服控制系统并联组成,根据计算机给出的火炮瞄准命令,和仰角测量装置或水平方向角测量装置获得的火炮实际方位角比较,获得瞄准误差,通过定位伺服机构调整火炮瞄准的角度,实现火炮自动瞄准的功能。

控制工程基础习题解答第二章2-2.试求下列函数的拉氏变换,假定当t<0时,f(t)=0。

(3). ()t et f t10cos 5.0-=解:()[][]()1005.05.010cos 25.0+++==-s s t e L t f L t(5). ()⎪⎭⎫⎝⎛+=35sin πt t f 图1-13 题1-8图敏感 元件定位伺服机构 (方位和仰角)计算机指挥仪目标 方向跟踪环路跟踪 误差瞄准环路火炮方向火炮瞄准命令--视线瞄准 误差伺服机构(控制绕垂直轴转动)伺服机构(控制仰角)视线敏感元件计算机指挥仪解:()[]()252355cos 235sin 2135sin 2++=⎥⎦⎤⎢⎣⎡+=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+=s s t t L t L t f L π2-6.试求下列函数的拉氏反变换。

5第三节延迟系统的根轨迹 求取闭环系统零极点的方法

5第三节延迟系统的根轨迹 求取闭环系统零极点的方法

(2)在根轨迹图上画出阻尼比线;
(3)求出根轨迹与阻尼比线的交点得到闭环主导极
点的位置;
(4)根据幅值条件,求出对应的开环增益;
(5)利用闭环特征方程的根之和和根之积确定
其它闭环极点。
阻尼比线
sd
闭环主 导极点
闭环主导极点为 sd 0.4 j 0.69
根据幅值条件开环增益为
n
s pi
终点 s z j ,
(3)、实轴上的根轨迹:实轴上根轨迹区段的右侧(实轴上)开 环实零、极点数目之和相应为奇数。
(4)、根轨迹的渐近线:
根轨迹渐近线有无数条,且平行于实轴
m
K1

j 1
s

z
j
n
e
1
s pi
i 1
K1 0
n
K1
s
i 1
z0 z 1 z2 z3
附加一个零点相当于增加一个比例微分环节,在实际中,
能够得到的比例微分作用的环节是比例环节与惯性环节串联而
成的复合环节。
Gf (s) K f
sz s p
只要选取P>5Z,可以产生类似附加单纯零点的作用。
增加的零点相对靠近虚轴而起主导作用
零极点对应的矢量幅角
c c
1 n

1 n 1 2
1 2
并与其它极点接近原点的程度有关,调整时间主要取决于主 导极点的实部
1 n
(5)如果系统中存在非常接近的零点和极点,其相互距离比 其本身的模值小一个数量级以上,则把这对闭环零、极点称为 偶极子。偶极子的位置距离原点非常近时,其对暂态响应的影 响一般需要考虑,但不会影响闭环主导极点的主导作用。偶极 子的位置距离原点较远时,其对暂态响应的影响可以忽略。

现代控制理论实验五、状态反馈控制器设计河南工业大学

现代控制理论实验五、状态反馈控制器设计河南工业大学

河南工业大学《现代控制理论》实验报告专业: 自动化 班级: F1203 姓名: 蔡申申 学号:201223910625完成日期:2015年1月9日 成绩评定:一、实验题目:状态反馈控制器设计二、实验目的1. 掌握状态反馈和输出反馈的概念及性质。

2. 掌握利用状态反馈进行极点配置的方法。

学会用MATLAB 求解状态反馈矩阵。

3. 掌握状态观测器的设计方法。

学会用MATLAB 设计状态观测器。

三、实验过程及结果1. 已知系统u x x ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=111100020003.[]x y 3333.02667.04.0= (1)求解系统的零点、极点和传递函数,并判断系统的能控性和能观测性。

A=[-3 0 0;0 2 0;0 0 -1];B=[1;1;1];C=[0.4 0.266 0.3333];[z p k]=ss2zp(A,B,C,0)系统的零极点:z =1.0017-1.9997p =-3-12k =0.9993[num den]=ss2tf(A,B,C,0)num =0 0.9993 0.9973 -2.0018den =1 2 -5 -6系统的传递函数:G1=tf(num,den)G1 =0.9993 s^2 + 0.9973 s - 2.002-----------------------------s^3 + 2 s^2 - 5 s - 6Continuous-time transfer function.Uc=ctrb(A,B); rank(Uc)ans =3满秩,系统是能控的。

Vo=obsv(A,C); rank(Vo)ans =3满秩,系统是能观的。

(2)分别选取K=[0 3 0],K=[1 3 2],K=[0 16 /3 –1/3](实验中只选取其中一个K为例)为状态反馈矩阵,求解闭环系统的零点、极点和传递函数,判断闭环系统的能控性和能观测性。

闭环系统零、极点位置对时间响应性能指标的影响

闭环系统零、极点位置对时间响应性能指标的影响

闭环系统零、极点位置对时间响应性能指标的影响
稳定性:
如果闭环极点全部位于s左半平⾯。

则系统⼀定稳定;
运动形式:
如果闭环系统⽆零点,且闭环极点均为实数极点,则时间响应⼀定是单调的;如果闭环系统极点均为复数极点,则时间响应⼀般是震荡的。

超调量:
超调量主要取决于闭环复数主导极点的衰减率,并与其它闭环零极点接近坐标原点的程度有关。

调节时间:
调节时间主要取决于最靠近虚轴的闭环复数极点的复数的实部绝对值;如果实数极点距离虚轴最近,并且它没有实数零点,则调节时间主要取决于该实数的模值。

实数零极点的影响:
零点减⼩系统阻尼,使峰值时间提前,超调量增⼤;极点增⼤系统阻尼,使峰值之间迟后,超调量减⼩,它们的作⽤,随着它们本⾝接近坐标原点的程度⽽增强。

偶极⼦及其处理:
远离原点的偶极⼦,其影响可忽略;接近原点的偶极⼦其影响必须考虑
主导极点:
在s平⾯上,最靠近虚轴⽽附近有闭环零点的⼀些闭环极点,对系统的影响最⼤。

结合偶极⼦的处理原则,将⾼阶系统简化为⼆、三个主导极点和⼀两个零点,然后估算系统的单位阶跃响应的性能指标。

自动控制操作与原理复习题第4套

自动控制操作与原理复习题第4套

(勤奋、求是、创新、奉献)2011~ 2012 学年第二学期考试试卷主考教师:__ ________学院 班级 __________ 姓名 __________ 学号 ___________《 自控原理与系统》课程试卷A 参考答案及评分标准(本卷考试时间 120 分钟)一、 单项选择题(每小题1分,共20分)1. 系统已给出,确定输入,使输出尽可能符合给定的最佳要求,称为(A )A.最优控制B.系统辨识C.系统分析D.最优设计2. 与开环控制系统相比较,闭环控制系统通常对(B )进行直接或间接地测量,通过反馈环节去影响控制信号。

A.输出量B.输入量C.扰动量D.设定量3. 在系统对输入信号的时域响应中,其调整时间的长短是与( D )指标密切相关。

A.允许的峰值时间B.允许的超调量C.允许的上升时间D.允许的稳态误差 4. 主要用于产生输入信号的元件称为(B )A.比较元件B.给定元件C.反馈元件D.放大元件5. 某典型环节的传递函数是()151+=s s G ,则该环节是( C ) A.比例环节 B.积分环节 C.惯性环节 D.微分环节6. 已知系统的微分方程为()()()()t x t x t x t xi 2263000=++ ,则系统的传递函数是(A ) A.26322++s s B.26312++s s C.36222++s s D.36212++s s7. 引出点前移越过一个方块图单元时,应在引出线支路上(C )A.并联越过的方块图单元B.并联越过的方块图单元的倒数C.串联越过的方块图单元D.串联越过的方块图单元的倒数8. 设一阶系统的传递27)(+=s s G ,其阶跃响应曲线在t =0处的切线斜率为( B )A.7B.2C.27D.219. 时域分析的性能指标,哪个指标是反映相对稳定性的( D )A.上升时间B.峰值时间C.调整时间D.最大超调量10. 二阶振荡环节乃奎斯特图中与虚轴交点的频率为(D )A.谐振频率 B .截止频率 C.最大相位频率 D.固有频率 11.设系统的特征方程为()0122234=++++=s s s s s D ,则此系统中包含正实部特征的个数为(C )A.0B.1C.2D.312. 一般为使系统有较好的稳定性,希望相位裕量γ为(C )A.0~15︒B.15︒~30︒C.30︒~60︒D.60︒~90︒ 13.设一阶系统的传递函数是()12+=s s G ,且容许误差为5%,则其调整时间为( C ) A.1 B.2 C.3 D.414.某一系统的速度误差为零,则该系统的开环传递函数可能是( D ) A.1+Ts KB.))((b s a s s d s +++C.)(a s s K +D.)(2a s s K +15. 单位反馈系统开环传递函数为())23(422++=s s s s G ,当输入为单位斜坡时,其加速度误差为( A )A.0B.0.25C.4D.∞ 16.若已知某串联校正装置的传递函数为11.01)(++=s s s G c ,则它是一种( A )A.相位超前校正B.相位滞后校正C.相位滞后—超前校正D.反馈校正 17.确定根轨迹大致走向,一般需要用( D )条件就够了。

闭环系统零极点和单位圆关系

闭环系统零极点和单位圆关系

闭环系统零极点和单位圆关系
闭环系统的零极点分析是控制系统分析的重要内容之一。

对于闭环系统而言,在单位圆上的极点会对系统的稳定性和动态响应产生重要影响。

闭环系统的单位圆上的零极点分布主要与系统的稳定性和动态响应有关。

1. 对于系统的稳定性而言,如果闭环系统的极点在单位圆内部,则系统是不稳定的,这是因为系统的输出信号会无限增长,从而导致系统失控。

同样的,如果闭环系统的极点在单位圆外部,则系统是稳定的。

2. 对于系统的动态响应而言,如果闭环系统的极点靠近单位圆上的某些点,例如互补角位置上的点,这时系统的动态响应会比较迅速,因为它们具有较小的时间常数。

此外,当闭环系统的零点和极点越靠近单位圆时,系统的动态响应会变得越快,这是因为它们有更快的响应速度。

因此,在控制系统设计中,确保闭环系统的稳定性和动态响应是非常重要的。

在确定闭环系统的控制系统参数时,需要进行准确的零极点分析,以确保系统的稳定性和动态响应符合设计要求。

自动控制原理第五章

自动控制原理第五章

第五章 频域分析法目的:①直观,对高频干扰的抑制能力。

对快(高频)、慢(低频)信号的跟踪能力。

②便于系统的分析与设计。

③易于用实验法定传函。

§5.1 频率特性一. 定义)()()()(1n p s p s s s G +⋅⋅⋅+=θ在系统输入端加一个正弦信号:t R t r m ωsin )(⋅=))(()(22ωωωωωj s j s R s R s R m m -+⋅=+⋅=↔ 系统输出:))(()()()()(1ωωωθj s j s R p s p s s s Y m n-+⋅⋅+⋅⋅⋅+=t j t j e A e A t y t y ωω⋅+⋅+=↔-瞬态响应)()(1若系统稳定,即)(s G 的极点全位于s 左半平面,则 0)(l i m 1=∞→t y t稳态响应为:tj tj ss eA eA t y ωω⋅+⋅=-)(而)(21)()(22ωωωωωj G R jj s s R s G A m j s m -⋅-=+⋅+⋅⋅=-=)(21)()(22ωωωωωj G R jj s s R s G A m j s m ⋅=-⋅+⋅⋅== ∴t j m tj m ss e j G R je j G R j t y ωωωω⋅⋅+⋅-⋅-=-)(21)(21)( =])()([21t j t j m e j G e j G R jωωωω-⋅--⋅⋅ 又)(s G 为s 的有理函数,故)()(*ωωj G j G -=,即φωωj e j G j G )()(= φωωj e j G j G -=-)()(∴][)(21)()()(φωφωω+-+--⋅=t j t j mss e e j G R jt y =)sin()(φωω+⋅⋅t j G R m =)sin(φω+⋅t Y m可见:对稳定的线性定常系统,加入一个正弦信号,其稳态响应也是一个同频率的正弦信号。

其幅值是输入正弦信号幅值的)(ωj G 倍,其相移为)(ωφj G ∠=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(二) 闭环极点的求解
第二步,由ξ求Kg及闭环极点
1. 由ξ求β
cos1 60
2. 作等阻尼线,如果在坐标纸上绘制根轨迹可直接读出等阻尼线和根轨迹的交 点,即满足阻尼条件的系统闭环极点。其实质是求解方程组:
s jw
w
3
Kg
28 27
1.037
1/ 3 0.333
s3 3s2 2s Kg 8 3 6 2 2 Kg (6 3 2 2 3 ) j 0 w 3 / 3 0.577
(三)G(s)的极点与H(s)的零点相消情况下的闭环零点
当H(s)中存在没有对消的零点,直接作如上变换将导致系统的阶数增加, H(s)中没有消掉的零点为闭环系统附加了一对重合的极、零点,为此在做 上述结构图变换时可以将对消的因子提出来,作等效变换。
令H1(s)为H(s)中对消因子组成的部分,H0(s)=H(s)/H1(s),则:
用闭环极点和的定理, sj
pj
s3
2 3
3
s3
7 / 3
2.333
综合上述分析,满足阻尼条件的闭环系统极点为:s1,2,3 0.333 0.577 j, 2.333
此时Kg=1.037。由于-s3与-s1,2的实部之比为
7 / 3 1/ 3
7
5
,因此系统具有主
导极点-s1,2,可将系统近似为二阶系统估算系统的性能指标。
§4-5 闭环系统的零、极点
(一) 前言
由第三章内容可知,系统的阶跃响应与闭环零、极点的分布密 切相关,闭环零、极点分布决定了系统的稳定性、动态性能、 静态性能。因此要使用根轨迹方法全面地分析系统,需要根据 根轨迹求解闭环系统的零、极点。然后根据闭环系统零、极点 分布情况估算出系统的动态性能和静态性能指标。
以下通过实例说明求取闭环系统零、极点的方法。
(二) 闭环极点的求解
【例
1】单位反馈系统
GK
(s)
s(s
K 1)(0.5s
1)
,应用根轨迹法求取具有阻尼比
0.5的共扼闭环主导极点和其它的闭环极点,估算此时系统的性能指标。
解:第一步,绘制系统的根轨迹。首先应求开环传递函数的零极点形式:
(二) 闭环极点的求解
R(s)
G(s)
C(s)
R(s)
G(s)H(s)
H(s)
C(s) 1/H(s)
变换后有: {闭环极点}={GH回路闭环极点}+{H的零点} {闭环零点}={GH的零点}+{H的极点}
说明: G(s)极点与H(s)零点相消,所消去的因子对应了闭环系统一个极点。 G(s)零点与H(s)极点相消,所消去的因子对应了闭环系统一个零点。
nm
3
4.
分离点:d
2
2k , nm 3
N ' (s)D(s) N (s)D' (s) 0 3s2 6s 2 0 s1,2 1
3 -0.423,-1.577(舍) 3
5. 与虚轴的交点:
s3
1
2
s2
3 Kg
s1 6 Kg 0
s0
6 Kg
Kg 6 辅助方程:3s2 6 0 s1,2 2 j
闭环极点求解:对于一个具体的控制系统,绘制出其根轨迹后,
可以利用幅值条件或通过试探法在根轨迹上求出相应于已知参 数(例如Kg值)下的全部闭环极点。
闭环零点求解:可通过传递函数的分析而求得。
m1
(s zi )
G0 (s) Kg0
i 1 n1
m2
(s zk )
H (s) KgH
k 1 n2
第三步,估算系统的性能指标
(二) 闭环极点的求解
动态性能指标:
1/ 3 % e / 12 100% 16.3%
wn
0.5
ts
3 wn
3 9s 1/ 3
稳态误差:
Kp
K Kg / 2 0.525 Kv K 0.525
K
a
0
因为系统为I型系统,所以在位置阶跃输入作用下无稳态误差,而在单位斜坡给
R(s) G0(s)
(s pj ) j 1
m1
(s pl )
(s zi ) l1

G(s) G0 (s) 1 G0 (s)H (s)
Kg i1 0 n1
m1
n2
H(s)
(s pj )
Kg0 (s zi ) (s pl )
j 1
m1
m2
n1
i 1
l 1
n2
m1
m2
(s zi ) (s zk )
Kg i1 0 n1 (s pj )
m1
Kg0 (s zi )
j 1 m1
n1
i 1 m1
(s zi )
(s p j ) Kg0 (s zi )
1 Kg0
i 1 n1
j 1
i 1
(s pj )
j 1
非单位反馈系统: {闭环零点}={前向通道零点}+{反馈通道极点}
单位反馈系统: {闭环零点}={前向通道零点}
定信号作用下的稳态误差为:
ess 1/ Kv 1.9
(三)G(s)的极点与H(s)的零点相消情况下的闭环零点
(三) G(s)的极点与H(s)的零点相消情况下的闭环零点
第四节中讨论了当G(s)的分母与H(s)的分子含有公因式时,即G(s)与H(s) 发生零极点相消情况下根轨迹的绘制方法,即补充闭环极点的方法。对结构图 作等效变换:
GK
(s)
s(s
2K 1)(s
2)
s(s
Kg 1)(s
2)
其中: Kg 2K
由前节绘制根轨迹草图的规则:
1. 系统的开环极点:-p1,-p2,-p3为0, -1,-2;无开环零点。系统有三条趋 向于无穷远的根轨迹。
2. 实轴上的根轨迹:[-1,0],(-∞,-2]
3. 渐近线: pj zi 0 1 2 1
(s p j ) (s pl ) Kg0 KgH (s zi ) (s zk )
1 Kg0 KgH
i 1 n1
k 1 n2
j 1
l 1
i 1
k 1
(s p j ) (s pl )
j 1
l 1
C(s)
(二) 闭环极点的求解
单位反馈系统: H(s) 1
m1
(s zi )
G(s) G0 (s) 1 G0 (s)
R(s)
C(s)
G(s)
R(s)
G(s)H1(s)
C(s) 1/H1(s)
H0(s)H1(s)
H0(s)
【例 2】设系统 G(s)
Kg
,H (s) (s 1)(s 3) ,求闭环系统的极零点
s(s 1)(s 2)
方法一:直接使用1/H(s),变换
GH Kg(s 3) s(s 2)
1/ H (s 1)(s 3)
相关文档
最新文档