矩阵函数微积分
函数矩阵的微分和积分

及变量 z 的函数 u = f( z) 都可微 , 则 ( 5 . 7)
d d d A 〔 f( z) 〕 = A( u) ・ f( z) dz du dz 性质 4 若 n 阶函数矩阵 A( z) 可逆 , 且 A( z) 及其逆阵 A ( z) 都可微 , 则 d -1 -1 d -1 A ( z) = - A ( z)〔 A( z) 〕 A ( z) dz dz 证明性质 2 设 A( z) B ( z) = C( z) 〔 d A( z) 〕 B( z) = H( z) dz A( z)
f f , …, x1 xn
( 5. 14)
d d d 〔 a f( X) + bg( X) 〕 = a f( X) + b g( X) dX dX dX 性质 3 d d d 〔 f( X) ・ g( X) 〕= g( X) f( X) + f( X) g( X) dX dX dX d d f f ( X) 及 g ( X) 的 i 行 j 列 元 素 分 别 是 , dX dX x ji
m× n m ×n
d a ( z) dz 12 d a 22 ( z) dz d a m2 ( z) dz
… …
d a ( z) dz 1n d a 2n ( z) dz d a mn ( z) dz
…
( 5 . 5)
设函数矩阵 A( z) , B( z) 分别是 m × n 及 n× s 阶矩阵 , 且 A( z) , B( z) 都可微 , ( 5 . 6)
这里需注意的是 , 由于矩阵的乘法不满足交换律 , 所以上式中乘积的顺序一般是不能交换的。 若 K 是一个常数矩阵 , 则有 d d 〔 K・ A( z) 〕 = K A( z) dz dz d d 〔 A( z) ・ K〕 =〔 A( z) 〕 ・K dz dz 这两个式子也不能交换顺序。又如 d 2 d d 〔 A ( z) 〕 = 〔 A( z) 〕 A( z) + A( z) A( z) dz dz dz ≠2A( z) 证明性质 3, 因为 d d d a〔 a ij ( u) f( z) ij f( z) 〕 = dz du dz 由此立刻得出 d d d A 〔 f( z) 〕 = A( u) f( z) dz du dz 证明性质 4, 因为 A ( z) ・ A( z) = E 所以 d -1 dA ( z) -1 d 〔 A A( z) 〕 = A( z) + A ( z) A( z) = 0 dz dz dz d -1 -1 d -1 〔 A ( z) 〕 = - A ( z)〔 A( z) 〕 A ( z) dz dz 例1 其中 x1 ( t) χ= x2 ( t) … xn ( t) 解 d T d T T d χ Aχ+ χA χ 〔 χ Aχ 〕= dt dt dt = χA
第4讲(2)矩阵的微分与积分

14—2矩阵的微分与积分21.矩阵的微分2.矩阵的积分3.其他微分概念4.应用31. 矩阵的微分如果矩阵A (t )=(a ij (t ))∈C m ×n 的每个元素a ij (t )都是t 的可微函数,则A (t )关于t 的导数(微商)定义为:()()()().ij m ndA t A t a t dt×′′==4定理1:设A (t ),B (t )可导,则()()()()()()()()()()()();(2)()(();(3)()()).1d d dA tB t A t B t dt dt dt df t A t f t A t f t A t dt dA tB t A t B t A t B t dt ⎡⎤+=+⎣⎦′′⎡⎤=+⎣⎦′′⎡⎤=+⎣⎦(4) 设为可微矩阵,则)(),(1t A t A −())()()()(111t A t A dt d t A t A dt d −−−⎟⎠⎞⎜⎝⎛−=5定理2:设A 是n 阶常数矩阵,则;(2)cos()sin()sin();(3)sin()cos()(cos(1)).tA tA tA de Ae e A dt dtA A tA tA A dtdtA A tA tA A dt===−⋅=−⋅=⋅=⋅62. 矩阵的积分如果矩阵A (t )=(a ij (t ))∈C m ×n 的每个元素a ij (t )都在[t 0,t ]上可积,则称A (t )可积,记为()()()0.ttij t t m n A d a d ττττ×=∫∫7()()()()()()()()()()()()()000000001010;(2);;(3);(4).(1)tttt t t t tt t t tt t tt t t A B d A d B d A B d A B d A B d A d B d A d A t dt A d A t A t τττττττττττττττττττ⎡⎤+=+⎣⎦⎡⎤⎡⎤⋅=⋅⎣⎦⎢⎥⎣⎦⎡⎤⎡⎤⋅=⋅⎣⎦⎢⎥⎣⎦=′=−∫∫∫∫∫∫∫∫∫83. 其他微分概念(a) 函数对矩阵的导数设X =(x ij )m ×n ,mn 元函数f (X )对X 的导数定义为:1111.nijm nm mn ff x x f x f f x d dX x f ×=∂∂⎡⎤⎢⎥∂∂⎛⎞∂⎢⎥⎜⎟⎜⎟⎢⎥∂∂∂⎝⎠⎢⎥∂∂⎢⎥⎣⎦=L M M L 例1设求1,n x x x ⎡⎤⎢⎥=⎢⎥⎣⎦M T ,.df dfdx dx 9例3设A 是n 阶矩阵,x =[x 1,…,x n ]T ,f (x )=x T Ax ,求df /dx .例2设b 是n 维列向量,x =[x 1,…,x n ]T ,f (x )=x T b ,求df /dx .例4设A ∈R m ×n ,b ∈R m ,若x ∈R n 使得||Ax -b ||2 =min ,则A T Ax =A T b ..nX I df dX=例5设X =(x ij )∈R n ×n ,f (X )=[tr(X )]2,求10(b) 函数矩阵对矩阵的导数设X =(x ij )m ×n ,有rs 个mn 元函数f kl (X )写成函数矩阵的形式:1111,s r rs f ff f F ⎡⎤⎢⎥⎢⎥⎣⎦=L MM L 则F 对X 的导数定义为:1111,n m mn FF x x dF dX F F x x ∂∂⎡⎤⎢⎥∂∂⎢⎥⎢⎥∂∂⎢⎥∂∂⎢⎥⎣⎦=L M M L 1111.s ij ij ijrs r ij ij f f x x F x f f x x ∂∂⎡⎤⎢⎥∂∂∂⎢⎥⎢⎥∂∂∂⎢⎥⎢⎥∂∂⎣=⎦L M M L 11例6设F (x )=[f 1(x ),f 2(x ),…,f l (x )],则1,n x x x ⎡⎤⎢⎥=⎢⎥⎣⎦M 1111.l l n n f f x x f f x dF dx x ∂∂⎡⎤⎢⎥∂∂⎢⎥⎢⎥∂∂⎢⎥∂∂⎢⎥⎦=⎣L M M L 例7设A 是一个常数矩阵,则1,n x x x ⎡⎤⎢⎥=⎢⎥⎣⎦M 1()()()T n d Ax d Ax d Ax dx dx dx ⎡⎤=⎢⎥⎣⎦L 1111.n n nn a a A a a ⎡⎤⎢⎥==⎢⎥⎣⎦L M M L 121111122112211222221122'()()()()()'()()()()()'()()()()()n n n n nn n nn n n x t a x t a x t a x t b t x t a x t a x t a x t b t x t a x t a x t a x t b t =++++⎧⎪=++++⎨⎪=++++⎩L L ML 4. 应用13令1112111()(),(),(),()()n nn n n a a x t b t A x t b t a a x t b t ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦L M M M M L ()()()x t A x t b t ′=⋅+则可以写成矩阵形式:非齐次微分方程()()x t A x t ′=⋅齐次微分方程14其中c 是任意常向量. 若再加上初始条件x (t 0)=x 0,则其解为0()0().t t A x t e x −=(),tA x t e c =定理3:齐次微分方程的通解为:()()x t A x t ′=⋅15110010,002A ⎡⎤=⎢⎥⎢⎥⎣⎦例8设矩阵求满足x (0)=[1 0 1]T 的齐次微分方程的解.()()x t A x t ′=⋅1612()()(),x t x t x t =+其中x 1(t )=e tA c 是对应齐次微分方程的通解,x 2(t )是原非齐次微分方程的一个特解. 常向量c 由初始条件确定.定理4:非齐次微分方程的通解可以表示为:()()()x t A x t b t ′=⋅+172()(),tA x t e c t =如何计算一个特解?常向量变易法,即设带入原非齐次微分方程有'()(),tA e c t b t =由此可以解出一个c (t ),即得到一个通解.()00()()tAt AtA x t e x eeb d τττ−=+∫1821101010,()0,002t A b t e ⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦例9设求满足初始条件的非齐次微分方程()()()x t A x t b t ′=⋅+1(0)10x −⎡⎤=⎢⎥⎢⎥⎣⎦的解.19例:求解初值问题⎪⎪⎩⎪⎪⎨⎧⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛−+⎟⎟⎠⎞⎜⎜⎝⎛=210113421)(x x dt dx 20解:()()⎟⎟⎠⎞⎜⎜⎝⎛−=⎟⎟⎠⎞⎜⎜⎝⎛−+→⎟⎟⎠⎞⎜⎜⎝⎛−−−−=−500151013421J A E ,λλλλλ⎟⎟⎠⎞⎜⎜⎝⎛−=⎟⎟⎠⎞⎜⎜⎝⎛→⎟⎟⎠⎞⎜⎜⎝⎛−−−−−=110011442211p ,,λ⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛−→⎟⎟⎠⎞⎜⎜⎝⎛−−=210012242452p ,,λ21⎟⎟⎠⎞⎜⎜⎝⎛−=⎟⎟⎠⎞⎜⎜⎝⎛−=∴−11123121111P P 1500−−⎟⎟⎠⎞⎜⎜⎝⎛=P e e P e t t At ()∫−+=∴t A AtAtd F eex e t x 00τττ)()(。
矩阵微积分基础知识

矩阵微积分基础知识矩阵微积分是微积分的一个重要分支,它将微积分的概念和方法应用于矩阵和向量的运算中。
在矩阵微积分中,我们可以通过对矩阵进行微分和积分来研究矩阵的性质和变化规律。
本文将介绍矩阵微积分的基础知识,包括矩阵的导数、矩阵的积分和矩阵微分方程等内容。
一、矩阵的导数在矩阵微积分中,我们可以定义矩阵的导数。
对于一个矩阵函数f(X),其中X是一个矩阵,我们可以通过对f(X)的每个元素分别求导来得到矩阵的导数。
具体而言,如果f(X)的每个元素都是可导的,那么矩阵f(X)的导数就是一个与f(X)具有相同维度的矩阵,其中每个元素都是对应元素的导数。
例如,对于一个2×2的矩阵X = [x1 x2; x3 x4],我们可以定义一个矩阵函数f(X) = [x1^2 x2^2; x3^2 x4^2]。
那么矩阵f(X)的导数就是一个2×2的矩阵,其中每个元素都是对应元素的导数,即f'(X) = [2x1 2x2; 2x3 2x4]。
二、矩阵的积分与矩阵的导数类似,我们也可以定义矩阵的积分。
对于一个矩阵函数f(X),其中X是一个矩阵,我们可以通过对f(X)的每个元素分别积分来得到矩阵的积分。
具体而言,如果f(X)的每个元素都是可积的,那么矩阵f(X)的积分就是一个与f(X)具有相同维度的矩阵,其中每个元素都是对应元素的积分。
例如,对于一个2×2的矩阵X = [x1 x2; x3 x4],我们可以定义一个矩阵函数f(X) = [∫x1dx1 ∫x2dx2; ∫x3dx3 ∫x4dx4]。
那么矩阵f(X)的积分就是一个2×2的矩阵,其中每个元素都是对应元素的积分,即∫f(X)dX = [∫x1dx1 ∫x2dx2; ∫x3dx3 ∫x4dx4]。
三、矩阵微分方程矩阵微分方程是矩阵微积分中的一个重要概念。
它是描述矩阵函数与其导数之间关系的方程。
一般而言,矩阵微分方程可以分为常微分方程和偏微分方程两种类型。
矩阵微积分

矩阵微积分本文摘译自 Wikipedia。
在数学中,矩阵微积分是多元微积分的一种特殊表达形式。
它以向量或矩阵的形式将单个函数表示为多个变量,或将一个多元函数表示为单个变量,从而可以作为一个整体来处理,大大简化了多元函数极值、微分方程等问题的求解过程。
表示法在本文中,将采用如下所示的表示方法:•$ \mathbf A, \mathbf X, \mathbf Y $ 等:粗体的大写字母,表示一个矩阵;•$ \mathbf a, \mathbf x, \mathbf y $ 等:粗体的小写字母,表示一个向量;•$ a, x, y $ 等:斜体的小写字母,表示一个标量;•$ \mathbf X^T $:表示矩阵 $ \mathbf X $ 的转置;•$ \mathbf X^H $:表示矩阵 $ \mathbf X $ 的共轭转置;•$ | \mathbf X | $:表示方阵 $ \mathbf X $ 的行列式;•$ || \mathbf x || $:表示向量 $ \mathbf x $ 的范数;•$ \mathbf I $:表示单位矩阵。
向量微分向量-标量列向量函数 $ \mathbf y = \begin{bmatrix} y_1 & y_2 & \cdots & y_m \end{bmatrix}^T $ 对标量 $ x $ 的导数称为$ \mathbf y $ 的切向量,可以以分子记法表示为$ \frac{\partial \mathbf y}{\partial x} =\begin{bmatrix}\frac{\partial y_1}{\partial x}\newline \frac{\partial y_2}{\partial x} \newline\vdots \newline \frac{\partial y_m}{\partialx}\end{bmatrix}_{m \times 1} $若以分母记法则可以表示为$ \frac{\partial \mathbf y}{\partial x} =\begin{bmatrix}\frac{\partial y_1}{\partial x} &\frac{\partial y_2}{\partial x} & \cdots &\frac{\partial y_m}{\partial x}\end{bmatrix}_{1 \times m} $标量-向量标量函数 $ y $ 对列向量 $ \mathbf x = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}^T $ 的导数可以以分子记法表示为$ \frac{\partial y}{\partial \mathbf x} =\begin{bmatrix}\frac{\partial y}{\partial x_1} &\frac{\partial y}{\partial x_2} & \cdots &\frac{\partial y}{\partial x_n}\end{bmatrix}_{1 \times n} $若以分母记法则可以表示为$ \frac{\partial y}{\partial \mathbf x} =\begin{bmatrix}\frac{\partial y}{\partial x_1}\newline \frac{\partial y}{\partial x_2} \newline\vdots \newline \frac{\partial y}{\partialx_n}\end{bmatrix}_{n \times 1} $向量-向量列向量函数 $ \mathbf y = \begin{bmatrix} y_1 & y_2 & \cdots & y_m \end{bmatrix}^T $ 对列向量 $ \mathbf x = \begin{bmatrix} x_1 & x_2 & \cdots & x_n\end{bmatrix}^T $ 的导数可以以分子记法表示为$ \frac{\partial \mathbf y}{\partial \mathbf x} =\begin{bmatrix}\frac{\partial y_1}{\partial x_1} &\frac{\partial y_1}{\partial x_2} & \cdots &\frac{\partial y_1}{\partial x_n}\newline\frac{\partial y_2}{\partial x_1} &\frac{\partial y_2}{\partial x_2} & \cdots &\frac{\partial y_2}{\partial x_n} \newline\vdots &\vdots & \ddots & \vdots \newline\frac{\partialy_m}{\partial x_1} & \frac{\partial y_m}{\partial x_2} & \cdots & \frac{\partial y_m}{\partial x_n}\newline\end{bmatrix}_{m \times n} $若以分母记法则可以表示为$ \frac{\partial \mathbf y}{\partial \mathbf x} =\begin{bmatrix}\frac{\partial y_1}{\partial x_1} &\frac{\partial y_2}{\partial x_1} & \cdots &\frac{\partial y_m}{\partial x_1}\newline\frac{\partial y_1}{\partial x_1} &\frac{\partial y_2}{\partial x_1} & \cdots &\frac{\partial y_m}{\partial x_1} \newline\vdots &\vdots & \ddots & \vdots \newline\frac{\partialy_1}{\partial x_1} & \frac{\partial y_2}{\partial x_1} & \cdots & \frac{\partial y_m}{\partial x_1}\newline\end{bmatrix}_{n \times m} $矩阵微分矩阵-标量形状为 $ m \times n $ 的矩阵函数 $ \mathbf Y $ 对标量$ x $ 的导数称为 $ \mathbf Y $ 的切矩阵,可以以分子记法表示为$ \frac{\partial \mathbf Y}{\partial x} =\begin{bmatrix}\frac{\partial y_{11}}{\partial x} &\frac{\partial y_{12}}{\partial x} & \cdots &\frac{\partial y_{1n}}{\partial x}\newline\frac{\partial y_{21}}{\partial x} &\frac{\partial y_{22}}{\partial x} & \cdots &\frac{\partial y_{2n}}{\partial x} \newline\vdots &\vdots & \ddots & \vdots \newline\frac{\partialy_{m1}}{\partial x} & \frac{\partial y_{m2}}{\partial x} & \cdots & \frac{\partial y_{mn}}{\partial x}\newline\end{bmatrix}_{m \times n} $标量-矩阵标量函数 $ y $ 对形状为 $ p \times q $ 的矩阵$ \mathbf X $ 的导数可以分子记法表示为$ \frac{\partial y}{\partial \mathbf X} =\begin{bmatrix}\frac{\partial y}{\partial x_{11}} &\frac{\partial y}{\partial x_{21}} & \cdots &\frac{\partial y}{\partial x_{p1}}\newline\frac{\partial y}{\partial x_{12}} &\frac{\partial y}{\partial x_{22}} & \cdots &\frac{\partial y}{\partial x_{p2}} \newline\vdots &\vdots & \ddots & \vdots \newline\frac{\partialy}{\partial x_{1q}} & \frac{\partial y}{\partialx_{2q}} & \cdots & \frac{\partial y}{\partial x_{pq}} \newline\end{bmatrix}_{q \times p} $若以分母记法则可以表示为$ \frac{\partial y}{\partial \mathbf X} =\begin{bmatrix}\frac{\partial y}{\partial x_{11}} &\frac{\partial y}{\partial x_{12}} & \cdots &\frac{\partial y}{\partial x_{1q}}\newline\frac{\partial y}{\partial x_{21}} &\frac{\partial y}{\partial x_{22}} & \cdots &\frac{\partial y}{\partial x_{2q}} \newline\vdots &\vdots & \ddots & \vdots \newline\frac{\partialy}{\partial x_{p1}} & \frac{\partial y}{\partialx_{p2}} & \cdots & \frac{\partial y}{\partial x_{pq}} \newline\end{bmatrix}_{p \times q} $恒等式在下面的公式中,除非另有说明,默认要导出的复合函数的所有因子都不是导数变量的函数。
矩阵微积分中的微分与积分

矩阵微积分中的微分与积分矩阵微积分是微积分在矩阵领域的推广和应用,它将微积分中的微分和积分概念扩展到矩阵和向量上。
在矩阵微积分中,微分与积分是非常重要的概念,它们有着广泛的应用和深远的理论背景。
本文将介绍矩阵微积分中的微分和积分,探讨它们的定义、性质和应用。
一、矩阵微分在矩阵微积分中,微分是研究函数变化率的工具。
与传统微积分类似,矩阵微分也涉及到导数和偏导数的概念。
对于一个矩阵函数F(X),其微分可以表示为dF(X)。
矩阵微分的计算可以通过求导数的方式进行,即通过求偏导数来计算微分。
具体来说,对于一个矩阵函数F(X),其微分dF(X)可以通过以下公式计算:dF(X) = ∇F(X) · dX其中,∇F(X)表示F(X)的梯度,dX表示X的微小变化量。
这个公式表明,微分dF(X)可以看作是F(X)对X的梯度∇F(X)与X的微小变化量dX的乘积。
这种计算微分的方法在矩阵微积分中被广泛应用,可以用来求解矩阵函数的导数和对函数进行近似。
矩阵微分具有许多重要的性质和规则,与传统微积分中的微分类似。
例如,矩阵微分满足线性性质、乘法规则和链式法则等性质。
这些性质使得矩阵微分成为了研究矩阵函数变化率的有力工具。
二、矩阵积分矩阵微积分中的积分是研究曲线面积和函数累积量的工具。
在矩阵微积分中,矩阵积分可以表示为∫F(X)dX的形式,其中F(X)表示要积分的矩阵函数,dX表示积分变量。
与矩阵微分类似,矩阵积分的计算也可以通过求原函数的方式进行。
对于一个矩阵函数F(X),如果存在一个矩阵函数G(X),使得dG(X)/dX = F(X),那么G(X)就是F(X)的原函数。
在矩阵微积分中,原函数的概念可以用来计算矩阵积分。
具体来说,矩阵积分的计算可以通过以下公式进行:∫F(X)dX = G(X) + C其中,G(X)表示F(X)的原函数,C为常数。
这个公式表明,矩阵积分可以通过求原函数来计算,得到的结果再加上一个常数C。
2.2-函数矩阵的微分与积分

A(z)dz
b
a
a ij
(
z
)dz
mn
类似定义 A(z) 的不定积分:
A(z)dz
a ij
(
z
)dz
mn
School of Math. & Phys.
11
North China Elec. P.U.
Mathematical Methods & its Applications
2. 性质
2024/7/15
13
North China Elec. P.U.
Mathematical Methods & its Applications 2024/7/15
J. G. Liu
例3
设
A(t
)
sin t cos t
cos t
sin t
,
求
A(t )dt
解
A(t )dt
sin tdt cos tdt
i1
1j
i2
2j
is
sj
School of Math. & Phys.
5
North China Elec. P.U.
Mathematical Methods & its Applications
所以 A(z)B(z)
2024/7/15
J. G. Liu
(a (z)b (z) a (z)b (z) a (z)b (z)
Mathematical Methods & its Applications 2024/7/15
J. G. Liu
§2.矩阵的微分与积分
一、函数矩阵的微分 二、函数矩阵的积分 三、向量对向量的微分
5.4矩阵的微分和积分

∂ξ n ⎞ ⎛ ∂f ∂ζ 1 ⎟ ⎜ ∂ζ 1 ⎟⎜ ∂ξ n ⎟ ⎜ ∂f ⎟ ⎜ ∂ζ ∂ζ 2 ⎟ ⎜ 2 ⎟⎜ ⎟⎜ ∂ξ n ⎟ ⎜ ∂f ⎟⎜ ∂ζ n ⎠ ⎝ ∂ζ n
⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠
t1
t1
t0
A ( t ) dt B
t0 t1
A • B ( t ) dt = A
(∫
)
t0
( B与 t 无 关 )
t0
B ( t ) dt
t1 t0
)
t1 t0
( A与 t 无 关 )
t0
A ( t ) dB ( t ) = [ A ( t ) B ( t )] − ∫ B ( t ) dA ( t )
∂f1s ⎞ ⎟ ∂ξ ij ⎟ ∂f 2 s ⎟ ∂ξ ij ⎟ ⎟ ⎟ ∂f rs ⎟ ∂ξ ij ⎟ ⎠
例5.13 设 x = (ξ 1 , ξ 2 ,
, ξ n ) T , n元 函 数 f ( x ) =
解 因为
⎛ ∂f ∂f df =⎜ , , dx ⎝ ∂ ξ 1 ∂ ξ 2
∂f ⎞ , ⎟ ∂ξ n ⎠
,ζ n ) ,
T
证
⎛ ∂f ⎞ ⎛ ∂f ∂ξ1 + ∂f ∂ξ 2 + ⎟ ⎜ ⎜ ⎜ ∂ ζ 1 ⎟ ⎜ ∂ ξ1 ∂ ζ 1 ∂ ξ 2 ∂ ζ 1 ⎜ ∂f ⎟ ⎜ ∂f ∂ξ1 + ∂f ∂ξ 2 + df = ⎜ ∂ ζ 2 ⎟ = ⎜ ∂ ξ1 ∂ ζ 2 ∂ ξ 2 ∂ ζ 2 du ⎜ ⎟ ⎜ ⎜ ∂f ⎟ ⎜ ∂f ∂ξ ∂f ∂ξ 2 1 + + ⎟ ⎜ ⎜ ⎝ ∂ ζ n ⎠ ⎝ ∂ ξ1 ∂ ζ n ∂ ξ 2 ∂ ζ n
第七讲 矩阵的微分与积分

解
1 A 1 4
0 2 0
1 , 0 3
上讲已求得 …….
2、最小二乘问题 最小二乘问题:设 A Cm n, b , 当线性方程组 Ax b 无解时,对任意 x C n 都在 Ax b 0 . Cm
2 此时希望找出向量 x0 C n ,使得 || Ax b ||2 达最小,即求 x0 arg min || Ax b ||2 的问题,称 x0 为矛 n xC
第七讲 矩阵微分与积分
一、函数矩阵的微分和积分 1. 函数矩阵导数定义:若函数矩阵 A(t ) (aij (t ))mn 的每一个元素 aij ( t ) 是变量 t 的可微函数,则称 A(t)可微,其导数定义为 dA(t ) A(t ) ( daij (t ) ) . mn dt dt 注:类似可以定义高阶导数,又可以定义偏导数。 例 1 求函数矩阵
, xn ]T 且 f ( x) xT Ax ,求 df .(P77)
dx
例3
已知矩阵变量 X ( xij )mn ,且 det X 0 ,证明 d det X (det X )( X 1 )T .(P77)
dX
三、矩阵分析应用 1、 (1)一阶线性齐次常系数常微分方程组
1 设有一阶线性齐次常系数常微分方程组 dt a11x1 (t ) a12 x2 (t ) a1n xn (t ) dx (t ) dx (t ) 2 a21 x1 (t ) a22 x2 (t ) dt dxn (t ) a x (t ) a x (t ) n1 1 n2 2 dt a2 n xn (t )
盾方程组的最小二乘解。为应用,考虑实矩阵与实向量的情形。 定 理 1 设 A Rmn , b Rm , 若 x0 R n 是 线 性 方 程 组 Ax b 的 最 小 二 乘 解 则
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
cos t sin t
sin t cos t
,
(2)
2
At
dt,
d
t2
At
d
t
0
dt 0
由矩阵积分定义得:
2
0
At
dt
1 1
11,
利用可变上限函数的导数公式得:
d
t2
At
dt
2t
At2
dt 0
2t
cos t sin
2
t2
sin t cos t
2 2
纯量函数对矩阵的导数
设 X
xij
,
dt
1 1 3
条件 X 0 1,1,1 的解
用待定系数法先求矩阵函数值 e At
由矩阵A的特征多项式为 23, 易求得A的最小多项式 为 m 22, 则设 f z etz mzqz a bz,
由 f 2 e2t a 2b, f 2 te2t b 求得
a 1 2te2t ,b te2t
d ( X T AX ) dt
dX T AX X T A dX
dt
dt
2 dX T AX dt
定理 对任意n阶矩阵A(A与x无关),成立
deAx Ae Ax e Ax A dx
d sin Ax Acos Ax cos AxA
dx
d cos Ax Asin Ax sin AxA
dx
由函数对矩阵导数的定义可得:
T
df dX
f x1
,
f x2
,,
f xn
df dX T
f x1
,
f x2
,,
f xn
自学:P116 例2,例3,例4
矩阵值函数对矩阵的导数
设 A( X ) ( flk ( X )) Cmn , X (xij ) C pq ,
定义函数矩阵 A(X ) 对矩阵X的导数为:
dA( X dX
)
A ( xij
) C mpnq
自学:P118
例5,例6
第五节 微分方程组的求解
一阶常系数线性齐次微分方程组
dx1
dt dx2 dt
a11x1 a12 x2 a1n xn a21x1 a22 x2 a2n xn
dxn dt
an1x1 an2 x2
ann xn
dt dt dt
dt
(2)
2
At
dt,
d
t2
At
d
t
0
dt 0
由
dAt
dt
sin cos
t t
cos t sin t
,
得
dAt 1
dt
由 At 1 得 d At 0
dt
由
A
1
t
cos sin
t t
sin t cos t
得
dA1 dt
t
sin t cos t
cos t sin t
,
At
QR分解定理
任意一个满秩实(复)矩阵A,都可唯一地分解A = QR ,其中Q为正交(酉)矩阵,R是具有正对角元的上三角矩 阵证。明
设A是一个实满秩矩阵, A的n个列向量为 x 1,x 2, …,x n 由于x 1,x 2, …,x n 线性无关,将它们用Schmidt正交
化方法得标准正交向量e 1,e 2, …,e n
记为 F(s) L(( f (t))
若F(s)是f(t)拉氏变换,则称f(t)是F(s)的拉氏 逆变换或向原函数,记为
f (t) L1(F(s))
拉氏变换存在定理: 若函数f(t)满足:1)在 t 0 的任一有限区间上分段连续; 2)当 t 时f(t)的增长速度不超过某一指数函数,即 存在 M 0 , 0 , 使得 f (t) Met ,0 t 成立,则 f(t)的Laplace变换在半平面 Re(s) 上一定存在,并且
0
例2、求解一阶线性微分方程组
dx1 dt
x1 2x2
1
dx2 dt
4x1 3x2
1
x1
(0)
1,
x2
(0)
2
解令
A 14
32,
X
x1 x2
,
F (t )
11,
X0
12
改写成矩阵方程为
dX dt
X
AX F (t (0) X 0
)
用Jordan法求矩阵函数值 e At
A
x1 b11e1 x2 b12e1 b22e2
其中 bii 0 , i 1,2,, n
xn b1ne1 b2ne2 bnnen
从而有
x1
x2
xn e1
用拉氏变换求解微分方程组
dx
dt
Ax(t)
ห้องสมุดไป่ตู้
x(0) x0
记 X (s) L[(x(t)] , 在微分方程两边取拉氏变换:
L[(x(t)] L[ Ax(t)]
微分性质可得 sX (s) x(0) AX (s)
于是 (sI A)X (s) x(0) 从而 X (s) (sI A)1 x(0)
积分 f (t)estdt 绝对收敛且一致收敛。 0
拉氏变换的性质: (1)拉氏变换是线性变换; (2)微分性质:L[( f (t)] sF (s) f (0)
常用的拉氏变换公式:见教材P156 拉氏变换可推广到向量函数,矩阵函数上去,即
如果向量函数的每一分量都存在拉氏变换,则可定
义该向量函数的拉氏变换。
A2 X 0
,
d 3 X (0) dt3
A3 X 0
d
k X (0) dtk
Ak
X
所以由Maclaurin级数展开得
0
X
(t)
k 0
1X k!
(k)
(0)t
k
k 0
1 Ak k!
X
0t
k
k 0
1 Ak k!
t
k
X
0
eAt X0
例1、设 2
A 1
0 1
0 1,
求微分方程 dX AX t 满足初始
(3)ab(BA(x))dx B(ab A(x)dx) B与x无关
当函数aij(x)都连续时,称A(x)连续,则
d
x
A(s)ds A(x)
dx a
b
a A'(x)dx A(b) A(a)
例2、设At
cos t sin t
sin t cos t
,
求
(1) dAt , dAt , d At , dA1t
dt
dt
eAt ( dX AX ) dt
eAt F (t)
在 0,t 上对上式积分得:
d eAt X t eAt Ft
dt
0t
d ds
[e
As
X
(s)]ds
0t
e
As
F
(s)ds
即
eAt X (t) X (0) t eAs F (s)ds 0
X (t) eAt X0
t eA(ts)F (s)ds
从而
1 0 0
f A eAt aI bA
e2t
t
1t
t
t t 1 t
则微分方程组满足初始条件的解为:
X t eAt X0
e2t 1 1 t 1 tT
一阶常系数线性非齐次微分方程组问题
dX AX F (t) dt X (0) X 0
由
d [eAt X (t)] eAt ( A) X (t) eAt dX (t)
dx
dx
dx
于是 dA1(x) A1(x) dA (x) A1(x)
dx
dx
说明:因为矩阵乘法不满足交换律,一般地,对正整数 m 1 和
可导的函数矩阵 Ax, d Axm mAxm1 dAx
dx
dx
例1 求二次形X其TA中XA的是导n数阶实对称矩阵,
X=(x1(t),x2(t), …,xn(t))T
第二节 QR分解
QR分解也称为正交三角分解
矩阵QR分解是一种特殊的三角分解,在解决 矩阵特征值的计算、最小二乘法等问题中起到重 要作用。
主要内容:
1·矩阵的QR分解-- Schmidt正交化方法 2·矩阵的QR分解-- Householder变换、 Givens变换
定义:设A C nn. 如果存在n阶酉矩阵Q和n阶上三角矩阵 R,使得 A QR 则称之为A的QR分解或酉三角分 当 A Rnn 时,则解称为A的正三角分解
xi xi (t), aij C
将此微分方程组改写为矩阵方程
dX AX dt
其中 A (aij ) C nn , X X t (x1, x2 ,, xn )T
一阶线性微分方程组的初值问题1
dX AX dt X 0 (c1, c2 ,, cn )T
其中
X 0 (x1(0), x2 (0),, xn (0))T
0
e5t 2e5t
1 et 1 et
e5t 1 et 2e5t 1 et
Laplace变换及应用
定义:设函数f(t)在 t 0 有定义,而且积分
f (t)estdt 0
(s 是一个复参量)
在s 的某一域内收敛,则由此积分所确定的函数
F (s) f (t)estdt 0
为函数f(t)的Laplace变换,简称拉氏变换,或称象函数,
2e5ts 4e 5t s
2e t s 2e t s
则
eAt X 0
e5t 2e5t
e A(ts)
F
(s)
e(ts) e(ts)