半导体激光器LD资料
半导体激光器LD

B 输出的波长为:
2 B
2ne Le
(m 1 / 2) m是纵模的阶数
谢谢
激光测距、医疗军事等领域得到广泛的应用。在光信息处理、光计算等新领 域也将发挥重要的作用。
二、半导体激光器的工作原理
1.受激吸收:在电流或光作用下,价带中的电子获得能量跃迁的导
带中,在价带中留下一个空穴,称为受激吸收。这就必须要有足够强 的电流注入,即有足够的粒子数反转,粒子数反转程度越高,得到的 增益就越大,即要求必须满足一定的电流阈值条件。
三、半导体激光器的一般构成
光反馈装置 输出光 有源区 频率选择元件 光波导
LD的通用结构 构成部分: 1.有源区 有源区是实现粒子数反转分布、有光增益的区域。 2.光反馈装置 在光学谐振腔内提供必要的正反馈以促进激光振荡。 3.频率选择元件 用来选择由光反馈装置决定的所有纵模中的一个模式。 4.光波导 用于对所产生的光波在器件内部进行引导。
2.自发辐射与受激辐射:导带的电子不稳定,向价带跃迁与空穴
复合而放出光子——光辐射。如果跃迁是自发的,则光子具有随机的 方向、相位及偏振态,称为自发辐射;如果受到入射光子的激励,辐 射的光子与入射光子有相同的方向、相位及偏振态,称为 - E1 = hv hv
E2 E1 (a) 受激跃迁
天津大学电子信息工程学院 School of Electronic Information Engineering
半导体激光器
朱守奎 ,马小品 2014年11月7日
一、简单介绍
1. 激光:英文LASER是Light Amplification by Stimulated Emission
of Radiation (受激辐射放大光)的缩写。
半导体激光器LD

半导体激光器LD半导体激光器是用半导体材料作为工作物质的一类激光器,由于物质结构上的差异,产生激光的具体过程比较特殊。
常用材料有砷化镓(GaAs)、硫化镉(CdS)、磷化铟(InP)、硫化锌(ZnS)等。
激励方式有电注入、电子束激励和光泵浦三种形式。
半导体激光器件,可分为同质结、单异质结、双异质结等几种。
同质结激光器和单异质结激光器室温时多为脉冲器件,而双异质结激光器室温时可实现连续工作。
半导体激光器是以一定的半导体材料做工作物质而产生受激发射作用的器件.其工作原理是,通过一定的激励方式,在半导体物质的能带(导带与价带)之间,或者半导体物质的能带与杂质(受主或施主)能级之间,实现非平衡载流子的粒子数反转,当处于粒子数反转状态的大量电子与空穴复合时,便产生受激发射作用.半导体激光器的激励方式主要有三种,即电注入式,光泵式和高能电子束激励式.电注入式半导体激光器,一般是由GaAS(砷化镓),InAS(砷化铟),Insb(锑化铟)等材料制成的半导体面结型二极管,沿正向偏压注入电流进行激励,在结平面区域产生受激发射.光泵式半导体激光器,一般用N 型或P型半导体单晶(如GaAS,InAs,InSb等)做工作物质,以其他激光器发出的激光作光泵激励.高能电子束激励式半导体激光器,一般也是用N型或者P型半导体单晶(如PbS,CdS,ZhO等)做工作物质,通过由外部注入高能电子束进行激励.在半导体激光器件半导体激光器激光器优点是体积小,重量轻,运转可靠,耗电少,效率高等特点。
用半导体材料作为工作物质的激光器.它是利用受激辐射原理,使光在激发的工作物质中放大或发射(振荡)的器件.根据激发方法不同,半导体激光器可分为P-N结注入式、电子束激发式和光激发式三种。
半导体激光器工作原理是激励方式,利用半导体物质(既利用电子)在能带间跃迁发光,用半导体晶体的解理面形成两个平行反射镜面作为反射镜,组成谐振腔,使光振荡、反馈、产生光的辐射放大,输出激光。
半导体激光器主要性能参数定义

半导体激光器1.P-I 特性及阈值电流P-I特性揭示了LD输出光功率与注入电流之间的变化规律,因此是LD最重要的特性之一。
典型的激光器P-I曲线由P-I曲线可知,LD是阈值型器件,随注入电流的不同而经历了几个典型阶段。
•当注入电流较小时,有源区里不能实现粒子数反转,自发辐射占主导地位,LD发射普通的荧光,光谱很宽,其工作状态类似于一般的发光二极管。
•随着注入电流的加大,有源区里实现了粒子数反转,受激辐射开始占主导地位,但当注入电流仍小于阈值电流时,谐振腔里的增益还不足以克服损耗,不能在腔内建立起一定模式的振荡,LD发射的仅仅是较强的荧光,称为“超辐射”状态。
• 只有当注入电流达到阈值以后,才能发射谱线尖锐、模式明确的激光,光谱突然变窄并出现单峰(或多峰)。
2.激光器线宽半导体的激光器的线宽是多少?有的用nm 表示,有的用Hz 表示,计算公式是什么?经常会提到激光器的线宽<0.0001 nm 换算成“Hz”是多少赫兹啊?线宽即为激光某一单独模式的光谱宽度,一般表达形式:nm ,Hz ,cm-1。
该参数与激光本身的波长由关系。
例:比如波长为1064nm, 线宽0.1nm ,则换算为Hz 单位:GHz v 5.261065.21.010641010310298=⨯=⨯⨯⨯=∆3. 边模抑制比(SSR ) 边模抑制比是指在发射光谱中,在规定的输出功率和规定的调制(或CW )时最高光谱峰值强度与次高光谱峰值强度之比。
边模抑制比示意图4.振荡腔HR AR谐振腔的作用是选择频率一定、方向一致的光作最优先的放大,而把其他频率和方向的光加以抑制。
凡不沿谐振腔轴线运动的光子均很快逸出腔外; 沿轴线运动的光子将在腔内继续前进,并经两反射镜的反射不断往返运行产生振荡,运行时不断与受激粒子相遇而产生受激辐射,沿轴线运行的光子将不断增殖,在腔内形成传播方向一致、频率和相位相同的强光束,这就是激光。
为把激光引出腔外,可把一面反射镜做成部分透射的,透射部分成为可利用的激光,反射部分留在腔内继续增殖光子。
LD简介

三、半导体激光二极管的原理
由于电子与空穴的自发复合而发光的现象称为自发辐射。当自发辐射所产生的光子 通过半导体时,一旦经过已发射的电子—空穴对附近,就能激励二者复合,产生新 光子,这种光子诱使已激发的载流子复合而发出新光子现象称为受激辐射。如果注 入电流足够大,则会形成和热平衡状态相反的载流子分布,即粒子数反转。当有源 层内的载流子在大量反转情况下,少量自发辐射产生的光子由于谐振腔两端面往复 反射而产生感应辐射,造成选频谐振正反馈,或者说对某一频率具有增益。当增益 大于吸收损耗时,就可从PN结发出具有良好谱线的相干光——激光,这就是激光二 极管的简单原理。 半导体激光二极管是通过PN结电注入泵浦的方式实现受激发射的半导体器件。 它具有半导体器件的特点:体积小、结构简单、效率高、能直接调制,但输出功率、 单色性和方向性不如其他激光器。通过PN结电注入泵浦的方式实现受激发射的半导 体器件。它具有半导体器件的特点:体积小、结构简单、效率高、能直接调制,但 输出功率、单色性和方向性不如其他激光器。 在PN结上施加正向偏臵,则有电流流过PN结,即电子由N区注入到P区,而空 穴由P区注入到N区。提高偏臵电压,电流增大到某一定值时,就会使有源区材料的 导带中能级上电子占有的几率大于价带中相对应能级上电子占有的几率,从而发生 粒子数分布反转,能为受激发射提供增益。当增益等于或大于半导体材料本身的吸 收损耗和端面漏出损耗时,就能获得受激发射
半导体二极管激光器工作原理

半导体二极管激光器,也被称为激光二极管(LD,Laser Diode),是一种将电能直接转换成光能的半导体器件。
其工作原理主要基于半导体的PN结构以及粒子数反转等条件。
首先,PN结是由n型半导体和p型半导体构成的结构,在PN结的交界处,会出现电子和空穴的复合现象,进而形成发光。
当在激光二极管的PN结上加上适当的正向电压时,电子从n型材料向p型材料移动,空穴从p型材料向n型材料移动,它们在PN结区域相遇并发生复合。
这个过程中产生了能量差,能量差被释放成光的形式,从而形成了发光效应。
其次,为了产生激光,必须满足一定的条件,包括粒子数反转、谐振腔的存在以及满足阈值条件。
其中,粒子数反转是指通过一定的激励方式,使得半导体物质的能带之间或者与杂质能级之间实现非平衡载流子的粒子数反转。
谐振腔则是由半导体晶体的解理面形成的两个平行反射镜面,它们能够起到光反馈作用,形成激光振荡。
而满足阈值条件,即增益要大于总的损耗,则需要足够强的电流注入,以便有足够的粒子数反转,从而得到足够大的增益。
总的来说,半导体二极管激光器的工作原理是通过PN结的电子和空穴复合产生发光效应,并通过满足粒子数反转、谐振腔的存在以及阈值条件等条件,从而产生激光并连续地输出。
这种激光器具有结构紧凑、效率高、波长覆盖范围广等优点,因此在激光打印、光通信、医疗设备、实验室和工业检测等领域有广泛的应用。
半导体激光器LD

应用场合:短距离传输
同质pn结
同质pn结: 两边采用相同的半导体材料进行不同的参杂构成的pn结 特点: - 同质结两边具有相同的带隙结构和光学性能 - pn结区的完全由载流子的扩散形成 存在的问题: 1. 增益区太厚(1~10 m),很难把载流子约束在相对小的区域, 无法形成较高的载流子密度 2. 无法对产生的光进行约束
多数载流子:n型半导体中的电子或者p型半导体中的空穴 少数载流子:n型半导体中的空穴或者p型半导体中的电子 在热平衡的条件下,对于(非)本征半导体,两种载流子的 乘积总等于一个常数:
pn n 2 i
pn结
n型 电势
U
n型
耗尽层
p型
p型
n 1. 浓度的差别导致载流子的扩散运动
p
2. 内建电场的驱动导致载流子做反向漂移运动
问题: 如何得到粒子数反转分布的状态?
本征半导体材料 Si
硅的晶格结构 (平面图)
E 硅的晶格结构 电子和空穴是成对出现的
Si电子受到激励跃迁到导带,导致电子和空穴成对出现 此时外加电场,发生电子/空穴移动导电
本征半导体的能带图
电子
导带 EC
电子浓度 分布 电子态数量
电子跃迁
带隙 Eg = 1.1 eV 空穴态数量
辐射性复合速率 辐射性复合速率 hint 总复合速率 辐射性复合速率 非辐射性复合速率
辐射性复合时间 辐射性复合时间 非辐射性复合时间
1 1
1
r1 1 1 r nr
那么LED的内部发光功率为:
Pint 内量子效率 每秒钟内总的载流子复 合数量 h 注入 LED的电流强度 内量子效率 h 电子电量 I Ihc hint h hint q q
半导体激光器LD恒流源调制电路的设计与实验

半导体激光器LD恒流源调制电路的设计
与实验
概述
半导体激光器(LD)是一种重要的光电器件,广泛应用于通信、医疗和雷达等领域。
恒流源调制电路在LD的驱动中起到关键
作用。
本文将探讨半导体激光器LD恒流源调制电路的设计与实验。
设计原理
半导体激光器的工作需要稳定的电流源来实现恒定的激发电流。
恒流源调制电路通过控制输入信号和反馈电路的结构来实现恒流输出。
常见的调制电路设计方法包括共射极电路、共基极电路和共集
极电路。
实验步骤
1. 确定实验所需元器件,包括半导体激光器、恒流源电路、反
馈电路、电源等。
2. 根据实验需求选择合适的调制电路设计方法,如共射极电路。
3. 根据调制电路设计方法,搭建实验电路。
4. 进行实验前的参数调整和校准,确保实验的准确性和稳定性。
5. 施加输入信号并观察输出结果,记录实验数据。
6. 对实验数据进行分析和处理,评估恒流源调制电路的性能。
7. 针对实验结果进行必要的改进和优化,提高恒流源调制电路
的稳定性和效果。
结论
本文探讨了半导体激光器LD恒流源调制电路的设计与实验步骤。
恒流源调制电路的设计对于半导体激光器的驱动具有重要意义,能够实现稳定恒流输出。
根据实验结果,可以进行进一步的改进和
优化,提高调制电路的性能和稳定性。
参考文献:
注:以上内容仅供参考,请根据实际需求进行修改和完善。
讲座之二----LD参数要点课件

10/21/2023
34
半导体激光二极管<光学参数>
SMSR 曲线说明
10/21/2023
35
半导体激光二极管<热学参数>
13. 热学参数
1.
LD热阻:RT(单位:℃ / W)
• RT 定义为加在器件单位电功率所引起的结温升
式中: Tj 结区温度; THS 热沉温度; Pi 注入电功率; IF 正向注入电流; VF 正向结压降。
半导体激光二极管<光学参数>
• θ : 光束半宽
θ ∥ : 空间光束平行于LD PN结结平面方向最大强度下降3dB时所对 应的全宽度定义为平行发散角
θ ⊥ :空间光束垂直于LD P-N结结平面方向最大强度下降3dB时所对 应的全宽度定义为垂直发散角
用公式表示为:
从式中可知:空间光束半宽度与有源层d和有源层宽W有关,d与W赿大, θ ∥ 和θ ⊥ 就赿小
10/21/2023
21
半导体激光二极管<光学参数>
η d :外微分量子效率
10/21/2023
22
半导体激光二极管<光学参数>
4.12 λ p / λ c / λmean/Δλ :峰值波长/中心波长/平 均波长/光谱半宽
定义: • 在LD规定的光输出功率下,光谱内若干发射模式中最大强度的光谱波
光输出功率
10/21/2023
19
半导体激光二极管<光学参数>
4.11 ηd:外微分量子效率(单位:mW/mA)
定义:阈值以上P-I曲线线性段dI/dP之比,它是衡量器件把注入的电 子-空穴对转换成向外发射光子(输出功率)的效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、半导体激光器的工作原理
1.受激吸收:在电流或光作用下,价带中的电子获得能量跃迁的导
带中,在价带中留下一个空穴,称为受激吸收。这就必须要有足够强 的电流注入,即有足够的粒子数反转,粒子数反转程度越高,得到的 增益就越大,即要求必须满足一定的电流阈值条件。
E2 E1
hv
E2 hv E1
hv hv
(b) 自发辐射:非相干光
(c) 受激辐射:相干光
3.激光的产生:
当在半导体中实现粒子数反转,使得受激辐射大于受激吸收,使得光增益大于光损耗,就 可产生激光。
半导体中激光产生的条件: • 粒子数反转:产生大量的受激辐射 • 光学谐振腔:实现光放大 • 达到阈值电流密度:使得增益大于损耗
2.半导体激光器(LD):又名激光二极管(Laser Diode),是以半导体材料
作为工作物质的激光器,是实际应用中最重要的一类激光器。
3.特点:超小型、高效率、寿命长、结构简单、价格便宜;采用注入电流的方
式泵浦;工作电压电流与集成电路兼容,可与之单片集成。
4.应用:在光纤通信、激光唱片、光存储、全的电子不稳定,向价带跃迁与空穴
复合而放出光子——光辐射。如果跃迁是自发的,则光子具有随机的 方向、相位及偏振态,称为自发辐射;如果受到入射光子的激励,辐 射的光子与入射光子有相同的方向、相位及偏振态,称为受激辐射。
光作用下的跃迁和辐射
E2 - E1 = hv hv
E2 E1 (a) 受激跃迁
三、半导体激光器的一般构成
光反馈装置 输出光 有源区 频率选择元件 光波导
LD的通用结构 构成部分: 1.有源区 有源区是实现粒子数反转分布、有光增益的区域。 2.光反馈装置 在光学谐振腔内提供必要的正反馈以促进激光振荡。 3.频率选择元件 用来选择由光反馈装置决定的所有纵模中的一个模式。 4.光波导 用于对所产生的光波在器件内部进行引导。
B 输出的波长为:
2 B
2ne Le
(m 1 / 2) m是纵模的阶数
谢谢
天津大学电子信息工程学院 School of Electronic Information Engineering
半导体激光器
朱守奎 ,马小品 2014年11月7日
一、简单介绍
1. 激光:英文LASER是Light Amplification by Stimulated Emission
of Radiation (受激辐射放大光)的缩写。
LD的结构:
四、几种典型的LD
• 1.同质结半导体激光器
同质结LD
2.单异质结LD
p-GaAs层内的电子浓度增大, 辐射复合的几率也增加,光 波导效应显著,阈值电流较 同质结低。
3.双异质结LD
四.分布反馈式LD
分布反馈式 (DFB) 激光器 内置布拉格光栅FBG: 只有符合反射条件的 光会得到强烈反射经 历放大过程