量子阱半导体激光器

合集下载

半导体激光器发光原理及工作原理

半导体激光器发光原理及工作原理

半导体激光器发光原理及工作原理引言概述:半导体激光器是一种利用半导体材料产生激光的器件。

它具有体积小、功耗低、效率高等优点,广泛应用于通信、医疗、工业等领域。

本文将详细介绍半导体激光器的发光原理及工作原理。

一、发光原理1.1 材料特性半导体激光器主要采用具有直接能隙的半导体材料,如GaAs、InP等。

这些材料具有较高的折射率和较小的能隙,能够实现电子和空穴的复合发光。

1.2 电子复合在半导体材料中,当电子从导带跃迁到价带时,会释放出能量,产生光子。

这种电子和空穴的复合过程是半导体激光器发光的基本原理。

1.3 量子阱结构为了提高发光效率,半导体激光器通常采用量子阱结构。

量子阱是由不同能带的材料层交替堆叠而成,能够限制电子和空穴在空间上的运动,从而增加复合发光的几率。

二、工作原理2.1 注入电流半导体激光器通过注入电流来激发电子和空穴的复合发光。

当外加正向偏压时,电子从N型区域注入到P型区域,与空穴复合产生光子。

2.2 泵浦机制半导体激光器的泵浦机制主要有电泵浦和光泵浦两种方式。

电泵浦是通过注入电流来激发发光,而光泵浦则是利用外界光源来激发发光。

2.3 光放大在半导体激光器中,光子在材料中的传播会受到吸收和散射的影响。

为了保持激光的强度,需要在激光器内部设置光放大区域,使光子得到增强。

三、半导体激光器的类型3.1 可见光激光器可见光激光器主要用于显示、照明等领域。

常见的可见光激光器有红光激光器、绿光激光器和蓝光激光器等。

3.2 红外激光器红外激光器主要用于通信、医疗和工业等领域。

常见的红外激光器有半导体激光二极管和半导体激光放大器等。

3.3 高功率激光器高功率激光器主要用于激光切割、激光焊接等工业应用。

它具有较高的输出功率和较高的光束质量。

四、半导体激光器的应用4.1 光通信半导体激光器在光通信中起着重要的作用,可以实现高速、远距离的数据传输。

4.2 医疗应用半导体激光器在医疗领域中用于激光手术、激光治疗等,具有精确控制和无创的特点。

半导体激光器发展历程

半导体激光器发展历程

半导体激光器发展历程1962年,美国科学家罗伯特·诺伊斯(Robert Noyce) 首次提出了半导体激光器的概念。

他认为,利用半导体材料的特异性能可以制造出较小、比固体激光器更稳定的激光器。

在接下来的几年中,中继器、传输器和放大器等元件应运而生。

1962年至1964年期间,一些团队开始进行关键性的探索和实验,在III-V族化合物半导体(如GaAs,InP等)中获得了连续的电注入光发射。

在此基础上,1969年,尤金·斯瓦茨(Eugene Snitzer)首次实现了在GaAs材料中产生的高峰值功率和狭窄线宽的脉冲辐射。

1970年代初,发展了用于通信系统的半导体激光器,使之成为一项成熟的技术。

1970年,展示了一种高效率的AlGaAs DH结构激光器。

1972年,由松村英昭(Eiichi Muramatsu)提出的可见光半导体激光器成功发射出475nm的蓝光。

此后的几年中,各种新的半导体材料和结构被研究和开发,以提高激光器的效率和性能。

1980年代,半导体激光器取得了长足的发展。

具有波尔廷(Lenard)电流注入结构的AlGaAs激光器问世,大大提高了激光器的效率和可靠性。

随着量子阱技术的引入,引发了一系列的研究活动。

1985年,研究人员在成人毛乳头瘤病毒(vaccinia virus)免疫细胞中成功实现了由AlGaAs激光器辐射的低峰值功率红外激光的非线性过程。

1990年代,半导体激光器的发展进入了一个全新的阶段。

量子阱激光器逐渐成为主流技术,取代了传统的双异质结激光器。

具有低阈值电流和高效率的量子阱激光器被广泛用于通信系统、医疗和光存储等应用。

此外,垂直腔面发射激光器(VCSEL)也在1990年代首次实现。

2000年后,随着技术的进步和对性能需求的不断提高,半导体激光器继续发展并应用到更多领域。

高功率半导体激光器、窄线宽和波长可调的半导体激光器、单模式VCSEL和蓝绿光半导体激光器等新技术不断涌现。

量子阱半导体激光器的的基本原理及其应用

量子阱半导体激光器的的基本原理及其应用

量子阱半导体激光器的的基本原理及其应用无研01 王增美(025310)摘要:本文主要阐述了量子阱及应变量子阱材料的能带结构,以及能态密度和载流子有效质量的变化对激光器阈值电流等参数的影响,简要说明了量子阱激光器中对光场的波导限制。

最后对量子阱半导体激光器的应用作了简要的介绍,其中重点是GaN 蓝绿光激光器的发展和应用。

引言半导体激光器自从1962年诞生以来,就以其优越的性能得到了极为广泛的应用,随着新材料新结构的不断涌现和制造工艺水平的不断提高,其各方面的性能也不断得到改善,应用范围也不在再局限于信息传输和信息存储,而是逐渐渗透到材料加工、精密测量、军事、医学和生物等领域,正在迅速占领过去由气体和固体激光器所占据的市场。

20世纪70年代的双异质结激光器、80年代的量子阱激光器和90年代出现的应变量子阱激光器是半导体激光器发展过程中的三个里程碑。

制作量子阱结构需要用超薄层的薄膜生长技术,如分子外延术(MBE )、金属有机化合物化学气相淀积(MOCVD )、化学束外延(CBE )和原子束外延等。

我国早在1974年就开始设计和制造分子束外延(MBE )设备,而直到1986年才成功的制造出多量子阱激光器,在1992年中科院半导体所(ISCAS )使用国产的MBE 设备制成的GRIN-SCH InGaAs/GaAs 应变多量子阱激光器室温下阈值电流为1.55mA ,连续输出功率大于30mW ,输出波长为1026nm [4]。

量子阱特别是应变量子阱材料的引入减少了载流子的一个自由度,改变了K 空间的能带结构,极大的提高了半导体激光器的性能,使垂直腔表面发射激光器成为现实,使近几年取得突破的GaN 蓝绿光激光器成为新的研究热点和新的经济增长点,并将使半导体激光器成为光子集成(PIC )和光电子集成(OEIC )的核心器件。

减少载流子一个自由度的量子阱已经使半导体激光器受益匪浅,再减少一个自由度的所谓量子线(QL )以及在三维都使电子受限的所谓量子点(QD )将会使半导体激光器的性能发生更大的改善,这已经受到了许多科学家的关注,成为半导体材料的前沿课题。

量子阱半导体激光器

量子阱半导体激光器

量子阱半导体激光器摘要:本文主要叙述了量子阱半导体激光器发展背景、基本理论、主要应用与发展现状。

一、发展背景1962年后期,美国研制成功GaAs同质结半导体激光器,第一代半导体激光器产生。

但这一代激光器只能在液氮温度下脉冲工作,无实用价值。

直到1967年人们使用液相外延的方法制成了单异质结激光器,实现了在室温下脉冲工作的半导体激光器。

1970年,贝尔实验室有一举实现了双异质结构的在室温下连续工作的半导体激光器。

至此之后,半导体激光器得到了突飞猛进的发展。

半导体激光器具有许多突出的优点:转换效率高、覆盖波段范围广、使用寿命长、可直接调制、体积小、重量轻、价格便宜、易集成等。

其发展速度之快、应用范围之广、潜力之大是其它激光器所无法比拟的。

但是,由于应用的需要,半导体激光器的性能有待进一步提高。

80年代,量子阱结构的出现使半导体激光器出现了大的飞跃。

量子阱结构源于60年代末期贝尔实验室的江崎(Esaki)和朱肇祥提出超薄层晶体的量子尺寸效应。

当超薄有源层材料后小于电子的德布罗意波长时,有源区就变成了势阱区,两侧的宽带系材料成为势垒区,电子和空穴沿垂直阱壁方向的运动出现量子化特点。

从而使半导体能带出现了与块状半导体完全不同的形状与结构。

在此基础上,根据需要,通过改变超薄层的应变量使能带结构发生变化,发展起来了应变量子阱结构。

这种所谓“能带工程”赋予半导体激光器以新的生命力,其器件性能出现大的飞跃。

具有量子阱结构的量子阱半导体激光器与双异质结半导体激光器(DH)相比,具有阈值电流密度低、量子效应好、温度特性好、输出功率大、动态特性好、寿命长、激射波长可以更短等等优点。

目前,量子阱已成为人们公认的半导体激光器发展的根本动力。

其发展历程大概为:1976年,人们用GaInAsP/InP实现了长波长激光器。

对于激光腔结构,Kogelnik和Shank提出了分布反馈结构,它能以单片形式形成谐振腔。

Nakamura用实验证明了用光泵浦的GaAs材料形成的分布反馈激光器(DBR)。

量子阱激光器的特点

量子阱激光器的特点

量子阱激光器的特点概述量子阱激光器是一种基于量子力学原理的半导体激光器,具有许多优良的特性和应用前景。

本文将介绍量子阱激光器的结构、工作原理和特点,以及其在通信、雷达和生命科学等领域的应用。

结构量子阱激光器的结构由多个“量子阱”层构成,每一层都是由几个纳米级别的半导体材料交替排列而成。

这些材料的能隙被设计在激光器的工作波长处,使得只有在这个波长下才能发生吸收和辐射等光学过程,从而实现激光输出。

工作原理当一个电子进入量子阱层时,它被限制在非常小的空间中,这使得其自由度受到限制,并且其能量分裂为高能级和低能级。

当外加电压或光子刺激时,电子会跃迁到高能级态,随后在低能级态与辐射场相互作用而发射光子,从而实现激光辐射。

特点高效率量子阱激光器的外部效率非常高,能够将电子的能量转化为光的能量。

在实际的应用中,量子阱激光器的效率比传统的激光器高出几倍甚至几十倍。

窄线宽量子阱激光器能够产生非常窄的激光线宽,这意味着它可以通过光纤传输更多的信息。

同时,在激光通信和激光雷达等领域,其高精度定位和测量作用也得到广泛应用。

快速调制量子阱激光器响应时间比传统的激光器要短很多,能够在纳秒级别内实现快速开关和调制。

这使得其在高速通信和数据处理领域具有广泛的应用前景。

温度稳定性量子阱激光器比传统的激光器更加稳定,在宽范围的温度和电压条件下工作。

这使得其在大气物理、天文学和生命科学等领域中得到广泛应用。

应用通信量子阱激光器已经成为光通信系统中的重要组成部分,其窄线宽和高效率也使得其在光纤通信和无线光通信等领域具有重要应用前景。

雷达量子阱激光器在激光雷达测距、测速和遥感等应用中也具有广泛的应用前景。

尤其是在领域气象、地球科学和环境监测等领域,其高精度测量和定位作用十分重要。

生命科学量子阱激光器在生命科学领域中也有广泛的应用,例如生物诊断、分子光谱学、荧光成像等等。

由于其快速开关和高精度测量的特性,已经成为研究细胞和分子行为中不可或缺的工具。

半导体量子阱激光器

半导体量子阱激光器

半导体量子阱激光器什么是量子阱量子阱(quantum well)是一种半导体结构,是指将两个能带较窄的半导体材料之间夹入一个能带较宽的材料而形成的材料结构。

量子阱激光器的工作原理量子阱激光器是利用半导体异质结构储能的原理,将电能转化为光能的半导体光电器件。

量子阱激光器的主要部分是由一系列宽度为数个纳米量级的“量子阱”和宽度大约为1微米的背域构成。

当外加电压作用整个器件时,电子和空穴在“量子阱”内发生复合,从而发射出相干性很好的激光光子,光强度迅速地增强。

量子阱激光器的特点量子阱激光器采用的是半导体亚微米制造工艺,由于这种工艺存在一些优点,因此它也具有独特的性能。

输出效率高量子阱激光器具有输出效率高,输出功率大,并且发光波长锁定精度高等优点。

目前,半导体量子阱激光器已逐渐取代气体激光器、半导体激光器和半导体激光二极管,成为现在的主流激光器。

寿命长量子阱激光器寿命较长,保持持续较高的电光转换效率,使用寿命优于其他半导体激光器器件。

量子阱激光器的加工制造和更可靠的工程设计为半导体激光器的发展奠定了坚实的基础。

小型化量子阱激光器具有小型化的优点,因为它们由亚微米制造工艺制造而成,可以被集成到其他芯片中,这一点也可以使得芯片的体积变得更小。

波长可调节量子阱激光器波长可调节,可以进行多波长发射。

这种波长可变暴露了它在目标检测和应急救援系统中的应用。

量子阱激光器的应用量子阱激光器已经成为现代科技领域的重要组成部分。

它的应用范围非常广泛,如光通信系统、制造加工、医学检测等领域。

光通信系统量子阱激光器是进行光通信的关键设备之一,被广泛应用于通信、信息处理和数据存储。

随着物联网的发展,量子阱激光器在物联网应用领域也越来越广泛。

制造加工量子阱激光器的高功率和小型化特点,使得它可以激发大功率的光束,加热加工材料,成为高精度的工业生产设备。

医学检测量子阱激光器在医学检测领域也有着广泛的应用。

例如,用于检测医疗的光谱分析,这也为临床疾病医治提供了帮助。

量子阱半导体激光器

量子阱半导体激光器

量子阱半导体激光器简介量子阱半导体激光器是一种基于半导体材料的激光器,其核心结构是量子阱。

量子阱是一种在半导体材料中形成的人工结构,通过限制电子和空穴在垂直方向上的运动,可以实现能带的调控和载流子的局域化。

这样的结构使得量子阱半导体激光器具有优异的光学性能和应用前景。

工作原理量子阱半导体激光器利用电子和空穴复合放射出光子的原理来产生激光。

其工作原理可以简单描述为以下几个步骤:1.注入载流子:通过外加电压或注入电流,将电子和空穴注入到量子阱结构中。

这些载流子会在量子阱中进行运动并最终发生复合过程。

2.载流子局域化:由于量子阱结构的限制,载流子会在垂直方向上被局域化。

这种局域化效应使得载流子在水平方向上进行多次碰撞,并增加了载流子之间相互复合的机会。

3.载流子复合:在量子阱中,电子和空穴会通过自发辐射的方式发生复合。

这个过程中释放出的能量将以光子的形式辐射出来。

4.光放大:释放出的光子会在量子阱结构中来回反射,并被不断放大。

由于在激光器结构中引入了光反馈环境,使得其中一部分光子经过受激辐射过程而进一步增强,形成相干和定向性很好的激光输出。

结构设计量子阱半导体激光器的结构设计是实现其优异性能的关键。

一般情况下,其主要包括以下几个部分:1.量子阱层:量子阱层是激光器结构中最重要的组成部分。

通过选择不同材料、控制厚度和形状,可以实现对能带结构和载流子局域化效应的调控。

常用的材料包括GaN、InGaAs等。

2.波导层:波导层用于引导和限制激光波长在有效范围内传播。

通常采用高折射率材料与低折射率材料的结构,形成光波在其中传播的通道。

3.反射镜:反射镜用于增强激光的放大效果。

一般情况下,激光器结构中会包含两个反射镜,其中一个是高反射镜,用于将光子反射回波导层;另一个是输出镜,用于从激光器中输出部分光子。

4.电极:电极用于注入电流并控制载流子的注入和分布。

通过调节电极的设计和布局,可以实现对激光器性能的进一步优化。

半导体激光器的发展及在光纤通信中的应用

半导体激光器的发展及在光纤通信中的应用

半导体激光器的发展及在光纤通信中的应用半导体激光器是一种使用半导体材料作为激光产生介质的激光器。

随着科技的不断发展,半导体激光器在各个领域得到了广泛应用,尤其在光纤通信中具有重要作用。

本文将从半导体激光器的发展历程和其在光纤通信中的应用两个方面进行论述。

首先,我们来看半导体激光器的发展历程。

半导体激光器最早是在1962年由美国贝尔实验室的电子学家罗伯特·诺尔表示的。

他利用PN结构的半导体晶体制作出了最早的半导体激光器,此后半导体激光器的研究逐渐成熟。

1970年代,G·奈普舍等人发明了自发辐射增益(MQW)结构,进一步提高了半导体激光器的效率。

1980年代初,人们通过引入量子阱结构,使半导体激光器的发射波长范围得到了拓宽。

1994年,研究者成功实现了垂直腔表面发射激光器(VCSEL),该激光器具有小尺寸、低功耗、易集成等优点,成为半导体激光器研究的重要方向。

其次,半导体激光器在光纤通信领域中有着广泛的应用。

在光纤通信中,半导体激光器主要用于光源和放大器。

作为光源,半导体激光器能够产生高功率、窄谱宽、稳定的激光信号,能够满足光纤通信系统对光源的要求。

除了常用的连续激光器外,脉冲激光器也逐渐得到应用。

脉冲激光器能够产生高峰值功率和短脉冲宽度的激光,用于高速光纤通信系统中的光时钟信号生成和数据调制。

再者,半导体激光器在光纤通信中还广泛应用于放大器。

光纤放大器利用半导体激光器作为光源,将入射的光信号进行放大,提高光纤通信系统的传输距离和传输容量。

其中,掺铒光纤放大器和掺铒光纤激光器以及掺镱光纤激光器是典型的半导体激光器应用于光纤通信放大器的例子。

综上所述,半导体激光器在光纤通信领域中发挥着重要的作用。

随着其发展不断进步,半导体激光器在功率、波长范围、脉冲性能以及功率放大器等方面的性能都得到了极大的提升。

相信在未来的光纤通信中,半导体激光器将继续发挥着重要的作用,推动光纤通信技术的不断进步。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

量子阱半导体激光器:本文主要叙述了量子阱半导体激光器发展背景、基本理论、主要应用与发展现状。

一、发展背景1962年后期,美国研制成功GaAs同质结半导体激光器,第一代半导体激光器产生。

但这一代激光器只能在液氮温度下脉冲工作,无实用价值。

直到1967年人们使用液相外延的方法制成了单异质结激光器,实现了在室温下脉冲工作的半导体激光器。

1970年,贝尔实验室有一举实现了双异质结构的在室温下连续工作的半导体激光器。

至此之后,半导体激光器得到了突飞猛进的发展。

半导体激光器具有许多突出的优点:转换效率高、覆盖波段范围广、使用寿命长、可直接调制、体积小、重量轻、价格便宜、易集成等。

其发展速度之快、应用范围之广、潜力之大是其它激光器所无法比拟的。

但是,由于应用的需要,半导体激光器的性能有待进一步提高。

80年代,量子阱结构的出现使半导体激光器出现了大的飞跃。

量子阱结构源于60年代末期贝尔实验室的江崎(Esaki)和朱肇祥提出超薄层晶体的量子尺寸效应。

当超薄有源层材料后小于电子的德布罗意波长时,有源区就变成了势阱区,两侧的宽带系材料成为势垒区,电子和空穴沿垂直阱壁方向的运动出现量子化特点。

从而使半导体能带出现了与块状半导体完全不同的形状与结构。

在此基础上,根据需要,通过改变超薄层的应变量使能带结构发生变化,发展起来了应变量子阱结构。

这种所谓“能带工程”赋予半导体激光器以新的生命力,其器件性能出现大的飞跃。

具有量子阱结构的量子阱半导体激光器与双异质结半导体激光器(DH)相比,具有阈值电流密度低、量子效应好、温度特性好、输出功率大、动态特性好、寿命长、激射波长可以更短等等优点。

目前,量子阱已成为人们公认的半导体激光器发展的根本动力。

其发展历程大概为:1976年,人们用GaInAsP/InP实现了长波长激光器。

对于激光腔结构,Kogelnik和Shank提出了分布反馈结构,它能以单片形式形成谐振腔。

Nakamura用实验证明了用光泵浦的GaAs材料形成的分布反馈激光器(DBR)。

Suematsu提出了用于光通信的动态单模激光概念,并用整体激光器验证了这种想法。

1977年,人们提出了所谓的面发射激光器,并于1979年做出了第一个器件。

目前,垂直腔面发射激光器(VECSEL)已用于千兆位以太网的高速网络。

自从Nakamura实现了GaInN/GaN蓝光激光器,可见光半导体激光器在光盘系统中得到了广泛应用,如CD播放器、DVD系统和高密度光存储器。

1994年,一种具有全新机理的波长可变、可调谐的量子级联激光器研制成功,且最近,在此又基础上提出了微带超晶格红外激光器。

另外,具有更好性能的低维超晶格—量子线、量子点激光器的研究也已经开始。

二、基本理论1、量子阱及其能带结构EEcEvz图1 理想超晶格示意图图2 超晶格能带示意图图量子阱是窄带系超薄层被夹在两个宽带系超薄层之间。

如果窄带系与宽带系超薄层交替生长就能构成多量子阱(MQW)。

在MQW中如果各阱之间的电子波函数发生一定程度的交叠或耦合,则这样的MQW也就是超晶格,宛如在晶体中微观粒子作周期有序排列一样。

量子阱结构中因为其有源层厚度仅在电子平均自由程内,阱壁起到很好的限制作用,使阱中载流子只在平行与阱壁的平面内有二维自由度。

由于垂直与阱壁方向的限制作用,使导带与价带的能级分裂为子带。

电子的总能量可表示为2||c2,kE,,E cnm2c||式中,k与m分别为在平行与结平面方向的波数与有效质量,故上式右边第一项为电子抛c||c||物线能量分布,第二项为量子化能量,它在阱底为零。

相应的光跃迁波长为1.24, ,E,E,Egcnvn与块状材料单纯由E决定不同。

E和E分别为导带和价带的量子化能级,并有gcnvn22hn E,cn28Lmzcn其中,L量子阱宽,对E亦有类似的表示式。

但此时由于量子限制作用,重轻空穴带的兼zvn并解除,价带情况较复杂,。

由半导体物理,可推导出量子阱中电子的态密度函数为:,1m (E),H(E,E),,cn2L,,nzH函数为Heaviside单位阶跃函数,L为阱宽,n为z方向量子数。

价带空穴的态密度也有 z(E)-bulk c ρE E E c3 ρ(E)-QW cE c2 n=3E底 c1 c对应体材料En=2n=1-QW E E-bulk ggk0 ρ(E) || n=1 n=2 ρHH 1 hh(E)-bulk n=1 对应体材料E 顶 vn=3 HH2LH 1 ρ(E)-QW lhHH3 ρhh(E)-QW ρ lh(E)-bulk图3 QW能带结构及态密度、HH、HH、LH)形状随k方向不同而不同,图中所示1231类似的表示。

为某些方向的能带形状。

由以上可以看出,量子阱材料中,价带子能带(HH1) 由于电子被势垒所限制,其波函数在垂直方向引起能级量子化,电子、空穴的态密度与能量的关系,由抛物线型改变成台阶状结构,比体材料远为集中。

其阶梯状能带允许注入的载流子依子代逐级填充,提高了注入有源层内载流子的利用率,故量子阱激光器的微分增益远高于体材料的激光器。

高的微分增益带来许多好处: , 降低了激光器的阈值电流;, 使有源层中电子与光子的耦合时间常数变小,因而使激光器的张驰振荡频率与相同发射频率的块状有源材料激光器相比大大提高,这就相应的提高了激光器的调制带宽;, 有源层内部载流子损耗的减少,提高了激光器的斜率效率; , 减少了频率啁啾。

2) QW材料禁带宽度大与体材料,因此激射波长变短。

3) 由于量子限制效应,重轻空穴带分裂,且子带形状发生变化,加剧了TE与TM模的非对称性,影响了激光器性能。

Idx对于量子阱结构,由于有源层厚度很小,光场限制因子,xd,,减少,有相当大一,,Idxx,,,部分光的能量会渗出有源层,会导致阈值升高等问题。

现实中采用光子和载流子分别限制的结构,在有源层外加上光限制层。

有分别限制单量子阱(SCH—SQW)结构和多量子阱结构。

SCH—SQW是在阱层两侧配备底折射率的光限制层(波导层)。

该层折射率有渐变和1)渐变型 2)突变型折射率n 突变两种。

如图4MQW有多个窄带隙和宽带隙超薄层交替图4 SCH—SQW 生长而成,在两边最外的势垒层之后再生长底折射率的波导层以限制光子,这等效于加厚了有源层,使激光器的远场特性有大幅度改善。

厚度光波学导增垒模阱式益区E折射率g图5 多量子阱禁带宽度及折射率随厚度分布 g2、应变量子阱组成量子阱的薄层之间一定量(在某一临界尺寸以内)的晶格常数失配所造成的失配应力能使能带结构发生有利的变化,应变量子阱正是基于这一点使能带结构发生了根本改变。

这种思想由Yablanovitch和Kane、Adams在1986年分别提出。

以通常的半导体激光器在衬底的[001]方向生长超薄层为例,在临界厚度以内,所有应变几乎都允许存在于生长层内。

处在双轴应力的外延层在生长层内的晶格常数为a等于衬底的晶格常数a,设其原晶格常数||s为a。

总的应变可表示为(S=( a- a)/a为层内应变) e||see 轴向分量 S=-2Sax|| + a ? e a静态分量 S= Svo|| +a || a s a=a<a<a? ||se a s 图6 外延层晶格常数变化(压应变)应变量子阱不但为选择晶格材料组分提供了较大的范围,同时使能带结构发生有利的变化。

单轴应变(?与平面)双轴应变(||与平面)单轴拉应变单轴张应变双轴拉应变双轴张应变价带顶重空穴能级价带顶重空穴能级价带顶重空穴能级曲价带顶重空穴能级曲上升(在上)下降(在下)率变大率变大价带顶轻空穴能级价带顶轻空穴能级价带顶轻空穴能级曲价带顶轻空穴能级曲下降(在下)上升(在上)率变小率变小E E E C Ex kkx x kkkkz z z kkky y yE0 HH ? ELHESO压应变无应变张应变图7 InGaAs/InP应变量子阱的能带 x1-x以InGaAs/InP应变量子阱为例,当x=0.53时,InGaAs/InP与InP晶格匹配很好,不x1-x0.530.47产生应变;当x>0.53时,InGaAs有比InP大的晶格常数,弹性形变使超薄层承受压应变;当x<0.53时,超薄层内将有张应变使两种材料之间有不产生失配位错的弹性键合,在某一GaAs,此值约为20nm%。

即若层厚为20nm,则x1-x临界值下,其材料有好的光学性质。

对In允许应变量为1%-2%。

, 应变的静态分量使导带和价带发生整体相对移动,禁带宽度发生变化。

压应变情况,E增加,张应变情况,E减少。

因此,通过调节应变的类型与应变量的大小,可以调节激gg光器的激射波长。

, 应变打破了立方晶体的对称性,其轴向分量使重空穴与轻空穴带分离,且其分离的程度正比与应变量。

产生压应变时,重空穴带仍在轻空穴带以上,但带顶处的曲率半径明显减少,重空穴的有效质量减少,明显的增加了与导带的对称性,使得阈值电流进一步减少;产生张应变时,轻空穴却有可能位于重空穴带之上,并使其曲率减少,增加了TE模与TM模的对称性,一方面使得阈值电流减少,另一方面也为实现与偏振无关的半导体激光放大器提供了技术保证。

应变量子阱的出现从根本上改变了能带的结构,只要通过调节应变的类型与应变量的大小就有可能得到我们所需要的能带结构,使半导体器件的性能出现了大的飞跃,半导体激光器在许多领域内的应用成为现实,成为半导体光电子学发展史上的一个里程碑。

例如,用来泵浦掺铒光纤放大器、激射波长为980nm的半导体激光器就是依靠应变量子阱来实现的。

应变量子阱给正在发展中的GeSi/Si超晶格带来了活力,理论分析认为,通过布里渊区能1-xx带的折叠效应,就有可能实现GeSi/Si材料有间接带隙向直接带隙转变。

如果这一目的能1-xx实现,以其作为半导体激光器的有源层材料,则大规模的光电子集成将成为现实,其应用价值不言而喻。

三、直腔面发射LD(VECSEL—vertical cavity surface emitting laser):量子阱结构出现以后才成为可能。

根据光输出方向与结平面的关系,LD可分为 1、边发射LD(Edge Emitting LD):光平行与异质结界面输出。

普通LD都属于这一类型。

光反馈由材料解理面形成的反射镜提供,光在有源层长度方向得到放大,平行与异质结界面输出。

图8 端面发射的常规半导体激光器2、垂直腔面发射LD(VECSEL—vertical cavity surface emitting laser):光垂直于结平面的方向输出。

VECSEL由东京工业大学Iga教授提出,但只有在量子阱结构出现以后才成为可能。

垂直腔是指激光腔的方向即光子振动方向垂直于半导体芯片的衬底,光在有源层厚度方向得到放大。

相关文档
最新文档