影响高炉寿命的因素分析
高炉本体系统危险有害因素分析喷煤系统

高炉本体系统危险有害因素分析喷煤系统高炉是钢铁工业生产的核心设备之一,高炉本体系统负责将炼铁原料转化为铁水和炉渣。
为了保证高炉的安全运行,必须对高炉本体系统进行危险有害因素分析。
本文将重点分析喷煤系统的危险有害因素。
1. 喷煤系统概述高炉喷煤系统是指将煤粉通过煤气管道和喷煤枪喷入高炉燃烧室的设备。
喷煤系统的主要功能是提高高炉燃烧效率,降低高炉生产成本。
喷煤系统由煤粉制备系统、煤粉输送系统和喷煤系统三个部分组成。
2. 喷煤系统存在的危险有害因素2.1 煤粉粉尘爆炸危险煤粉粉尘爆炸是喷煤系统的主要危险因素之一。
煤粉粉尘爆炸是指在一定温度、浓度和氧气条件下,煤粉粉尘与空气混合后遇到点火源而发生的瞬间爆炸,会造成严重的人员伤亡和设备损坏。
喷煤系统中的煤粉制备系统和煤粉输送系统是煤粉粉尘爆炸的易燃区域。
煤粉粉尘爆炸的防范措施包括对喷煤系统进行爆炸危险源识别和评估,设置爆炸隔离装置和灭火装置,制定应急预案,开展安全教育和培训,增强员工安全意识。
2.2 喷煤管道堵塞喷煤管道堵塞是喷煤系统的常见问题之一。
喷煤管道堵塞会导致喷煤量减少,进而影响高炉的燃烧效率。
喷煤管道堵塞的原因有很多,例如管道弯曲、煤粉潮湿、管道结垢等。
为防止喷煤管道堵塞,可以采取以下措施:定期清理管道、加强管道维护、控制煤粉湿度、适时更换管道、开展管道流场数值模拟等。
2.3 喷煤枪堵塞喷煤枪堵塞是另一个常见的喷煤系统问题。
喷煤枪堵塞会影响喷煤均匀度和喷煤效率。
喷煤枪堵塞的原因有很多,例如煤粉湿度过高、喷煤枪堵塞、煤粉颗粒过大等。
为防止喷煤枪堵塞,可以采取以下措施:保证煤粉干燥、加强检修维护、适量添加润滑剂、控制煤粉尺寸、增强员工维护意识等。
2.4 喷煤系统失控喷煤系统失控是喷煤系统的一种严重危险情况。
喷煤系统失控可能是由于煤粉配比不当、喷煤枪损坏、管道破裂等原因引起的。
喷煤系统失控会导致高炉的运行不稳定,进而威胁高炉的安全运行。
为防止喷煤系统失控,可以采取以下措施:加强喷煤设备的检修维护、定期检查管道和喷煤枪的状态、加强员工培训、设立喷煤系统安全监控装备等。
高炉炉况的重要参数

一、问题的重述高炉炼铁是现代钢铁生产的重要环节,且是个复杂的高温物理化学过程,精确掌握炉内的温度分布上不可能,所以一般要通过预报高炉炉温(铁水硅含量)来间接地反映炉内的温度变化,判断高炉炉缸热状态,并以此来调控高炉行程、能量消耗及生铁质量。
事实上,影响铁水硅含量(即炉温)的因素很多,大体上分为两大类:状态参数和控制参数。
状态参数包括料速、透气性指数、风口状况、铁水与炉渣成分等;控制参数包括入炉原料的性质(成分、比重、配料比等)、装料方式、风量、风温、富氧量等,各个因素之间也存在交互影响。
其中几个重要的影响参数为:(1)料速是判断高炉炉况的一个重要参数;(2)透气性指数是判断炉温与炉况顺行的一个重要参数;(3)铁量差指的是理论出铁量与实际出铁量之差;(4)风温对高炉冶炼过程的影响,主要是直接影响到炉缸温度,并间接的影响高炉高度方向上温度分布的变化,以及影响到炉顶温度水平;(5)风量引起的炉料下降速度和初渣中FeO的含量的增减,以及煤气流分布的变化,都会影响到煤气能的利用程度和炉况顺行情况。
现在要求我们根据表中给出的近期某高炉的生产数据,试建立铁水硅含量与各影响参数的数学预测模型。
二、问题的分析高炉铁水硅含量的高低反映了高炉冶炼过程的热状态及燃烧比。
维持稳定且较低的铁水硅含量是炉况稳定并产生较低燃烧比的直接保证。
对于本问题中铁水硅含量的预报有很多方法,如传统的ARMA模型,但是由于高炉生产过程的复杂性,尤其在不断提高喷煤量之后,炉况的波动更加剧烈和复杂,采用ARMA模型已经很难准确的描述铁水硅含量的预测模型。
然而最近提出的神经网络模型能够以实验数据为基础,经过有限次迭代,就可以获得一个反映实验数据内在规律性的参数组,尤其是对于参数众多的,规律性不明显的生产过程能发挥其独特性,此方法正好解决本文中参数众多且无规律的问题,所以本文采用神经网络的方法对铁水硅含量进行预报。
为了使得我们建立的BP神经网络模型更具有说服力,同时建立了一个多元线性回归模型与之进行对比。
高炉炼铁工理论试题

高炉炼铁工理论试题六简答/论述题A级试题:1、简述高炉冶炼四大基本操作制度之间关系。
答:(1)送风制度对炉缸工作状态起着决定性作用,而炉缸工作状态是炉内物理化学反应过程的最终结果。
(2)装料制度是利用原料的物理性能、装料次序、批重等改变原燃料在炉喉分布状态与上升气流达到有机配合来完成冶炼过程的重要手段。
(3)热制度和造渣制度既对炉缸工作有直接关系,又是炉缸工作具体反映,它们都受送风制度和装料制度的影响,决定着产品质量。
(4)四种操作制度之间互相联系又相互影响,偏废哪种基本制度都必然导致不良后果。
2、高炉送风制度应考虑的原则是什么?答:稳定使用合理的大风量是选择送风制度的出发点,同时还要做到:(1)应与料柱透气性相适应,维持一个合适的全压差;(2)形成良好炉缸工作状态,得到合理煤气分布;(3)充分发挥鼓风机能力。
3、高炉冶炼对炉渣性能的基本要求有那些?答:高炉冶炼对炉渣性能的基本要求有:(1)有良好的流动性,不给冶炼操作带来任何困难;(2)有参与所希望的化学反应的充分能力;(3)能满足允许煤气顺利通过及渣铁、渣气良好分离力学条件;(4)稳定性好,即不致因冶炼条件的改变炉渣性能急剧恶化。
4、简述优化高炉操作缓解焦炭劣化的措施:答案:(1)采用高还原性矿石与高热流比操作,使大量的气体产物CO2在中温区释出,避免与高温焦炭接触,以降低焦炭的溶损反应;(2)使用合理的风速和鼓风动能以避免风口区粉焦上升;采用中心加焦和矿石混装焦丁等疏松中心的装料制度,使料柱透气性得到改善;(3)采用低减、低硫、高品位矿石及有效的排碱、拍硫措施,以利稳定骨架区焦炭的强度;(4)采用适宜的理论燃烧温度。
5、风口破损严重时有哪些象征?如何判断?答案:风口破损严重时常常出现排水很少或断水,这种情况亦容易判断,但必须注意到有冷却系统突然停水或风口冷却水管被水中杂物堵塞的可能性产生。
因此,在观察风口排水情况的同时,还应当观察风口的工作状况,看是否漏水、挂渣、涌渣、发黑等,然后综合各种现象,加以分析,做出正确判断。
浅谈影响AOD炉龄的因素和改进措施罗冬云李良辉李国军李建庆李晨阳

浅谈影响AOD炉龄的因素和改进措施罗冬云李良辉李国军李建庆李晨阳发布时间:2022-01-17T04:02:48.425Z 来源:《基层建设》2021年第29期作者:罗冬云李良辉李国军李建庆李晨阳[导读] AOD炉衬寿命是一个综合性的指标,它不仅与炉型结构设计、耐火材料的选择和使用工艺有关,而且与冶炼工艺水平、各操作参数的控制、设备状况等密切相关。
本文结合AOD炉的操作特点及损毁特征广西柳钢中金不锈钢有限公司炼钢厂摘要:AOD炉衬寿命是一个综合性的指标,它不仅与炉型结构设计、耐火材料的选择和使用工艺有关,而且与冶炼工艺水平、各操作参数的控制、设备状况等密切相关。
本文结合AOD炉的操作特点及损毁特征,介绍了柳钢中金公司围绕以下几方面在提高AOD炉衬寿命上改进措施。
关键词:AOD、炉龄、改进1、前言在国际上,氩氧脱碳法(AOD炉法)是生产不锈钢的主要工艺。
AOD炉以其成本低、易操作、效率高等特点而受青睐,但AOD炉法耐火材料消耗高,炉衬寿命低,一直困扰着AOD炉的生产。
随着柳钢发展不锈钢战略的不断深入,AOD炉衬寿命及其耐火材料成为制约柳钢中金公司发展的一大难题,根据AOD炉的操作条件及炉衬材料的损毁机理,柳钢中金公司AOD炉自投产以来一直在不断地探索提高AOD炉衬寿命的方法。
经过不懈努力,终于在AOD炉龄方面有了重大突破,平均炉龄由此前的47炉左右提高到目前的92炉,最高可达到111次。
2、AOD炉的操作特点及损毁机理AOD炉是向钢水熔池吹氧的同时,吹入惰性气体(Ar,N2),通过降低CO分压,达到假真空的效果,从而去除钢水中的有害气体和夹杂,并使S、P等有害元素含量降到很低的指标,抑制钢水中铬的氧化。
由于采用氩、氧和氮的混合气体或纯氩气进行精炼,气体搅拌钢液产生涡流现象,造成钢液和熔渣的剧烈搅动,熔池衬砖受到严重的冲刷和侵蚀,并受到高温、强碱性熔渣的影响。
AOD炉的冶炼经历了氧化脱碳,还原精炼的过程,炉内气氛发生从氧化到还原的改变,使用条件十分苛刻,炉衬毁损严重,图一为耐火材料的侵蚀状况。
-高炉炉缸侵蚀监测模型的研究

摘要一代高炉寿命的长短对高炉能否取得良好的经济技术指标具有重要意义。
高炉炉缸、炉底工作状态是高炉寿命长短的决定性因素。
所以,分析高炉炉缸、炉底的工作状态就成了炼铁研究者关注的重点问题。
本文首先简要阐述了目前我国高炉寿命的状况,介绍了炉缸炉底侵蚀产生的原因以及延长炉缸炉底寿命的方法。
结合国内外对高炉炉缸侵蚀监测方法的研究总结出高炉炉缸侵蚀监测技术的发展趋势。
其次结合高炉炉缸侵蚀机理提出了建立监测工作状态下炉缸炉底耐火材料残余厚度的数学模型的方法。
并构建了热电偶的位置布置与数学模型之间的关系。
课题以预埋在炉缸炉底中的热电偶反馈的温度为基础,运用数值传热学、有限元法和移动边界法建立了高炉炉缸炉底侵蚀监测模型。
该模型包括炉缸温度场计算、最优步长计算和炉缸形貌构造三个部分。
最后对此模型进行了可靠性分析,以一个侵蚀不均的高炉炉缸为原型,构造一个已侵蚀的高炉炉缸样本,将模型计算得到的残余厚度、残余样貌与原始侵蚀形貌对比,结果显示误差在可接受范围内,证明本模型可靠。
关键词:炉缸侵蚀;最优步长计算;监测模型;有限元法;误差分析AbstractThe campaingn life has great significance on achieving good economic and technical indicators of the blast furnace. The working condition in blast furnace hearth and bottom is the decisive factor of the blast furnace lifespan. Therefore, the ironmaking researchers focus on analyzing the working condition in blast furnace hearth, and bottom.First, this paper briefly expounded the current state of blast furnace lifespan in our country, the reason of hearth erosion and the method to extend the life in the blast furnace hearth and bottom. The article comes to the conclusion that the development trend of the blast furnace hearth erosion monitoring technology combining with the domestic and foreign studies of blast furnace hearth erosion monitoring method.Secondly, combining the blast furnace hearth erosion mechanism, mathematical model method that monitoring the residual thickness of refractory in hearth and bottom of the under working status was proposed. And build the relationship between the location of the thermocouple and the mathematical model. Based on the feedback temperature of the thermocouples which are embedded in the hearth, hearth and bottom erosion monitoring model is established according to numerical heat transfer, finite element method and moving boundary method. The model includes three parts followed by, the calculation of hearth temperature field, the optimal step length calculation and the constructing of hearth morphology.Finally, this paper analyzed the reliability of this model. An uneven eroded blast furnace hearth was chosen as the prototype, A sample of eroded blast furnace hearth was constructed. The residual thickness and residual appearance calculated by the model were compared with the those of original erosion morphology. The result shows that the error is acceptable, which approves that the model is reliable.Key words: Hearth erosion; optimal step calculation; monitoring model; finite element method; error analysis目录第一章绪论 (1)1.1课题背景 (1)1.2文献综述 (1)1.2.1国内外高炉炉缸炉底侵蚀监测的研究现状 (1)1.2.2 延长炉缸炉底寿命的几种途径 (3)1.3本文研究内容与意义 (5)1.3.1 研究意义 (5)1.3.2 研究内容 (5)第二章高炉炉缸侵蚀监测模型 (6)2.1高炉炉缸侵蚀监测模型的设计方法 (6)2.2 MATLAB的有限元应用 (7)2.2.1 运用有限元解决问题的步骤 (7)2.2.2线性三角形元 (8)2.3 高炉炉体结构 (10)2.3.1 假设条件 (10)2.3.2 炉缸炉底结构 (11)2.3.3 炉缸炉底的热电偶布置 (12)2.4计算条件 (13)2.5 炉缸温度场计算 (14)2.5.1 影响因子 (14)2.5.2 传热方程 (15)2.5.3 求解温度场 (16)2.6 最优步长计算 (17)2.7炉缸形貌构造 (19)2.8本章小结 (20)第三章高炉炉缸侵蚀监测模型的误差讨论 (21)3.1误差估计 (21)3.2误差分析 (26)3.2.1误差产生原因 (26)3.2.2误差分布不均原因 (26)3.3本章小结 (27)结论 (28)致谢 ................................................................................................... 错误!未定义书签。
对比不同使用部位冷却壁材质的特性

对比不同使用部位冷却壁材质的特性摘要:本文介绍不同冷却壁材质的特性,讨论不同部位冷却壁材质选择。
关键词:冷却壁;材质1.前言冷却壁作为高炉上重要部件,对高炉寿命影响很大。
而高炉长寿是降低冶炼成本、提高生产率的关键因素。
从上世纪90年代以来,高炉工作者从炉型设计、选择和组合耐火砖、喷涂料的选择使用、改进炉体冷却设备、提高施工质量及改善高炉操作制度等方面入手,做了大量工作,使高炉寿命不断提高。
高炉寿命的相差悬殊,归纳起来有以下原因:一是先天性的,使用的材料质量、冷却设备的质量和型式、筑炉施工质量方面的差距;二是后天的,主要是高炉操作制度和炉体的维护、管理水平方面的差距。
本文介绍了各种冷却壁材料性能,为高炉各部位冷却壁材质的选择提供依据。
2.几种冷却壁材料的性能结合冷却壁的工作环境,冷却壁材料应该具有以下几个特点:a.耐高温高炉的工作温度在1500℃以上,冷却壁的工作温度也相当高,在如此高温的条件下冷却壁要正常工作就要保持一定的强度来支撑炉体,也不能有破损使壁体出现漏水现象。
b.高的疲劳韧性高炉的工作温度波动时,冷却壁的工作温度也发生变化,冷却壁受到热冲击的作用,只有高的疲劳韧性才使高炉长寿成为可能。
c.高的综合热导率中间包括冷却壁的材质和冷却壁结构的设计,因为冷却壁通过冷却水管传导热量从而对高炉炉壳进行冷却,在如此的环境下希望冷却壁的综合传热系数要大一些。
冷却壁的材质分为铸铁材质(包括灰铸铁、可锻铸铁、球墨铸铁)、铸钢材质、纯铜材质,具体物理性能见表2-1。
表2-1 物理性能见表序号材料热导率W./m.K熔化温度℃允许工作温度℃1普通灰铸铁 ~40 1225~1250 4002 球墨铸铁 38~40 709~7603 铸钢 40 1520~15304004 铸铜 340 150(1)球墨铸铁的特性:a.球墨铸铁内的石墨以球状形式分布在铸铁中,使铸铁材质发生了很大变化;b.球墨铸铁的强度大于400MPa,灰铸铁200MPa;c.球墨铸铁具有优良的抗冷热疲劳性能,800℃水冷次数可达400 次以上才出现裂纹,而灰铸铁<50 次。
高炉铜冷却壁破损的原因分析与防治

高炉铜冷却壁破损的原因分析与防治高炉是冶炼铁和炼钢的重要设备,而高炉铜冷却壁作为高炉内部的重要零部件,承担着冷却炉料和空气的作用,有着至关重要的作用。
在高炉正常运行过程中,铜冷却壁破损问题一直存在。
本文将从原因分析和防治措施两个方面进行阐述。
一、原因分析(一)原材料的选用高炉铜冷却壁一般采用无氧铜作为主要原料。
如果使用的无氧铜含有过高的杂质,或者成分不合格,就会影响到冷却壁的使用寿命。
如果原材料的熔炼温度不够高,会导致铜冷却壁的晶粒粗大,降低了材料的韧性和强度,使得冷却壁容易出现开裂和脱落。
(二)冷却壁的设计和制造工艺高炉铜冷却壁的设计和制造工艺直接影响到其使用寿命。
如果设计不合理或者制造工艺不到位,就会导致冷却壁存在裂纹、气孔、夹渣等缺陷,从而影响到冷却壁的整体性能。
(三)高炉操作参数的管理高炉的操作参数直接影响到冷却壁的使用寿命,主要包括高炉操作温度、气体流量、炉料质量等。
如果操作参数设置不合理,可能会导致冷却壁过热、气体侵蚀、炉料侵蚀等问题,从而加速冷却壁的破损。
(四)工作环境的影响高炉内部的工作环境也会对冷却壁的破损产生影响。
高炉内部存在有害气体、金属水蒸气等,会加速冷却壁的氧化腐蚀,从而缩短其使用寿命。
二、防治措施为了提高高炉铜冷却壁的使用寿命,应当选用优质的无氧铜作为原材料,并对原材料进行严格的质量把关,确保铜冷却壁的主要成分和杂质含量符合要求。
在冷却壁的设计和制造工艺中,应当采用先进的工艺技术和设备,确保其表面光洁度和内部质量达到标准要求。
对冷却壁进行严格的质量检验,确保没有裂纹、气孔、夹渣等缺陷。
对高炉的操作参数进行合理设置和调控,避免过高的温度、过大的气体流量等因素对冷却壁造成损害。
适时对冷却壁进行冷却和清理,防止炉料残渣的侵蚀。
高炉铜冷却壁破损问题是高炉运行中不可避免的。
但是通过对原因进行分析,并采取相应的防治措施,可以有效地延长铜冷却壁的使用寿命,减少破损对高炉运行的影响。
高炉炼铁工题库(2012河北钢铁杯题库)

第三届“河北钢铁杯”职业技能大赛题库(高炉炼铁工)1.高炉生产的主要原料是( )、( )、( )和熔剂。
答案:铁矿石及其代用品;锰矿石;燃料2.烧结过程中沿料层高度分为五个带:( )、( )、( )、干燥带和过湿带。
答案:烧结矿带;燃烧带;预热带3.矿石的冶金性能包括( )、( )性能、还原膨胀性能、荷重还原软化性能和熔滴性能。
答案:还原性;低温还原粉化;含量分别为8.25%、5.00%。
渣碱度为1.2,4.某炼铁厂烧结矿品位为57.5%,CaO、SiO2则该烧结矿扣有效CaO品位为( )。
结果保留两位小数。
答案:58.97%5.铁矿石还原速度的快慢,主要取决于( )和( )的特性。
答案:煤气流;矿石6.高炉内碱金属的危害根源在于它们的( )。
答案:循环和富集7.软熔带位置( ),则上部气相还原的块状带较大,有助于煤气利用的改善和( )降低。
答案:低;直接还原度8.直接观察法的内容有:看风口、看出渣、( )、用( )判断炉况。
答案:看出铁或看铁水;料速和料尺9.选择风机时,确定风机出口压力应考虑风机系统阻力、( )和( )等因素。
答案:料柱透气性;炉顶压力10.重力除尘器直筒部分的直径一般按煤气流速( )设计,高度按煤气在直筒部分停留的时间( )计算。
答案:0.6~1.5m/s;12~15S11.风口损坏后出现断水应采取的措施有喷水、( )以及( )。
答案:组织出铁;减风到需要水平12.开炉料的装入方法有( )、( )、( )。
答案:炉缸填柴法;填焦法;半填柴法13.停炉方法有( )和( )两种方法。
答案:物料填充;空料线打水14.要使炉况稳定顺行,操作上必须做到三稳定,即( )、( )、( )。
答案:炉温;碱度;料批15.某有效容积1000m3高炉2004年产生铁85.83万吨,其中炼钢生铁79.83万吨,Z14铸造生铁6万吨,焦比400kg/t,计划休风84小时,无计划休风12小时,中修45天,则该高炉当年有效容积利用系数为( )焦炭冶炼强度为( )答案:2.70t/m3·d;1.083t/m3·d16.生铁一般分为三大类,即( )、( )、( )。