小学六年级数学《鸡兔同笼》专题训练(经典题型)
小学数学《鸡兔同笼问题》练习题(含答案)

小学数学《鸡兔同笼问题》练习题(含答案)【例1】(古典题)鸡兔同笼,头共46,足共128,鸡兔各几只?分析:假设46只都是兔,一共应有4×46=184只脚,这和已知的128只脚相比多了184-128=56只脚,这是因为我们把鸡当成了兔子,如果把1只鸡当成1只兔,就要比实际多4-2=2(只)脚,那么56只脚是我们把56÷2=28只鸡当成了兔子,所以鸡的只数就是28,兔的只数是46-28=18。
我们称这种解题的方法为“假设法”。
它是一种重要的解题思路。
当然,这里我们也可以假设46只全是鸡,小朋友们,请你按此思路做做这道题目!鼓励学生从两个方面假设解题,更深一步理解假设法。
【例2】某学校有30间宿舍,大宿舍每间住6人,小宿舍每间住4人.已知这些宿舍中共住了168人,那么其中有多少间大宿舍?分析:如果30间都是小宿舍,那么只能住4×30=120人,而实际上住了168人.大宿舍比小宿舍每间多住6-4=2人,所以大宿舍有(168-120)÷2=24间。
【例3】100个和尚140个馍,大和尚1人分3个馍,小和尚1人分1个馍。
问:大、小和尚各有多少人?分析:本题由中国古算名题“百僧分馍问题”演变而得。
如果将大和尚、小和尚分别看作鸡和兔,馍看作腿,那么就成了鸡兔同笼问题,可以用假设法来解。
假设100人全是大和尚,那么共需馍300个,比实际多300—140=160(个)。
现在以小和尚去换大和尚,每换一个总人数不变,而馍就要减少3—1=2(个),因为160÷2=80,故小和尚有80人,大和尚有100—80=20(人)。
同样,也可以假设100人都是小和尚,同学们不妨自己试试。
【例4】刘老师带了41名同学去北海公园划船,共租了10条船.每条大船坐6人,每条小船坐4人,问大船、小船各租几条?分析:假设租的10条船都是大船,那么船上应该坐6×10= 60(人)。
假设后的总人数比实际人数多了60-(41+1)=18(人),多的原因是把小船坐的4人都假设成坐6人。
小学生鸡兔同笼专项练习题【附答案】

小学生鸡兔同笼专项练习题1.一个笼子里有鸡和兔子共35只,头共94个,问笼中有多少只兔子,多少只鸡?2.一群动物共有35头,94只脚,问有多少只兔子和鸡?3.一个笼子里关着鸡和兔子,共有35个头,94只脚,问笼中各有多少只鸡和兔子?5.一群动物共有35只,94只脚,其中有兔子和鸡,问笼中有多少只兔子和鸡?6.一个园林小区里鸡和兔子共有35只,94只脚,问笼中有多少只兔子和鸡?8.一个养殖场上有鸡和兔子,共有35个头,94只脚,问笼中各有多少只鸡和兔子?9.一群动物共有35只,94只脚,其中有兔子和鸡,问笼中有多少只兔子和鸡?10.一个园林小区里鸡和兔子共有35只,94只脚,问笼中有多少只兔子和鸡?【答案及分析】鸡兔同笼问题是经典的代数问题,可以通过设未知数、列方程组、解方程组的方法解决。
通常通过头数和脚数两个方面来列方程,然后解方程组求解未知数的值。
1.一个笼子里有鸡和兔子共35只,头共94个,问笼中有多少只兔子,多少只鸡?答案:笼中有25只兔子,10只鸡。
分析:设笼中鸡有x 只,兔子有y 只。
根据题意得到以下两个方程:x + y = 35 (1)2x + 4y = 94 (2)解方程组得x = 10,y = 25。
2.一群动物共有35头,94只脚,问有多少只兔子和鸡?答案:笼中有25只兔子,10只鸡。
分析:同上一题。
3.一个笼子里关着鸡和兔子,共有35个头,94只脚,问笼中各有多少只鸡和兔子?答案:笼中有25只兔子,10只鸡。
分析:同上一题。
多少只鸡和兔子?答案:笼中有25只兔子,10只鸡。
分析:同上一题。
5.一群动物共有35只,94只脚,其中有兔子和鸡,问笼中有多少只兔子和鸡?答案:笼中有25只兔子,10只鸡。
分析:同上一题。
6.一个园林小区里鸡和兔子共有35只,94只脚,问笼中有多少只兔子和鸡?答案:笼中有25只兔子,10只鸡。
分析:同上一题。
7.一个笼子里关着鸡和兔子,共有35个头,94只脚,问笼中各有多少只鸡和兔子?答案:笼中有25只兔子,10只鸡。
小学六年级数学 《鸡兔同笼》练习题及答案

7 数学广角鸡兔同笼基础作业不夯实基础,难建成高楼。
1. 笼子里有若干只鸡和兔,从上面数有9个头,从下面数有28只脚,按顺序列表试一试。
2.笼子里共有鸡、兔100只,鸡和兔的脚共248只,笼中的鸡、兔各有多少只?3. 笼子里有鸡与兔共8只,一共有26只脚,求鸡与兔各有多少只?(1)可以这样想:先假设笼子里全部都是鸡,那么一共有( )只脚,比应有脚的只数少( )只,这是因为把兔当成鸡后,每只少算了( )只脚,由“一共少的脚的只数÷每只兔少算的脚的只数”可以算出( )的数量是( )只。
(2)也可以这样想:先假设笼子里全部是兔子,那么一共有( )只脚,比应有的脚的只数多( )只,这是因为把鸡当成兔子后,每只多算了( )只脚,由“一共多的脚的只数÷每只鸡多算的脚的只数”可以算出( )的数量是( )只。
(3)还可以这样想:设有x只鸡,则兔有(8-x)只,根据共有26只脚可以列出( )=26的方程。
综合提升重点难点,一网打尽。
4. 全班54人共租了11条船,每条船都坐满了,大船每条坐6人,小船每条坐4人,大小船各租了多少条?5. 王老师为学校买的篮球和足球共8个,共用了312元,则篮球和足球各买了多少个?6. 六年级有20名同学去参加数学竞赛,平均得分为83分,其中男生平均分是85分,女生的平均分是80分,参加竞赛的女同学有多少名?7. 植树节到了,六年级16名优秀少先队员去参加植树劳动,男生每人植树2棵,女生2人共植树1棵,这样一共植了14棵树,参加植树的男、女生各有多少人?拓展探究举一反三,应用创新,方能一显身手!8. 在一次数学抢答比赛中,规定答对一题得10分,答错一题要扣除4分,(1)小明共抢答了10道题,最后得分72分,他答对了几道题?(2)李红抢答了12道题,最后得分22分,她答错了几道题?数和数字一样吗?我们学数学,整天与数和数字打交道,那么数和数字是一回事吗?你注意到它们之间的区别了吗?你知道吗,小兰和小华还为这事吵起来了呢。
鸡兔同笼练习题全集

鸡兔同笼练习题全集鸡兔同笼问题是中国古代著名的数学趣题之一,也是小学数学中常见的一类应用题。
这类问题能锻炼我们的逻辑思维和解题能力。
下面为大家整理了一系列鸡兔同笼的练习题,一起来看看吧!例题1:笼子里有若干只鸡和兔,从上面数,有8 个头,从下面数,有 26 只脚。
鸡和兔各有几只?解题思路:我们可以先假设笼子里全部都是鸡,那么就应该有 8×2= 16 只脚。
但实际有 26 只脚,多出来的 26 16 = 10 只脚是因为把兔当成鸡来算,每只兔少算了 4 2 = 2 只脚。
所以兔的数量就是 10÷2 =5 只,鸡的数量就是 8 5 = 3 只。
练习题 1:一个笼子里有鸡和兔共 10 只,从下面数共有 32 只脚。
问鸡和兔各有多少只?练习题 2:笼子里鸡兔的头共有 15 个,脚共有 44 只,请问鸡兔各有几只?例题 2:有龟和鹤共 40 只,龟的腿和鹤的腿共有 112 条。
龟、鹤各有几只?解题思路:这道题其实也是鸡兔同笼问题的变形。
假设全是鹤,那么就应该有 40×2 = 80 条腿。
但实际有 112 条腿,多出来的 112 80 =32 条腿是因为把龟当成鹤来算,每只龟少算了 4 2 = 2 条腿。
所以龟的数量就是 32÷2 = 16 只,鹤的数量就是 40 16 = 24 只。
练习题 3:有蜘蛛和蜻蜓共 18 只,它们的腿共有 128 条。
蜘蛛 8 条腿,蜻蜓 6 条腿,蜘蛛和蜻蜓各有几只?练习题 4:停车场里有三轮车和四轮车共 25 辆,车轮共有 85 个。
三轮车和四轮车各有多少辆?例题 3:鸡兔同笼,鸡比兔多 10 只,共有脚 110 只。
鸡、兔各有多少只?解题思路:我们设兔有 x 只,那么鸡就有 x + 10 只。
兔的脚数是4x,鸡的脚数是 2×(x + 10) 。
根据共有脚 110 只,可以列出方程 4x + 2×(x + 10) = 110 ,解得 x = 15 ,所以兔有 15 只,鸡有 15 + 10 = 25 只。
鸡兔同笼习题汇总

鸡兔同笼习题汇总鸡兔同笼问题是中国古代著名的数学趣题之一,也是小学数学中常见的题型。
它不仅能够锻炼我们的逻辑思维能力,还能让我们学会运用不同的方法来解决问题。
接下来,让我们一起来看看各种类型的鸡兔同笼习题。
一、基础型题目 1:笼子里有若干只鸡和兔,从上面数有 8 个头,从下面数有26 只脚。
鸡和兔各有多少只?解题思路:我们可以先假设笼子里全是鸡,那么就应该有 8×2 = 16 只脚。
但实际上有 26 只脚,多出来的脚就是兔子的,每只兔子比鸡多2 只脚。
所以兔子的数量就是(26 16)÷2 = 5 只,鸡的数量就是 8 5 = 3 只。
题目 2:一个笼子里鸡兔共 10 只,脚共有 32 只,鸡兔各几只?解法:假设全是兔,就有 10×4 = 40 只脚,实际少了 40 32 = 8 只脚。
因为每把一只鸡当成兔就多算了 2 只脚,所以鸡有 8÷2 = 4 只,兔有 10 4 = 6 只。
二、变化型题目 1:笼子里鸡比兔多 2 只,共有 28 只脚,鸡兔各几只?解题思路:先去掉多的 2 只鸡的脚,2×2 = 4 只脚,剩下 28 4 =24 只脚。
此时鸡和兔的数量相等,一只鸡和一只兔共有 6 只脚,所以兔有 24÷6 = 4 只,鸡有 4 + 2 = 6 只。
题目 2:鸡兔同笼,鸡兔的脚数差为 6 只,鸡兔共有 20 个头,鸡兔各有多少只?解法:如果鸡兔脚数相等,那么共有 20×2 = 40 只脚。
但实际脚数差为 6 只,当把一只鸡换成一只兔,脚数就会增加 2 只。
所以兔比鸡多 6÷2 = 3 只。
假设兔和鸡一样多,那么脚的总数就是 40 3×4 = 28 只,一只鸡和一只兔共有 6 只脚,所以鸡有 28÷6 = 44,不是整数,说明假设错误。
重新假设鸡比兔多 3 只,脚的总数就是 40 + 3×2 = 46 只,兔有 46÷6 = 74,也不是整数。
鸡兔同笼的练习题及答案

鸡兔同笼问题的练习题及答案一、基础题1. 有一个笼子里有鸡和兔,共有头30个,脚90只,请问笼子里各有几只鸡和兔?2. 鸡和兔共40只,脚共有112只,求鸡和兔各有多少只?3. 笼子里有鸡和兔共35只,脚共有94只,鸡和兔各有多少只?4. 笼子里有鸡和兔共18只,脚共有52只,求鸡和兔的数量。
5. 有一个笼子里鸡和兔共有26只,脚共有70只,问鸡和兔各有多少只?二、提高题6. 有两个笼子,第一个笼子里有鸡和兔共20只,脚共有60只;第二个笼子里有鸡和兔共25只,脚共有70只。
请问两个笼子中鸡和兔各有多少只?7. 有三个笼子,分别装有鸡和兔,第一个笼子共15只,第二个笼子共20只,第三个笼子共25只,三个笼子的脚总数为96只。
求每个笼子中鸡和兔的数量。
8. 笼子里有鸡和兔共30只,如果增加5只鸡,脚的总数将增加20只,求原来笼子里鸡和兔各有多少只?9. 笼子里有鸡和兔共50只,脚共有140只,如果将鸡换成兔,兔换成鸡,那么笼子里的脚总数将增加40只。
求原来鸡和兔各有多少只?10. 有两个笼子,第一个笼子里鸡和兔共15只,第二个笼子里鸡和兔共25只,两个笼子的脚总数为100只。
求两个笼子中鸡和兔各有多少只?三、拓展题11. 有三个笼子,分别装有鸡和兔,第一个笼子共10只,第二个笼子共15只,第三个笼子共20只,三个笼子的脚总数为68只。
求每个笼子中鸡和兔的数量。
12. 笼子里有鸡和兔共40只,脚共有110只。
如果将鸡换成兔,兔换成鸡,那么笼子里的脚总数将减少30只。
求原来鸡和兔各有多少只?13. 有四个笼子,分别装有鸡和兔,第一个笼子共8只,第二个笼子共12只,第三个笼子共16只,第四个笼子共20只,四个笼子的脚总数为只。
求每个笼子中鸡和兔的数量。
14. 笼子里有鸡和兔共60只,脚共有160只。
如果将鸡换成兔,兔换成鸡,那么笼子里的脚总数将增加40只。
求原来鸡和兔各有多少只?15. 有五个笼子,分别装有鸡和兔,每个笼子的鸡和兔总数分别为10、15、20、25、30只,五个笼子的脚总数为140只。
小升初小学数学经典应用题专题练习《鸡兔同笼问题》

经典应用题—专题练习《鸡兔同笼问题》一.选择题1.(2019秋•灵武市期末)鸡兔同笼,有10个头,28只脚,鸡、兔各有()只.A.5和5B.4和6C.6和42.(2019秋•绿园区期末)小马虎去年的压岁钱有50元和100元的人民币共22张,一共是1850元.其中50元的人民币有()张.A.5B.7C.153.(2019秋•任丘市期末)红星商店托运50箱饮料,合同规定每箱的运费是20元,若损坏一箱,除不给运费外,还要赔偿损失100元,运后结算时共付运费760元,求损坏了几箱饮料,下面列式正确的是() A.(2050760)(10020)⨯+÷+⨯-÷-B.(10050760)(10020)C.(2050760)(10020)⨯-÷+4.(2019•连江县)解放军叔叔进行野外训练,晴天每天行25千米,雨天每天行15千米,8天共行了180千米,这期间雨天有()天.A.8B.6C.25.(2018秋•龙华区期末)一场篮球比赛,一名队员总共投中了11个球,只有两分球和三分球,得了28分.他两分球投中了()个.A.4B.5C.6D.76.(2015秋•高台县期末)有5元和10元的人民币共20张,一共是175元,5元的人民币有()张.A.5B.10C.157.(2015春•雁山区期末)鸡兔同笼,上有30头,下有80条腿,其中鸡有()只.A.20B.15C.108.(2014•泉州)“鸡兔同笼”问题是我国古代的数学名题之一,《孙子算经》中记载的题目是这样的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”,同学们,你得出的这个古代名题的结果是()A.鸡23只兔12只B.鸡12只兔23只C.鸡14只兔21只9.(2013•绥阳县校级模拟)鸡兔同笼共10只,数脚有32只,鸡有()只.A.3B.4C.5D.6二.填空题(共9小题)10.(2019秋•上海期末)一个大人一餐吃2个面包,两个小孩一餐吃1个面包,现在有大人和小孩子共99人,一餐刚好一共吃了99个面包.小孩有人.11.(2019秋•惠城区校级期末)10元钱刚好买面值8角和4角的邮票17张,买了8角的邮票张,4角的邮票张.12.(2019秋•丰台区期末)一个房间里有4条腿的椅子和3条腿的凳子共9个.椅子的腿数和凳子的腿数加起来共32条,有个凳子.13.(2019秋•渭滨区期末)龟鹤同池,数一数共有12个头、32条腿,则龟有只,鹤有只.14.(2018秋•涿州市期末)奶奶家养了一些鸡和一些兔子,它们一共有22个头,74条腿,猜一猜,奶奶养了鸡只,兔只.15.(2019•杭州模拟)一辆公共汽车共载客42人,其中一部分人在中途下车,每张票价6元,另一部分人到终点下车,每张票价9元,售票员共收票款318元,中途下车的有人.16.(2016•温州模拟)今有鸡兔同笼,上数有头12个,下数有脚34只,问鸡有只,兔有只.17.(2015•徐州)一次数学考试共有20道题,规定:答对一题得2分,答错一题倒扣1分,未答的题不计分.考试结束后,小明共得23分,他想知道自己做错了几道题,但只记得未答的题的数目是个偶数.请你帮助小明计算一下,他答错了道题.18.(2014秋•阜南县校级期末)数学竞赛题共15道,规定每做对一题得8分,每做错一题倒扣4分,不做的不给也不扣.小华各题均做共得72分.那么他做对了道题.三.判断题19.(2019秋•隆昌市期末)今年小飞5岁,妈妈35岁,妈妈的年龄是小飞的7倍,明年妈妈的年龄小飞的6倍.(判断对错)20.(2017秋•温宿县校级月考)小明今年a岁,哥哥比他大b岁,c年后,哥哥比他大b岁..(判断对错)21.(2016秋•盈江县期中)爸爸今年41岁,小明今年7岁了,明年爸爸的年龄就是小明的6倍..(判断对错)22.(2014春•东安县校级期中)小红今年比妈妈小24岁,再过十年她比妈妈小14岁.(判断对错)23.(2014•岚山区模拟)甲比乙大3岁,乙就一定比甲小3岁..(判断对错)四.应用题24.(2019秋•荔湾区期末)张亮的爸爸比妈妈大6岁,张亮爸爸、妈妈今年的岁数和是72.张亮的爸爸、妈妈今年各几岁?25.(2019•广东)根据相对论,接近光速飞行的宇宙飞船上,时间会变慢,弟弟乘坐飞船出发时,弟弟24岁,哥哥30岁,当弟弟返回地球时,哥哥的年龄是弟弟的3倍,如果飞船上的一年相当于地球上的10年,那么哥哥现在多少岁?26.(2019•宁波模拟)今年爸爸的年龄是小刚的4倍,5年后爸爸和小刚的年龄和是70岁,今年爸爸和小刚各是多少岁?27.(2019秋•普陀区期中)父亲今年55岁,儿子今年25岁,当父亲年龄是儿子年龄的11倍的时,父亲几岁?儿子几岁?(必须要有计算过程)28.(2018秋•黄岩区期末)爷爷比小明大几岁?爷爷:我的年龄是小明的7倍.小明:今年我9岁.29.(2016•泉州)某玻璃厂委托运输公司运送4000块玻璃,每块运费0.4元.如果损坏一块玻璃,得不到运费外,还得赔偿7元.最后运输公司得到运费1422.4元.请问:运输公司共损坏了多少块玻璃?30.(2016春•梁子湖区期末)公园的大船能坐6人,小船能坐4人,希望小24名师生去划船,租了大船和小船共24条,正好坐满.他们租了大、小船各多少条?31.王明运送花瓶350个,规定完整地送一个到目的地的运费是40元,损坏一个倒赔90元,运完这批花瓶后,王明赚了13220元.问途中共损坏了几个?五.解答题32.(2019秋•邛崃市期末)五(2)班25名同学参加植树活动,共植树95棵.男生每人植5棵,女生每人植3棵.参加植树活动的男、女生各有多少人?(请列表解答)男生有人,女生有人.33.(2019秋•洛川县期末)市里举行数学竞赛,共有12道题.规定:每做对一道题加10分,每做错一道题倒扣2分,不做不加分,也不扣分.小丽做完了12道题,得了96分.她做对了几道题?34.(2018秋•长阳县期末)有一些红球和绿球,如果按每袋1个红球、2个绿球来装,绿球装完后还剩下5个红球;如果按每袋3个红球、5个绿球来装,红球装完后还剩5个绿球.求红球、绿球各有多少个?35.(2019春•高平市期末)32个同学正在10张乒乓球桌前进行单打或双打比赛,正在进行双打比赛的乒乓球桌有多少张?36.(2019•湖南模拟)现有大小油桶50个,每个大桶可装油4千克,每个小桶可装油2千克,大桶比小桶共多装油20千克,问大小桶各多少个?37.(2019•天津模拟)1元和5角的硬币,一共13枚,共有10元.请问1元和5角的硬币各多少枚?38.(2019春•成武县期末)52名同学去划船,一共乘坐11条船,其中每条大船坐6人,每条小船坐4人.大船和小船各几条?39.(2019春•泰兴市校级期中)48名学生划船,一共乘坐10条船,每条大船可坐6人,每条小船可坐4人.大船和小船各有几条?。
鸡兔同笼专项练习50题(有答案)

鸡兔同笼专项练习50题(有答案)题(有答案)鸡兔同笼的公式:鸡兔同笼的公式:解法1:(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)(兔的脚数-鸡的脚数) =鸡的只数鸡的只数总只数-鸡的只数=兔的只数兔的只数解法2:(:( 总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)(兔的脚数-鸡的脚数) =兔的只数兔的只数总只数-兔的只数=鸡的只数鸡的只数解法3:总脚数÷2—总头数=兔的只数兔的只数总只数—兔的只数=鸡的只数鸡的只数专项练习:1、鸡兔同笼、鸡兔同笼,,共有头100个,足316只,那么鸡有那么鸡有_____________________只只,兔有兔有__________________只只2、小明花了4元钱买贺年卡和明信片元钱买贺年卡和明信片,,共14张,贺年卡每张3角5分,明信片每张2角5分. 他买了他买了_____________________张贺年卡张贺年卡张贺年卡,_______,_______,_______张明信片张明信片张明信片. .3、东湖小学六年级举行数学竞赛、东湖小学六年级举行数学竞赛,,共20道试题道试题..做对一题得5分,没有做一题或做错一题倒扣3分.刘刚得了60分,则他做对了则他做对了________________________题题.4、鸡兔共有脚100只,若将鸡换成兔若将鸡换成兔,,兔换成鸡兔换成鸡,,则共有脚92只,则鸡则鸡__________________只只兔有兔有_______ _______ 只.鸡有14只,兔有18只.5.100个馒头100个和尚吃个和尚吃,,大和尚每人吃3个,小和尚3人吃一个人吃一个,,则大和尚有则大和尚有_____________________个个,小和尚有小和尚有_____________________个个.6、30枚硬币枚硬币,,由2分和5分组成分组成,,共值9角9分,2分硬币有分硬币有_____________________个个,5分有分有________________________个个.7、有钢笔和铅笔共27盒,共计300支.钢笔每盒10支,铅笔每盒12支,则钢笔有则钢笔有_____________________盒盒, 铅笔有铅笔有_____________________盒盒.8、鸡兔同笼、鸡兔同笼,,共有足248只,兔比鸡少52只,那么兔有那么兔有__________________只只,鸡有鸡有__________________只只.9、工人运青瓷花瓶250个,规定完整运一个到目的地给运费20元,损坏一个倒赔100元,运 完这批花瓶后,工人共得完这批花瓶后,工人共得4400元,则损坏了则损坏了__________________只只.1010、有、有2角,5角和1元人民币20张,共计12元,则1元有元有_____________________张张,5角有角有__________________张张,2角有______________张张.1111、班主任张老师带五年级、班主任张老师带五年级、班主任张老师带五年级(2)(2)(2)班班50名同学栽树名同学栽树,,张老师一人栽5棵,男生一人栽3棵,女生一人栽2棵,总共栽树120棵,问几名男生,几名女生?1212、、大油瓶一瓶装4千克千克,,小油瓶2瓶装1千克千克..现有100千克油装了共60个瓶子个瓶子..问大、小 油瓶各多少个油瓶各多少个? ?1313、小毛参加数学竞赛、小毛参加数学竞赛、小毛参加数学竞赛,,共做20道题道题,,得64分,已知做对一道得5分,不做得0分,错一题扣1分,又知道他做错的题和没做的一样多又知道他做错的题和没做的一样多..问小毛做对几道题问小毛做对几道题 ? ?1414、、有蜘蛛、蜻蜓、蝉三种动物共18只,共有腿118条,翅膀20对(蜘蛛8条腿条腿,,蜻蜓6条腿条腿,2 ,2 对翅膀对翅膀;;蝉6条腿条腿,1,1对翅膀对翅膀),),),三种动物各几只三种动物各几只三种动物各几只? ?1515、某校有、某校有100名学生参加数学竞赛名学生参加数学竞赛,,平均分是63分,其中男生平均分是60分,女生平均分是70分,男同学比女同学多男同学比女同学多________________________人人.1616、有黑白棋子一堆、有黑白棋子一堆、有黑白棋子一堆,,其中黑子的个数是白子个数的2倍,如果从这堆棋子中每次同时取出黑子4个,白子3个,那么取出那么取出________________________次后次后次后,,白子余1个,而黑子余18个.1717、学生买回、学生买回4个篮球5个排球一共用185元,一个篮球比一个排球贵8元,篮 球的单价是球的单价是________________________元元.1818、小强爱好集邮、小强爱好集邮、小强爱好集邮,,他用1元钱买了4分和8分的两种邮票分的两种邮票,,共20张.那么他买了4分邮票分邮票________________________张张.1919、松鼠妈妈采松子、松鼠妈妈采松子、松鼠妈妈采松子,,晴天每天采20个,雨天每天可采12个,它一连采了112个,平均每天采14个,这几天中有这几天中有________________________天是雨天天是雨天天是雨天. . 2020、一些、一些2分与5分的硬币共299分,其中2分的个数是5分个数的4倍,5分的分的有________________个个.2121、某人领得工资、某人领得工资240元,有2元,5元,10元三种人民币共50张,其中2元和5元的张数一样多元的张数一样多,,那么10元的有元的有________________________张张.2222、一件工程甲独做、一件工程甲独做12天完成天完成,,乙独做18天完成天完成,,现在由甲先做若干天后现在由甲先做若干天后,,再由乙单独完成余下的任务乙单独完成余下的任务,,这样前后共用了16天,甲先做了甲先做了_____________________天天. 2323、买一些、买一些4分、分、88分、分、11角的邮票共15张,用币100分最多可买1角的分最多可买1角的______ ______ 张。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.鸡兔同笼,共有30个头,88只脚。
求笼中鸡兔各有多少只?
2.小明用10元钱正好买了20分和50分的邮票共35张,求这两种邮票各买了多少张?
3.一次数学竞赛共有20道题。
做对一题得5分,不做或做错一题倒扣3分,刘冬考了52
分,求刘冬做对了几道题?
4. 100个和尚吃100个面包,大和尚一人吃3个,小和尚三人吃1个。
求大小和尚各有多少个?
5.甲乙两家工厂去年一共上缴税收112万元。
已知甲厂上缴税收的4/9与乙厂上缴税收的2/7相等。
两厂去年各上缴税收多少万元?
6.水果店运来的苹果和梨一共有1300千克,苹果卖出了2/5,梨卖出了20千克后,剩下的梨和苹果的质量正好相等。
原来苹果和梨共有多少千克?
7.某车间原来有男工人数是女工人数的5/4,后来又调来2名女工,现在男工人数是女工人数的6/5。
这个车间现在拥有多少名男工人?
8.两个数的和为36,差为22,则较大的数为多少?
9.买一只自动铅笔与一支钢笔共用10元,已知钢笔比铅笔便宜6元,那么买铅笔花了多少元?
10.有黑、白棋子各一堆,黑子个数是白子个数的3倍,现在从这堆棋子中每次取出5个黑子和2个白子,待到若干次后,白子已经取尽,而黑子还有8个,求黑子和白子各有多少个?
11.小刚4年前的年龄与小明七年后的年龄之和为39岁,小刚5年后的年龄等于小明3年前的年龄,求小刚、小明今年的年龄是多少岁?
12.哥哥5年前的年龄等于7年后弟弟的年龄,哥哥4年后的年龄与弟弟3年前的年龄和是35岁,求兄弟二人今年的年龄?
13. 鸡兔共有脚260只,鸡兔互换脚共有脚280只,鸡兔各有几只?
14.把含盐5%的食盐水和含盐8%的食盐水混合配制成含盐6%的食盐水600克,分别应取两种食盐水各多少克?
15.学校四年级有甲、乙、丙3个班,甲班和乙班共有100人,乙班和丙班共有101人,加班和丙班共有97人。
求甲、乙、丙三班各有多少人?
16.△、○、□分别代表三个不同的数字,并且
△+△+△=○+○○+○+○+○=□+□+□△+○+○+□=60
求:△、○、□分别等于多少?
1.鸡兔有80个头,共有脚200只,求鸡兔各有几只?
2.鸡兔同笼,鸡比兔多10只,共有脚110只,求鸡兔各有几只?
3. 豆豆参加猜谜语比赛,共20个题,规定猜对一个得5分,猜错一个或不猜倒扣2分,豆豆共得72分,他猜对了几个谜语?
4.某校学生进行野外训练,晴天每日行40千米,雨天每日行30千米,在12天内总行程为450千米,这期间有多少个雨天?
5. 10年前父亲的年龄是儿子年龄的7倍,15年后父亲的年龄是儿子年龄的2倍,问今年父子二人各多少岁?
6.有黑、白棋子各一堆,黑子个数是白子个数的2倍,现在从这堆棋子中每次取出4个黑子和3个白子,待到若干次后,白子已经取尽,而黑子还有16个,求黑子和白子各有多少个?
7. 一次数学竞赛中共有20道题,做对一题得5分,做错一题倒扣1分,小红考了88分,小红做对了几题?
8. 100个和尚吃100个馒头,大和尚每人吃4个,小和尚4人吃一个,大和尚小和尚各有
多少个?
9. 解放军进行野营拉练,晴天每日行35千米,雨天每日行28千米,11天内一共走了350千米,这期间去晴天有多少天?
10. 一个食堂买来面粉的千克数是大米的3倍,如果每天吃30千克大米,75千克面粉,几天后,大米将全部吃完,而面粉还会剩下225千克,问食堂买来面粉和大米各多少千克?
11.纺织工厂第一车间的人数是第二车间人数的4/5少30人,如果从第二车间调10人到第一车间,第一车间的人数是第二车间人数的3/4,。
原来两个车间的人数各是多少人?第一车间的人数是第二车间人数的几分之几?
12.鸡兔共有腿50条,若将鸡数与兔数互换,则腿数变为54条,问鸡兔各有多少只?
13.有人问孩子的年龄,回答:“比爸爸岁数的一半小9岁。
”又问爸爸的年龄,回答:“比孩子的4倍多2岁。
”孩子的年龄是多少岁?
14.哥弟俩共有邮票70张,如果哥哥给弟弟4张邮票后还比弟弟多2张,哥哥原来有邮票多少张?
15.小强有三角形、正方形的卡片共40张,这些卡片共有145个角,求两种卡片各有多少张?。