《流体静力学》PPT课件
合集下载
水力学流体静力学PPT课件

在水利工程中,液体相对平衡 的原理被广泛应用于水坝、水 库等水工建筑物的设计和施工 中。
在医学领域,液体相对平衡的 原理也被应用于血液动力学和 药物输送等方面的研究。
04
液体内部压强与浮力
Chapter
液体内部压强的计算
压强定义
单位面积上所受的压力,用p表示 ,单位为Pa。
计算公式
p = F/A,其中F为压力,A为受力 面积。
了解液体运动的描述方法和基本方程 ;
能够运用所学知识分析和解决工程实 际问题。
教学方法与手段
01
02
03
教学方法
采用讲授、讨论、案例分 析等多种教学方法相结合 的方式。
教学手段
使用PPT课件、动画演示 、实验演示等教学手段辅 助教学。
考核方式
采用平时成绩、期末考试 成绩和实验成绩相结合的 考核方式。
的气体量来调节浮力大小。
05
流体静力学在水利工程中的应 用
Chapter
水库水位与坝体稳定性分析
水库水位确定
根据水库地形、库容曲线 及入库流量等资料,确定 水库在不同运行条件下的 水位。
坝体稳定性分析
运用土力学、岩石力学等 原理,分析坝体在静水压 力、扬压力等作用下的稳 定性,确保大坝安全。
渗流控制
液体相对平衡是流体静力学研究的基础。
等压面的形成与性质
等压面是指在液体内部,压强相等的各点所组成的面。
在重力场中,等压面是一个水平面,因为在同一水平面上,各点受到的重力作用相 同,所以压强也相等。
等压面具有传递压强的性质,即等压面上的压强可以传递到液体内部的任意一点。
液体相对平衡的应用
液体相对平衡的原理可以应用 于测量液体的密度和深度。
流体力学-流体静力学PPT课件-

三.流体静压强分布图
1.绘制液体静压强分布图的知识点
流体静力学基本方程; 平衡流体中的应力特征(大小性、方向性)。
2.液体静压强分布图的绘制方法
(1)根据水静力学基本方程,计算出受压面上各点压强的大小,用一定 长度比例的箭头线表示各点的压强,箭头线必须垂直并指向作用面;
(2)对于不可压缩液体,重度γ为常量,p与h呈线性关系,当受压面为平 面时,只需用直线连接箭头线的尾部,即可得到压强分布图;而当受压面 为曲面时,由于曲面上各点的法向不同,因此需用曲线连接箭头线的尾部。
z1
p1
z2
p2
(2-11) (2-12)
或
p2 p1 (z1 z2 )
对于液体,如图所示,若液面压强为p0,则由式(2-12) 可知液体内任一点的静压强为
p p0 (z0 z) p0 h
(2-13)
式(2-13)为不可压缩静止液体的压强计算公式,通常亦称 为水静力学基本方程。该式表明:
故得欧拉平衡微分方程综合式(即全微分形式)
dp ( f xdx f ydy f z dz)
上式称为流体平衡微分方程的综合式。
而 dW f xdx f y dy f z dz
又 故有
dW W dx W dy W dz
x
y
z
W
fx
x
fy
W y
W f z z
(2-5) (2-6)
•方向性: 流体静压强p垂直指向受压面
证明:采用反证法, 其要点如下: 1 因平衡流体不能承受切应力,即 τ=0,故p垂直受压面;
2 因流体几乎不能承受拉应力,故 p指向受压面。
•大小性:平衡流体中任一点的静压强大小与其作用面的方位无关
1.绘制液体静压强分布图的知识点
流体静力学基本方程; 平衡流体中的应力特征(大小性、方向性)。
2.液体静压强分布图的绘制方法
(1)根据水静力学基本方程,计算出受压面上各点压强的大小,用一定 长度比例的箭头线表示各点的压强,箭头线必须垂直并指向作用面;
(2)对于不可压缩液体,重度γ为常量,p与h呈线性关系,当受压面为平 面时,只需用直线连接箭头线的尾部,即可得到压强分布图;而当受压面 为曲面时,由于曲面上各点的法向不同,因此需用曲线连接箭头线的尾部。
z1
p1
z2
p2
(2-11) (2-12)
或
p2 p1 (z1 z2 )
对于液体,如图所示,若液面压强为p0,则由式(2-12) 可知液体内任一点的静压强为
p p0 (z0 z) p0 h
(2-13)
式(2-13)为不可压缩静止液体的压强计算公式,通常亦称 为水静力学基本方程。该式表明:
故得欧拉平衡微分方程综合式(即全微分形式)
dp ( f xdx f ydy f z dz)
上式称为流体平衡微分方程的综合式。
而 dW f xdx f y dy f z dz
又 故有
dW W dx W dy W dz
x
y
z
W
fx
x
fy
W y
W f z z
(2-5) (2-6)
•方向性: 流体静压强p垂直指向受压面
证明:采用反证法, 其要点如下: 1 因平衡流体不能承受切应力,即 τ=0,故p垂直受压面;
2 因流体几乎不能承受拉应力,故 p指向受压面。
•大小性:平衡流体中任一点的静压强大小与其作用面的方位无关
流体静力学ppt课件

所以
1 2 p x d y d z p n d A c o s ( n ,x ) 1 6d x d y d z X 0
又
pndAcos(n,x)1 2pndydz
1 2 p x d
y 1 2 d p n d z
y 1 dd zxd X y 0d 6
z
pxpn1 3dxX0
略去高阶微量,则:
Ah1h2Bh2h
e. 组合式U形管压差计
p 1 p 2 H h g h 2 h 1
2、金属测压计 原理:弹性元件在压强作用下产生弹性变形。 分类:弹簧管式(a)、薄膜式(b)压力表。
3.电测式压力计
原理:把压强通过压力传感器转化成某一电量,用测量 电量的方法来测量流体压强.
§2-4 几种质量力作用下的流体平衡
一、总压力的大小
在A上取微元面积dA, 坐标为y,其上所受总压力 为dP,dA对应水下深度为h。 则:
d P p d A h d y s A id nA (*)
在面积A上积分:
P A d P A y s id n A s iA n yd (1A )
面积A对ox轴的面积矩,即 AydA ycA
x
y
z
(3)
dpdU
所以
pUC
令 p=p0时,U=U0 , 则 C=p0-ρU0
pp 0U U 0 (4)
——帕斯卡(Pascal)定律
帕斯卡(Pascal)定律: 在平衡状态下的不可压缩流体中,作用在其边界上的 压强,将等值、均匀地传递到流体的所有各点。
F A
h
密封容器的压强
三、等压面 定义:同种连续静止流体中,静压强相等的点组成的 面。(p=const)
水力学 流体静力学PPT课件

• 1).合力F的大小等于压强分布体 的体积,即 F = •b;
• 2).合力F的方向为垂直指向受压 面;
• 3).合力F的作用线通过压强分布 体的形心,作用线与受压面的交 点即为D点。
§2-2 流体静止的微分方程
一.流体静止的微分方程:
• 边长分别为dx,dy,dz的微元平行六面体受表面力和质量力的共同作用而保 持静止。
微元体的中心为A点,左表面的中 心为B点,右表面的中心为C点。 A 点的压强为p(x,y,z)。
x方向的静力平衡:
(p
1 2
p x
dx)dydz ( p
1 2
。 确定液体作用在平面上的总压力的大小、方向和作用点
一.解析法:
1.合力的大小:
dA上的相对压强:p γh γy sin θ dA上液体作用的合力为:dF pdA γy sin θdA
第34页/共72页
F dF y sin dA sin ydA
A
A
A
sin yc A hc A
计是一个水平倾角为的Π形管。
已知测压计两侧斜液柱读数的差值
为L=30mm,倾角 = 30°,试求压
强差p1 – p2 。 3)
(书上P29的例2-
解:
这里:z1 z2
p1 γ(z3 z1) γ(z4 z2 ) p2
p1 p2 γ(z3 z4 ) γL sin θ
第26页/共72页
dz
p0 p
R 0 T0 0.0065z
取:g = 9.807m/s², = 0.0065K/m, R = 287 N•m/Kg•K,T0 = 288K。 则:
g
p p0
1
T0
R z
1
• 2).合力F的方向为垂直指向受压 面;
• 3).合力F的作用线通过压强分布 体的形心,作用线与受压面的交 点即为D点。
§2-2 流体静止的微分方程
一.流体静止的微分方程:
• 边长分别为dx,dy,dz的微元平行六面体受表面力和质量力的共同作用而保 持静止。
微元体的中心为A点,左表面的中 心为B点,右表面的中心为C点。 A 点的压强为p(x,y,z)。
x方向的静力平衡:
(p
1 2
p x
dx)dydz ( p
1 2
。 确定液体作用在平面上的总压力的大小、方向和作用点
一.解析法:
1.合力的大小:
dA上的相对压强:p γh γy sin θ dA上液体作用的合力为:dF pdA γy sin θdA
第34页/共72页
F dF y sin dA sin ydA
A
A
A
sin yc A hc A
计是一个水平倾角为的Π形管。
已知测压计两侧斜液柱读数的差值
为L=30mm,倾角 = 30°,试求压
强差p1 – p2 。 3)
(书上P29的例2-
解:
这里:z1 z2
p1 γ(z3 z1) γ(z4 z2 ) p2
p1 p2 γ(z3 z4 ) γL sin θ
第26页/共72页
dz
p0 p
R 0 T0 0.0065z
取:g = 9.807m/s², = 0.0065K/m, R = 287 N•m/Kg•K,T0 = 288K。 则:
g
p p0
1
T0
R z
1
第二章--流体静力学PPT课件

.
第二章 流体静力学
流体静力学着重研究流体在外力作用下处于平衡状态的 规律及其在工程实际中的应用。
这里所指的静止包括绝对静止和相对静止两种。以地球 作为惯性参考坐标系,当流体相对于惯性坐标系静止时, 称流体处于绝对静止状态;当流体相对于非惯性参考坐标 系静止时,称流体处于相对静止状态。
流体处于静止或相对静止状态,两者都表现不出黏性作 用,即切向应力都等于零,流体只存在压应力——压强。
Pd=22.6Kpa
将以上条件代入式(2-15)积分,便可得到同温层标准大气压分布
dppgdz pgdz
RT
RT d
p dp z g
dz
pa p
zd RTd
p22 .6ex1p1( 00z0) 6334
式中z得单位为m,11000m≤z≤25000m。
35
.
2.3.2气体压强分布
2.大气层压强的分布
2.3.3压强的度量
相对压强
绝对压强
真空度 绝对压强
绝对压强、相对压强和真空之间的关系
41
.
2.3.3压强的度量
相对压强
绝对压强
真空 绝对压强
绝对压强、相对压强和真空之间的关系
42
.
2.3.3压强的度量
立置在水池中的密封罩如图所示,试求罩内A、B、C三
点的压强。
【解】:
B点: pB p0
C
A点: pAghAB pB
从11-15km,温度几乎不变,恒为216.5K(-56.5℃), 这一层为同温层。
32
.
2.3.2气体压强分布
2.大气层压强的分布
(1)对流层
dpgdz dp pg dz
p
第二章 流体静力学
流体静力学着重研究流体在外力作用下处于平衡状态的 规律及其在工程实际中的应用。
这里所指的静止包括绝对静止和相对静止两种。以地球 作为惯性参考坐标系,当流体相对于惯性坐标系静止时, 称流体处于绝对静止状态;当流体相对于非惯性参考坐标 系静止时,称流体处于相对静止状态。
流体处于静止或相对静止状态,两者都表现不出黏性作 用,即切向应力都等于零,流体只存在压应力——压强。
Pd=22.6Kpa
将以上条件代入式(2-15)积分,便可得到同温层标准大气压分布
dppgdz pgdz
RT
RT d
p dp z g
dz
pa p
zd RTd
p22 .6ex1p1( 00z0) 6334
式中z得单位为m,11000m≤z≤25000m。
35
.
2.3.2气体压强分布
2.大气层压强的分布
2.3.3压强的度量
相对压强
绝对压强
真空度 绝对压强
绝对压强、相对压强和真空之间的关系
41
.
2.3.3压强的度量
相对压强
绝对压强
真空 绝对压强
绝对压强、相对压强和真空之间的关系
42
.
2.3.3压强的度量
立置在水池中的密封罩如图所示,试求罩内A、B、C三
点的压强。
【解】:
B点: pB p0
C
A点: pAghAB pB
从11-15km,温度几乎不变,恒为216.5K(-56.5℃), 这一层为同温层。
32
.
2.3.2气体压强分布
2.大气层压强的分布
(1)对流层
dpgdz dp pg dz
p
第二章 流体静力学ppt课件

.
2.1 静止流体上的作用力
按力的物理性分为:惯性力、重力、弹性力、粘性力 按力的表现形式分为:质量力、表面力
2.1.1 质量力(体积力、长程力)
1、定义:作用于流体的每个质点上,并与作用的流体 质量成正比。 例如:重力、直线惯性力、曲线惯性力
2、单位质量力 总的质量力以F表示,设F在各个坐标轴上的分力为:
C、导出关系式: F0
D、得出结论
. 图2.2 静止流体中的微元四面体
选取研究对象 受力分析 导出关系式 得出结论
C
O
A
B
静止流体中任何一点上各个方向作用 的静压强大小相等,与作用面方位无 关——大小特性
.
2.2 流体的平衡微分方程及其积分
2.2.1欧拉平衡微分方程
1、取研究对象:在平衡流体中取一微元六面体,边
.
即:
z
p
常数
流体静力学基本方程
对1、2两点:
z1
p1
z2
p2
当z=0时,即自由液面处,p=p0 代入静力学基本方程,得c=p0
p=p0-γz
p=p0+γh
——静力学方程基本形式二
Δh
p2=p1+γΔh
——静力学基本方程的变形
.
2.3.2 静止液体中压强计算和等压面
1、绝对静止等压面应满足的条件:
为 静水压强的方向垂直指向作用面
、
。同一点不同方向上的静水压强大小相等
.
2.3 流体静力学基本方程
绝对静止流体——质量力只有重力 表面力只有静压力
2.3.1 静力学基本方程
重力作用下静止流体质量力:X=Y=0,Z=-g 代入压强p的微分公式
d p(Xd Yxd Z ydz)
2.1 静止流体上的作用力
按力的物理性分为:惯性力、重力、弹性力、粘性力 按力的表现形式分为:质量力、表面力
2.1.1 质量力(体积力、长程力)
1、定义:作用于流体的每个质点上,并与作用的流体 质量成正比。 例如:重力、直线惯性力、曲线惯性力
2、单位质量力 总的质量力以F表示,设F在各个坐标轴上的分力为:
C、导出关系式: F0
D、得出结论
. 图2.2 静止流体中的微元四面体
选取研究对象 受力分析 导出关系式 得出结论
C
O
A
B
静止流体中任何一点上各个方向作用 的静压强大小相等,与作用面方位无 关——大小特性
.
2.2 流体的平衡微分方程及其积分
2.2.1欧拉平衡微分方程
1、取研究对象:在平衡流体中取一微元六面体,边
.
即:
z
p
常数
流体静力学基本方程
对1、2两点:
z1
p1
z2
p2
当z=0时,即自由液面处,p=p0 代入静力学基本方程,得c=p0
p=p0-γz
p=p0+γh
——静力学方程基本形式二
Δh
p2=p1+γΔh
——静力学基本方程的变形
.
2.3.2 静止液体中压强计算和等压面
1、绝对静止等压面应满足的条件:
为 静水压强的方向垂直指向作用面
、
。同一点不同方向上的静水压强大小相等
.
2.3 流体静力学基本方程
绝对静止流体——质量力只有重力 表面力只有静压力
2.3.1 静力学基本方程
重力作用下静止流体质量力:X=Y=0,Z=-g 代入压强p的微分公式
d p(Xd Yxd Z ydz)
《流体静力学》课件

流体静压力的大小等于流体密度与重力加速度的乘积,即 P = ρ × g。
流体静压力的分布
1 2
流体静压力的分布规律
在静止的流体中,流体静压力随深度增加而增大 。
流体静压力的分布图
通过绘制流体静压力随深度变化的曲线图,可以 直观地了解流体静压力的分布情况。
3
流体静压力分布的应用
在工程实践中,了解流体静压力的分布规律对于 设计水下结构、计算水压容器等具有重要意义。
未来展望
未来流体静力学将与计算 机技术、新材料等交叉融 合,为解决复杂工程问题 提供更有效的解决方案。
02
流体静力学的基本原 理
流体静压力
流体静压力的概念
流体静压力是指流体在静止状态下,单位面积上所受的垂直力。
流体静压力的特点
流体静压力沿作用面均匀分布,且大小与作用面的方向垂直。
流体静压力的计算公式
流体静力学的基本公 式
流体静压力的计算公式
总结词
流体静压力计算公式
详细描述
流体静压力计算公式是流体静力学中的基础公式之一,用于计算流体在静止状 态下受到的压力。公式为 P = ρgh,其中 P 是流体静压力,ρ 是流体的密度, g 是重力加速度,h 是流体的高度。
流体静压力的平衡公式
总结词
流体静压力平衡公式
电梯运行
电梯的升降系统利用流体 静压力原理,确保电梯平 稳运行。
气瓶压力控制
气瓶压力调节器利用流体 静压力原理,确保气体压 力稳定输出。
血压测量
血压计利用流体静压力原 理测量人体血压,帮助医 生诊断疾病。
流体静压力在科学实验中的应用
物理实验
流体静压力在物理实验中常被用 作测量仪器或实验对象,如液体
流体静压力的分布
1 2
流体静压力的分布规律
在静止的流体中,流体静压力随深度增加而增大 。
流体静压力的分布图
通过绘制流体静压力随深度变化的曲线图,可以 直观地了解流体静压力的分布情况。
3
流体静压力分布的应用
在工程实践中,了解流体静压力的分布规律对于 设计水下结构、计算水压容器等具有重要意义。
未来展望
未来流体静力学将与计算 机技术、新材料等交叉融 合,为解决复杂工程问题 提供更有效的解决方案。
02
流体静力学的基本原 理
流体静压力
流体静压力的概念
流体静压力是指流体在静止状态下,单位面积上所受的垂直力。
流体静压力的特点
流体静压力沿作用面均匀分布,且大小与作用面的方向垂直。
流体静压力的计算公式
流体静力学的基本公 式
流体静压力的计算公式
总结词
流体静压力计算公式
详细描述
流体静压力计算公式是流体静力学中的基础公式之一,用于计算流体在静止状 态下受到的压力。公式为 P = ρgh,其中 P 是流体静压力,ρ 是流体的密度, g 是重力加速度,h 是流体的高度。
流体静压力的平衡公式
总结词
流体静压力平衡公式
电梯运行
电梯的升降系统利用流体 静压力原理,确保电梯平 稳运行。
气瓶压力控制
气瓶压力调节器利用流体 静压力原理,确保气体压 力稳定输出。
血压测量
血压计利用流体静压力原 理测量人体血压,帮助医 生诊断疾病。
流体静压力在科学实验中的应用
物理实验
流体静压力在物理实验中常被用 作测量仪器或实验对象,如液体
《流体静力学》课件

大气压力和流体压力
解释大气压力和流体压力的概念、原理和计算方法。
浮力和阿基米德原理
详细介绍浮力和阿基米德原理,以及它们在船舶和气球等工程定理,它是流体静力学中一个重要的工具,用于求解复杂流体问题。
流体静压力
探讨流体静压力的概念、计算方法以及应用示例。
势流和流线
流体静力学基本假设
详细介绍流体静力学所依赖的假设,包括流体是连续的、无黏性、不可压缩 的等。
流动静力学定律
讲解流体静力学中的基本定律,如帕斯卡定律、阿基米德原理等,以及它们的工程应用。
黏性流体静力学方程
介绍流体静力学中的黏性流体方程,如纳维-斯托克斯方程,并讨论在不同情 况下如何求解。
流体静力学适用范围
说明流体静力学的适用范围,以及什么情况下我们可以使用流体静力学分析和设计。
流体静力学研究方法
介绍流体静力学的研究方法,包括实验、数值模拟和理论分析,以及它们的优缺点。
流体静力学实验装置
展示一些常用的流体静力学实验装置,并解释如何进行实验以验证理论。
流体的密度、体积和质量
讲解流体的密度、体积和质量的概念,并展示如何进行相关计算。
《流体静力学》PPT课件
欢迎大家来到《流体静力学》的PPT课件!让我们一起探索这个有趣且实用 的领域,从基本概念到实际应用,带你深入了解流体在静止状态下的行为和 性质。
流体静力学概述
介绍流体静力学的定义和研究对象,以及为什么它在各个工程领域都非常重 要。
流体静力学基本概念
解释流体静力学的基本概念,如压力、密度和流体静力学的基本方程。
说明势流的概念和特性,以及如何绘制流线图来可视化流体的运动。
等势线和等势面
解释等势线和等势面的含义和应用,以及它们在流体静力学中的重要性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020/3/2
10
1.2.3 流体静力学基本方程
一、流体静力学方程的推导 通过研究重力场中流体的受力平衡规律推导流体 静力学方程,参见教材P19页,亦有其他推导方法。 相关公式: ①静力学方程的微分表达式 静止流体内部任意点的压力为该点流体密度和垂 直深度的函数:
dp gdz 0 (113e)
2020/3/2
18
常见的液柱压差计有以下几种: ⑴简单测压计 简单测压计如附图所示。 依据流体静力学原理,测压点A处的绝对压强和表 压强分别为:
pA pa gR pA pa gR
流体静压强(static pressure):在静止流体内部
任意点的压强。对静压强的概念,需强调:
①压强具有点特性,在流体内部存在压强分布
(压强场)。
②静止流体中,同一水平面各点压强相等(等压
面)。
2020/3/2
5
③静止流体中,作用于任一点上不同方位的压强
数值相等,即任一点上的压强与方位无关--帕斯卡定
2020/3/2
11
②不可压缩性流体的积分表达式 对不可压缩性流体,流体密度为常数:
p gz 常数 (114)
③静止液体的流体静力学基本方程式 教材P19页图1-7,在静止流体内部任意两点间有:
p1
gz1
p2
gz2
(1 15 )
2020/3/2
12
p2 p1 g(z1 z2 ) (1 15a)
2020/3/2
2
比容(specific volume):单位质量流体所具有 的体积,即流体密度的倒数。
理想流体:密度与温度和压力有关,可由有关公 式求得。
实际流体:密度可由实验测定或查找有关手册获 取。
气体混合物和液体混合物密度的确定请参见有关 资料。
2020/3/2
3
1.2.2 流体的静压强
p2 p1 gh
p p0 gh (1 15b)
流体静力学方程表明:流体处于重力场时,流体 的静压强仅与垂直位置有关,而与水平位置无关。
若流体处于离心力场中,静压强分布将遵循不同 的规律。
2020/3/2
13
二、位能与压强能
gz: 单 位 质 量 流 体 所 具 有 的 位 能 (energy of
拟压强(dummy pressure)。 对不可压缩流体,上两式表示在连续静止的同一
流体中各点的虚拟压强处处相等。(意义重大) 三、一些基本概念 由流体静力学基本方程式可知:
2020/3/2
15
①在连续静止的同一流体中,静压强是流体深度 的函数,仅与垂直位置有关,而与水平位置无关;处 于同一水平面上各点的压强都相等,即等压面在同一 水平面上。
②在连续静止的流体中,势能有位能和静压能两 种形式,二者可以互相转换,其总和保持常数。(机 械能守恒原理)
2020/3/2
16
③在连续静止的流体中,压力是以同样大小传递 到液体内部各点。任一点的压强等于液面压强加上液 面到该点液柱高度所产生的压强。(压强差的大小可 以用一定高度的液体柱表示。)
这些概念和规律在工业生产中得到了广泛的应用。
position), J kg 。
p :单位质量流体所具有的压强能(pressure
energy),J kg 。
位能 与压强 能都是 流体具 有的 势 能(potential
energy)。
单位质量流体的总势能: Ψ gz p
ρ
ρ
2020/3/2
14
Ψ ρgz p :具有与压强相同的因次,可理解为一种虚
2020/3/2
1
1.2.1 流体的密度
密度(density):单位体积流体所具有的质量。流 体的物理性质。
m kg / m3 (11)
V
点密度(dot density):流体中某个质点的密度。
lim m (11a)
V 0 V
平均密度:在考察范围内流体点密度的平均值。
【例1-3】参见教材P20页。
2020/3/2
17
1.2.4 流体静力学基本方程的应用
1.2.4.1 压强与压强差的测量 生产中测量压强的装置或仪表很多,本节只介绍 与流体静力学原理有关的液柱测压装置。 液柱压差计可测量流体中某点的压强,亦可测量 两点之间的压强差。 这类仪器结构简单,使用方便,是广泛应用的测 压装置。
一、压力和压强
压力 P:在静止流体内部,垂直作用于某一截面 上的力,单位为牛顿( N )。
压强 p:在静止流体内部某一截面上,垂直作用
于单位面积上的压力,单位为帕斯卡(Pa )。
p P N / m2 A
当 A 0时,点压强为:
2020/3/2
4
p lim P A0 A
注意:工程上习惯将压强称之为压力。
9.807 104 Pa
2020/3/2
6
三、压强的表示方法
流体的压强除用不同的单位来计量外,还可以用
不同的计量基准来表示。
计量基准:绝对零压和大气压强两种基准。
表示方法:绝对压强、表压强和真空度。
绝对压强:以绝对零压作起点计算的压强--流体
的真实压强。
表压强:当被测流体的绝对压强大于外界大气压
律(Pascal’s Law)。
二、压强的单位换算
1atm 1.033at 1.033kgf / cm2 760mmHg
10.33mH2O 1.0133bar 1.013105 Pa 101.3kPa 0.1013MPa
1at 1kgf / cm2 735.6mmHg 10mH2O
1.2 流体静力学
流体静力学(hydrostatics):主要研究流体在静 止状态下所受的各种力之间的关系,其实质是讨论流 体内部压强变化的规律。
影响因素比较简单,可作为研究复杂运动问题的 基础,且多数测压仪表都是以流体静力学原理为依据。
静力学原理在化工中还有一些其他应用,例压强表)所测得的压强。
2020/3/2
7
各种压强表
2020/3/2
8
真空度:当被测流体的绝对压强小于外界大气压 强时,用测压仪表(真空表)所测得的压强。
2020/3/2
各种真空表
9
表压强
绝对压强、表压强和真空度三者的关系:
大气压线
绝对压强
绝对压强 真空度
绝对零压线
【例1-2】参见教材P18页。