单相全桥可控硅整流电路matlab
MATLAB课程设计-单相桥式全控整流电路的MATLAB设计

学号控制系统仿真单相桥式全控整流电路(电阻性负载)在MATLAB中的仿真真在MATLAB软件中的仿真应用学生姓名班级成绩控制与机械工程学院2015年6 月19 日绪论Matlab以矩阵运算为基础,把计算可视化程序设计融合到了一个交互的工作环境中,可实现工程计算、算法研究、建模和仿真、数据分析及可视化、科学和工程绘图、应用程序开发等功能.Simulink是Mat2lab 所提供的用来对动态系统进行建模、仿真和分析的集成环境,是结合了框图界面和交互仿真能力的非线性动态系统仿真工具.Matlab5.3与以前的MA TLAB版本的最大区别就是增加了电力系统模块库(PowerSystemBlockset),能快速而准确地对电路及电力系统进行仿真。
1990年MathWorks软件公司为Matlab提供了新的控制系统模型图形输入与仿真工具Simulink.作为对Matlab语言运算环境的扩展,在保持Matlab的一般性能基础上,Simulink又增加了许多功能.它与Matlab及其工具箱结合使用,可以完全对连续系统、离散系统、连续和离散混合系统的动态性能进行仿真与分析. Simulink与传统的仿真软件包用微分方程和差分方程建模相比,具有更直观、方便、灵活的优点.Simulink 提供了8个子模型库:Continuous(持续环节)、Discrete(离散系统)、Function&Tables(函数及图表)、Math(数学计算)、Nonlinear(非线形环节)、Signals&System(信号及系统)、Sink(输出方式)、Source(输入源).在以上每个子模型库中还包含有相应的功能模块,如Source子模块中包含有SineWave(正弦波)、PulseGenerator(脉冲信号)、Step(阶跃信号)等,Sink子模块中包含有scope(示波器)、To Workspace(传送到工作空间)、XYGraph(X-Y图表)等. Simulink提供了动态系统建模、分析和仿真的交互环境,能够实现交互建模、交互仿真,并允许用户扩展仿真环境等功能.Simulink的专用模型库(Blocksets)提供了一些专用元件集,使得Simulink的功能进一步扩展。
基于matlab的单相桥式可控整流电路环节仿真设计目的和意义

基于matlab的单相桥式可控整流电路环节仿真设计目的和意义目录1. 引言1.1 背景和意义1.2 结构概述1.3 目的2. 单相桥式可控整流电路的基本原理2.1 桥式整流电路概述2.2 可控整流电路原理介绍2.3 Matlab在电路仿真中的应用3. 环节仿真设计步骤与方法3.1 仿真设计的准备工作3.2 桥式可控整流电路参数设置与模型建立3.3 信号源设计与输入波形调整4. 结果分析与讨论4.1 输出电压与负载特性分析4.2 输入功率和效率计算及分析4.3 控制方式对输出特性的影响分析5. 结论与展望5.1 结论总结和发现归纳5.2 设计中存在问题及改进方向提议1. 引言1.1 背景和意义随着电力系统的快速发展,可控整流技术作为一种重要的电能转换技术在电气领域中得到广泛应用。
而单相桥式可控整流电路作为可控整流技术的典型代表之一,具有显著的优势和重要的应用价值。
单相桥式可控整流电路被广泛应用于直流电源、交直流变频器、焊接设备以及伺服驱动等领域。
其主要功能是将交流电转换为带有直流成分的输出电压,并通过调节触发角来实现对输出电压幅值和形状的精确控制。
这种控制方式可以根据需要灵活地调整输出信号,达到各种特定使用要求。
因此,对于单相桥式可控整流电路进行准确的仿真设计和性能分析,是深入理解其工作原理和提高其运行效率的重要手段。
1.2 结构概述单相桥式可控整流电路由四个晶闸管连接而成,组成一个反并联结构。
其中两个晶闸管连接在正半周机架上,另外两个晶闸管连接在负半周机架上。
通过适当地触发晶闸管的导通,可以实现对输出电压大小和形状的精确控制。
1.3 目的本文旨在利用Matlab软件对单相桥式可控整流电路进行环节仿真设计,并验证其性能。
具体目的包括以下几点: 1. 理解单相桥式可控整流电路的基本原理和工作方式; 2. 建立合适的仿真模型,模拟出整流电路的运行过程; 3. 通过仿真结果分析输出电压与负载特性、输入功率和效率等参数变化情况; 4. 分析不同控制方式对输出特性的影响,并提出改进方案。
单相桥式全控整流电路Matlab仿真(完美)资料-共18页

目录完美篇单相桥式全控整流电路仿真建模分析 (1)(一)单相桥式全控整流电路(纯电阻负载) (2)1.电路的结构与工作原理 (2)2.建模 (3)3仿真结果与分析 (4)4小结 (6)(二)单相桥式全控整流电路(阻-感性负载) (7)1.电路的结构与工作原理 (7)2.建模 (8)3仿真结果与分析 (10)4.小结 (12)(三)单相桥式全控整流电路(反电动势负载) (13)1.电路的结构与工作原理 (13)2.建模 (14)3仿真结果与分析 (16)4小结 (18)单相桥式全控整流电路仿真建模分析一、实验目的1、不同负载时,单相全控桥整流电路的结构、工作原理、波形分析。
2、在仿真软件Matlab中进行单相可控整流电路的建模与仿真,并分析其波形。
二.实验内容(一)单相桥式全控整流电路(纯电阻负载) 1.电路的结构与工作原理1.1电路结构U1U2Ud Id+ -T VT3VT1VT2VT4abR 单相桥式全控整流电路(纯电阻负载)的电路原理图(截图)1.2工作原理用四个晶闸管,两只晶闸管接成共阴极,两只晶闸管接成共阳极,每一只晶闸管是一个桥臂。
(1)在u2正半波的(0~α)区间:晶闸管VT1、VT4承受正压,但无触发脉冲。
四个晶闸管都不通。
假设四个晶闸管的漏电阻相等,则u T1.4= u T2.3=1/2 u2。
(2)在u2正半波的ωt=α时刻:触发晶闸管VT1、VT4使其导通。
电流沿a→VT1→R→VT4→b→Tr的二次绕组→a流通,负载上有电压(u d=u2)和电流输出,两者波形相位相同且u T1.4=0。
此时电源电压反向施加到晶闸管VT2、VT3上,使其承受反压而处于关断状态,则u T2.3=1/2 u2。
晶闸管VT1、VT4—直导通到ωt=π为止,此时因电源电压过零,晶闸管阳极电流下降为零而关断。
(3)在u2负半波的(π~π+α)区间:晶闸管VT2、VT3承受正压,因无触发脉冲,VT2、VT3处于关断状态。
单相桥式全控整流电路课程设计-matlab

1 引言随着现代科学技术的不断进步,电力电子技术正以令人瞩目的发展速的,改变着我国电力工业的整体面貌。
电子技术包括信息电子技术和电力电子技术两大分支。
电力电子技术是一门新兴的应用于电力领域的电子技术,具体的说,就是使用电力电子器件(如晶闸管,GTO,IGBT等)对电能进行变换和控制(整流,逆变,斩波,变频,变相等)的技术。
电力电子涉及由半导体开关启动装置进行电源的控制与转换领域,包括交流变直流,直流变交流,交流变交流,直流变直流等四大电力变换技术。
整流电路(Rectifier)是电力电子电路中出现最早的一种,它的作用是把交流电能转换为直流电能供给直流用电设备。
整流电路的应用十分广泛,例如直流电动机,电镀、电解电源,同步发电机励磁,通信系统电源灯,大多数整流电路由变压器、整流主电路和滤波器等组成。
可以从各种角度对整流电路进行分类,主要的分类方法有:按组成的期间可分为不可控,半控,全控三种;按电路的结构可分为桥式电路和零式电路;按交流输入相数分为单相电路和多相电路;按变压器二次侧电流的方向是单向还是双向,又可分为单拍电路和双拍电路。
而单相整流电路中应用较多的是单相桥式全控整流电路。
2 单相桥式全控整流电路的结构与工作原理2.1电路结构电路图:图1 单相桥式全控整流电路(纯电阻负载)的电路原理图2.2 工作原理在单项桥式全控整流电路中,晶闸管VT1和VT4组成一对桥臂,VT2和VT3组成另一对桥臂。
在u2正半周(即a点电位高于b点电位),若4个晶闸管均不导通,负载电流i d 为零,u d 也为零,VT 1、VT 4串联承受电压u 2,设VT 1和VT 4的漏电阻相等,则各承受u2的一半。
若在触发角α处给VT1和VT 4加触发脉冲,VT 1、VT 4即导通,电流从a 端经VT 1、R 、VT 4流回电源b 端。
当u 2为零时,流经晶闸管的电流也降到零,VT 1和VT 4关断。
在u2负半周,仍在触发延迟角α处触发VT 2和VT 3(VT 2和VT 3的α=0处为ωt=π),VT 2和VT 3导通,电流从电源的b 端流出,经VT 3、R 、VT 2流回电源a 端。
单相桥式全控整流电路MATLAB仿真实验报告(下)

一、单相桥式全控整流电路(电阻性反电势)1.电路结构与工作原理(1)电路结构TidE(2)工作原理1)若是感性负载,当u2在正半周时,在ωt=α处给晶闸管VT1加触发脉冲,VT1导通后,电流从u2正端→VT1→L→R→VD4→u2负端向负载供电。
u2过零变负时,因电感L的作用使电流连续,VT1继续导通。
但a点电位低于b点,使电流从VD4转移至VD2,VD4关断,电流不再流经变压器二次绕组,而是经VT1和VD2续流,则ud=0。
2)在u2负半周ωt=π+α时刻触发VT3使其导通,则向VT1加反压使之关断,u2经VT3→L→R→VD2→u2端向负载供电。
u2过零变正时,VD4导通,VD2关断。
VT3和VD4续流,u d又为零。
此后重复以上过程。
2.建模3.仿真结果分析α=30°单相全控桥式反电势负载(电阻性)α=60°单相全控桥式反电势负载(电阻性)α=90°单相全控桥式反电势负载(电阻性)4.小结若α <δ时,触发脉冲到来时,晶闸管承受负电压,不可能导通。
为了使晶闸管可靠导通,要求触发脉冲有足够的宽度,保证当晶闸管开始承受正电压时,触发脉冲仍然存在。
这样,相当于触发角被推迟,即α=δ。
二、单相桥式全控整流电路(阻感性反电势)1.建模2.仿真结果分α=30°单相全控桥式反电势负载(阻感性)α=60°单相全控桥式反电势负载(阻感性)α=90°单相全控桥式反电势负载(阻感性)3.小结当电枢电感不足够大时,输出电流波形断续,为此通常在负载回路串接平波电抗器以减小电流脉动,延迟晶闸管导通时间;如果电流足够大,电流就连续。
基于matlab的单相桥式可控整流电路环节仿真设计目的和意义

基于matlab的单相桥式可控整流电路环节仿真设计目的和意义一、引言随着电力电子技术的发展,可控整流电路在众多领域得到了广泛应用。
其中,单相桥式可控整流电路作为一种基本的电力电子装置,具有重要的理论和实际意义。
MATLAB作为一款强大的数学软件,其在电路仿真设计中的应用也越来越受到研究者们的青睐。
本文旨在基于MATLAB对单相桥式可控整流电路进行仿真设计,并探讨其目的和意义。
二、目的和意义1.提高对单相桥式可控整流电路的理解通过对单相桥式可控整流电路进行MATLAB仿真,可以直观地展示电路的工作原理和特性,有助于加深对电路本身的理解。
同时,通过调整可控硅的触发脉冲,可以实现对输出电压、电流等参数的调控,为实际工程应用提供理论依据。
2.验证MATLAB在电路仿真设计的优势MATLAB具有强大的计算能力和图形显示功能,可以方便地实现电路的建模、仿真和分析。
相较于传统的模拟电路实验,MATLAB在电路仿真设计中具有更高的精度和效率,可以大大缩短研究周期。
3.为相关领域的研究提供参考本文针对单相桥式可控整流电路的MATLAB仿真设计,可以为电力电子、电气工程等领域的相关研究提供一定的参考。
同时,也为其他类型的电路仿真设计提供了思路和方法。
三、MATLAB仿真步骤1.建立模型根据单相桥式可控整流电路的原理,在MATLAB中搭建相应的电路模型,包括电源、桥臂、可控硅、电阻和电感等元件。
2.设定参数为模型设置合适的参数,如电源电压、负载电阻、电感等,以满足实际应用需求。
3.编写控制策略根据可控整流电路的特点,编写相应的控制策略。
例如,采用SPWM调制方式,通过调整脉冲宽度实现对输出电压的调控。
4.运行仿真在设定好的参数和控制策略下,运行MATLAB仿真,观察输出电压、电流等波形。
5.分析结果对仿真结果进行分析,评估电路性能,如电压调整率、谐波含量等。
根据分析结果,对电路参数和控制策略进行优化。
四、结论本文通过对单相桥式可控整流电路的MATLAB仿真设计,验证了其在电力电子领域的应用价值。
单相桥式全控整流电路Matlab仿真(完美)

目录完美篇单相桥式全控整流电路仿真建模分析 (1)(一)单相桥式全控整流电路(纯电阻负载) (2)1.电路的结构与工作原理 (2)2.建模 (3)3仿真结果与分析 (4)4小结 (6)(二)单相桥式全控整流电路(阻-感性负载) (7)1.电路的结构与工作原理 (7)2.建模 (8)3仿真结果与分析 (10)4.小结 (12)(三)单相桥式全控整流电路(反电动势负载) (13)1.电路的结构与工作原理 (13)2.建模 (14)3仿真结果与分析 (16)4小结 (18)单相桥式全控整流电路仿真建模分析一、实验目的1、不同负载时,单相全控桥整流电路的结构、工作原理、波形分析。
2、在仿真软件Matlab中进行单相可控整流电路的建模与仿真,并分析其波形。
二.实验内容(一)单相桥式全控整流电路(纯电阻负载)1.电路的结构与工作原理1.1电路结构R单相桥式全控整流电路(纯电阻负载)的电路原理图(截图)1.2工作原理用四个晶闸管,两只晶闸管接成共阴极,两只晶闸管接成共阳极,每一只晶闸管是一个桥臂。
(1)在u2正半波的(0~α)区间:晶闸管VT1、VT4承受正压,但无触发脉冲。
四个晶闸管都不通。
假设四个晶闸管的漏电阻相等,则u T1.4= u T2.3=1/2 u2。
(2)在u2正半波的ωt=α时刻:触发晶闸管VT1、VT4使其导通。
电流沿a→VT1→R→VT4→b→Tr的二次绕组→a流通,负载上有电压(u d=u2)和电流输出,两者波形相位相同且u T1.4=0。
此时电源电压反向施加到晶闸管VT2、VT3上,使其承受反压而处于关断状态,则u T2.3=1/2 u2。
晶闸管VT1、VT4—直导通到ωt=π为止,此时因电源电压过零,晶闸管阳极电流下降为零而关断。
(3)在u2负半波的(π~π+α)区间:晶闸管VT2、VT3承受正压,因无触发脉冲,VT2、VT3处于关断状态。
此时,u T2.3=u T1.4=1/2 u2。
单相桥式全控整流电路Matl新编仿真

单相桥式全控整流电路M a t l新编仿真Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT目录(((3468单相桥式全控整流电路仿真建模分析一、实验目的1、不同负载时,单相全控桥整流电路的结构、工作原理、波形分析。
2、在仿真软件Matlab中进行单相可控整流电路的建模与仿真,并分析其波形。
二.实验内容(一)单相桥式全控整流电路(纯电阻负载)1.电路的结构与工作原理电路结构单相桥式全控整流电路(纯电阻负载)的电路原理图(截图)工作原理用四个晶闸管,两只晶闸管接成共阴极,两只晶闸管接成共阳极,每一只晶闸管是一个桥臂。
(1)在u2正半波的(0~α)区间:晶闸管VT1、VT4承受正压,但无触发脉冲。
四个晶闸管都不通。
假设四个晶闸管的漏电阻相等,则==1/2 u2。
(2)在u2正半波的ωt=α时刻:触发晶闸管VT1、VT4使其导通。
电流沿a→VT1→R→VT4→b→Tr的二次绕组→a流通,负载上有电压(u d=u2)和电流输出,两者波形相位相同且=0。
此时电源电压反向施加到晶闸管VT2、VT3上,使其承受反压而处于关断状态,则=1/2 u2。
晶闸管VT1、VT4—直导通到ωt=π为止,此时因电源电压过零,晶闸管阳极电流下降为零而关断。
(3)在u2负半波的(π~π+α)区间:晶闸管VT2、VT3承受正压,因无触发脉冲,VT2、VT3处于关断状态。
此时,==1/2 u2。
(4)在u2负半波的ωt=π+α时刻:触发晶闸管VT2、VT3,元件导通,电流沿b→VT3→R→VT2→a→Tr的二次绕组→b流通,电源电压沿正半周期的方向施加到负载电阻上,负载上有输出电压(u d=-u2)和电流,且波形相位相同。
此时电源电压反向加到晶闸管VT1、VT4上,使其承受反压而处于关断状态。
晶闸管VT2、VT3一直要导通到ωt=2π为止,此时电源电压再次过零,晶闸管阳极电流也下降为零而关断。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单相全桥可控硅整流电路matlab
1.引言
单相全桥可控硅整流器是一种广泛应用于变流器,逆变器和直流电源等领域的电力接口电路。
它可以将交流电转换成直流电,在工业、农业、交通和家庭用电方面都有着广泛的应用。
本文将介绍如何使用MATLAB软件来设计和模拟单相全桥可
控硅整流电路,包括电路原理图、电路参数和MATLAB程序
的编写等各个方面。
同时,将重点介绍如何使用MATLAB中
的Simulink工具箱来模拟电路的波形,并分析其性能。
2.单相全桥可控硅整流电路的原理
单相全桥可控硅整流电路主要包括一个变压器、一个全桥整流电路和一个控制电路。
其中变压器的作用是将220V的交流电
转换成较低的电压,用于提供给全桥整流电路使用。
在全桥整流电路中,四个可控硅(SCR)分别组成桥形电路。
当输入电压的正向信号到达顶部的可控硅时,它会导通,电流将通过负载,该电路的输出电压将是正向的。
而当输入电压的反向信号到达底部的可控硅时,它也会导通,电流将通过负载,但此时输出电压将变为反向。
整个控制电路由多个元件构成,其中最重要的是触发电路。
当可控硅的控制信号通过触发电路输入时,它们将导通并允许电流通过负载。
这样就可以控制输出电压的瞬时时间以及输出电压的平均值,并对负载进行精确定位。
3.设计单相全桥可控硅整流电路的MATLAB仿真程序
基于单相全桥整流电路的原理,我们可以开始设计和模拟电路的MATLAB仿真程序。
遵循以下步骤:
1. 绘制电路图
绘制单相全桥可控硅整流电路的原理图。
由于在MATLAB中
无法直接绘制电路图,因此需要使用专业的电路仿真软件(如Proteus、Multisim等)绘制出电路并导出到MATLAB中进行
仿真。
2.电路参数设置
在MATLAB中,我们需要设置电路的一些参数,如变压器的
变比,电容电压,电阻等。
这些参数直接关系到电路的性能,需要经过仔细的调整和模拟,以获得最佳效果。
3.编写MATLAB程序
MATLAB语言中集成了一个强大的工具箱——Simulink,用
于模拟和分析各种电子电路和控制系统。
我们可以使用Simulink工具箱来模拟单相全桥可控硅整流电路。
在编写MATLAB程序时,我们需要根据电路图计算输入电压、输出
电压和电流等参数,并利用Simulink工具箱进行模拟和分析。
4.模拟结果的分析
利用MATLAB中的Simulink工具箱模拟电路后,我们可以得到电路中各种参数的曲线图。
在分析这些曲线图时,我们需要注意一些重要的指标,如输出电压的峰值和频率,输出电流的均值和波形畸变等。
这些指标是衡量电路性能的重要因素,需要经过仔细分析和评估。
4.总结
单相全桥可控硅整流电路是一种广泛应用于各种电力接口电路的电路。
本文介绍了如何使用MATLAB软件来设计和模拟单相全桥可控硅整流电路,并分析了模拟结果。
通过这篇文章的学习,读者将了解到MATLAB软件在电子电路设计和模拟方面的重要作用,并掌握了单相全桥可控硅整流电路的工作原理和设计思路。