电流互感器
电流互感器原理及测试方法

电流互感器原理及测试方法电流互感器(Current Transformer,简称CT)是一种用于测量高电流的电气设备,主要用于将高电流变换成较小电流,以便进行测量、保护和控制等操作。
本文将详细介绍电流互感器的工作原理和测试方法。
一、工作原理当高电流通过一次线圈时,会在磁芯内产生磁场。
由于磁芯的存在,磁场会集中在磁芯中,形成一条闭合磁通。
根据电磁感应定律,二次线圈中就会产生相应的电动势,从而在二次线圈上产生一定电流。
该电流与一次线圈中的电流成正比,即I2=(N2/N1)I1,其中I1为一次线圈中的电流,I2为二次线圈中的电流,N1为一次线圈的绕组数,N2为二次线圈的绕组数。
由于一次线圈中的电流较大,而二次线圈中的电流较小,因此通常将电流互感器的变比称为额定变比。
二、测试方法为了保证电流互感器的准确性和可靠性,需要对其进行定期的测试和校验。
下面将介绍电流互感器的测试方法。
1.直流短路方法直流短路方法是一种常用的检测电流互感器变化特性的方法。
具体操作步骤如下:(1)用直流电源将0.2~0.5倍额定电流加到电流互感器的一次绕组上;(2)记录电流互感器二次绕组上的电流值,并标定;(3)通过改变一次绕组上的电流,重复上述操作,记录多组数据;(4)根据测得的数据绘制电流互感器的变比特性曲线。
2.测量铭牌参数法测量铭牌参数法是通过测量和计算电流互感器的参数来进行测试的方法。
具体操作步骤如下:(1)根据电流互感器的铭牌参数,测量和记录其一次绕组和二次绕组的电流,电压和绕组数等参数;(2)通过计算,得到电流互感器的变比值和额定负荷等参数;(3)将测得的结果与标定的结果进行比较,看是否在允许范围内。
3.比值测试法比值测试法是通过测量电流互感器的比值误差来进行测试的方法。
具体操作步骤如下:(1)将标准电流与电流互感器的一次绕组相连接,将电流互感器的二次绕组接到比率变送器等测试设备上;(2)根据被测电流互感器的铭牌参数设置标准电流值,并记录;(3)测量电流互感器输出的电流值,并记录;(4)通过计算,得到电流互感器的比值误差,并与标准误差进行比较。
电流互感器基础知识介绍

两相接差动式接线
© 2008 Eaton Corporation. All rights reserved.
电流互感器的接线形式
(4)单相接线在三相负荷 平衡时,可以用单相电流反 映三相电流值,主要用于测 量电路。
© 2008 Eaton Corporation. All rights reserved.
© 2008 Eaton Corporation. All rights reserved.
电流互感器的配置
• 互感器在主接线中的配置与测量仪表、同期点的选择、保护和 自动装置的要求以及主接线的形式有关。
(1)为了满足测量和保护装置的需要,在发电机、变压器、出 线、母线分段及母联断路器、旁路断路器等回路中均设有电流互 感器。对于大接地短路电流系统,一般按三相配置;对于小接地 短路电流系统,依具体要求按二相或三相配置。 (2)对于保护用电流互感器应尽量消除主保护装置的不保护区。 例如,若有两组电流互感器,且位置允许时应设在断路器两侧, 使断路器处于交叉保护范围之中。 (3)为了减轻内部故障对发电机的损伤,用于自动调整励磁装 置的电流互感器应配置在发电机定子绕组的出线侧。为便于分析 和在发电机并入系统前发现内部故障,用于测量的电流互感器宜 装设在发电机中性点侧。 • DL/T 866-2004
一次绕组
二次绕组
• 浇注绝缘互感器结构
简图:
一次绕组
铁心
© 2008 Eaton Corporation. All rights reserved.
二次绕组
电流互感器的类型
• 电流互感器的结构
(1)单匝式结构有贯穿式(一次绕组为单根铜管或铜杆)和母线 式(以母线穿过互感器作为一次绕组)。
(2)额定电流在400A以下采用多匝式。多匝式接结构可分为线圈 式、“ 8”字型和“U”字型。“8”字型绕组结构的电流互感器,只 用于35~110kV电压级。220kV“U”字型绕组电流互感器,在 110kV及以上的高压电流互感器中得到广泛的应用。 在同一回路中,往往需要数量很多的电流互感器,高压电流 互感器常由多个没有磁联系的独立铁芯和二次绕组与共用的一次 绕组组成同一电流比、多二次绕组的电流互感器。对于110kV及 以上的电流互感器,常将一次绕组分成几组,通过切换来改变绕 组的串、并联,以获得2~3种互感比。
电流互感器基础知识

RWL
LC
S
式中,γ为导线的导电率,铜线γ=53m/ (Ω·mm2),铝线γ=32m/(Ω·mm2);S为导 线截面(mm2);Lc为导线的计算长度(m)。 设互感器到仪表单向长度为l1,则:
Lc
l1 3l1
Hale Waihona Puke 2l1星形接线 两相V形接线 一相式接线
18
保护用互感器的准确度选10P级,其复合误差限 值为10%。为了正确反映一次侧短路电流的大小, 二次电流与一次电流成线性关系,也需要校验二次 负荷。
荷; (4)比较实际二次负荷与允许二次负荷。如实际二次负荷小于允许二次负荷,表示
电流互感器的误差不超过10%,如实际二次负荷大于允许二次负荷,则应采取下述措施, 使其满足10%误差:
① ①增大连接导线截面或缩短连接导线长度,以减小实际二次负荷; ②选择变比较大的电流互感器,减小一次电流倍数,增大允许二次负荷。
I1N >I30
S2N
一般: I1N =(1.2~1.5)I30
4). 电流互感器准确度选择及校验
准确度选择的原则:计量用的电流互感器的准确度选0.2~0.5级,测量用的电流互感 器的准确度选1.0~3.0级。为了保证准确度误差不超过规定值,互感器二次侧负荷S2 应不大于二次侧额定负荷S2N ,所选准确度才能得到保证。
(3) 变流比与二次额定负荷 电流互感器的一次额定电流有多种规格可供用户选择。 电流互感器的每个二次绕组都规定了额定负荷,二次绕组回路所带负荷不应超过额定负 荷值,否则会影响精确度。
14
电流互感器的选择与校验
1). 电流互感器型号的选择
根据安装地点和工作要求选择电流互感器的型号。 2).电流互感器额定电压的选择
电流互感器

电流互感器基本介绍作用电流互感器(Current transformer 简称CT)[1]的作用是可以把数值较大的一次电流通过一定的变比转换为数值较小的二次电流,用来进行保护、测量等用途。
如变比为400/5的电流互感器,可以把实际为400A的电流转变为5A的电流。
使用1)电流互感器的接线应遵守串联原则:即一次绕阻应与被测电路串联,而二次绕阻则与所有仪表负载电流互感器串联2)按被测电流大小,选择合适的变化,否则误差将增大。
同时,二次侧一端必须接地,以防绝缘一旦损坏时,一次侧高压窜入二次低压侧,造成人身和设备事故3)二次侧绝对不允许开路,因一旦开路,一次侧电流I1全部成为磁化电流,引起φm和E2骤增,造成铁心过度饱和磁化,发热严重乃至烧毁线圈;同时,磁路过度饱和磁化后,使误差增大。
电流互感器在正常工作时,二次侧近似于短路,若突然使其开路,则励磁电动势由数值很小的值骤变为很大的值,铁芯中的磁通呈现严重饱和的平顶波,因此二次侧绕组将在磁通过零时感应出很高的尖顶波,其值可达到数千甚至上万伏,危及工作人员的安全及仪表的绝缘性能。
另外,二次侧开路使二次侧电压达几百伏,一旦触及将造成触电事故。
因此,电流互感器二次侧都备有短路开关,防止二次侧开路。
在使用过程中,二次侧一旦开路应马上撤掉电路负载,然后,再停电处理。
一切处理好后方可再用。
4)为了满足测量仪表、继电保护、断路器失灵判断和故障滤波等装置的需要,在发电机、变压器、出线、母线分段断路器、母线断路器、旁路断路器等回路中均设2~8个二次绕阻的电流互感器。
对于大电流接地系统,一般按三相配置;对于小电流接地系统,依具体要求按二相或三相配置5)对于保护用电流互感器的装设地点应按尽量消除主保护装置的不保护区来设置。
例如:若有两组电流互感器,且位置允许时,应设在断路器两侧,使断路器处于交叉保护范围之中6)为了防止支柱式电流互感器套管闪络造成母线故障,电流互感器通常布置在断路器的出线或变压器侧7)为了减轻发电机内部故障时的损伤,用于自动调节励磁装置的电流互感器应布置在发电机定子绕组的出线侧。
电流互感器的原理和选用

电流互感器的原理和选用电流互感器(Current Transformer,简称CT)是一种用于测量和保护电路中电流的装置。
它通过感应电流来转换高电流为可测量的小电流,使得测量设备和保护装置能够安全地工作。
下面将详细介绍电流互感器的原理和选用。
一、电流互感器的原理电流互感器的原理基于法拉第电磁感应定律,即在一个闭合线圈内,当有电流通过时,会在线圈周围产生一个磁场。
电流互感器通常由一个环形的铁芯和线圈组成。
当被测电流通过铁芯上的一侧线圈时,会在铁芯中产生一个磁场。
根据法拉第电磁感应定律,这个磁场会感应出与被测电流成正比的电动势在另一侧的线圈上。
这样,高电流就可以通过电流互感器转换为可测量的小电流。
I2=(N2/N1)*I1其中,I1为被测电流,N1为被测电流通过的线圈匝数,I2为输出电流,N2为输出线圈匝数。
根据这个公式,可以根据需要选择合适的线圈匝数,以便将高电流转换为适合测量和保护装置的低电流。
二、电流互感器的选用1.测量范围:根据被测电流的范围选择合适的电流互感器。
一般来说,电流互感器的额定测量范围应大于被测电流的最大值,以确保测量的准确性。
2.额定负荷:电流互感器的额定负荷是指在额定电流下,可以连续工作的时间。
根据被测电流的特点和工作环境的需求,选择合适的额定负荷,以确保电流互感器的长期稳定性。
3.准确性:电流互感器的准确性是指输出电流与被测电流之间的差异。
根据测量的精度要求,选择合适的准确性等级,一般有0.2级、0.5级和1级等。
4.频率响应:电流互感器的频率响应是指在不同频率下的输出电流与被测电流之间的差异。
根据被测电流的频率特点,选择具有合适频率响应的电流互感器。
5.安装方式:根据安装环境的不同,选择合适的安装方式。
常见的安装方式有插入式和固定式两种。
插入式电流互感器适用于已有电路中的电流测量,而固定式电流互感器适用于新建电路和设备。
6.阻抗:电流互感器的阻抗是指在额定电流下的阻抗大小。
电流互感器的计算公式

电流互感器的计算公式
(原创实用版)
目录
1.电流互感器的概念与作用
2.电流互感器的计算公式
3.计算公式的应用举例
4.电流互感器与电压变压器的区别
正文
电流互感器是一种用于测量电流的设备,它可以将大电流转换为小电流,以便于测量和保护电路。
电流互感器的工作原理是基于电磁感应,当一次导线穿过互感器的铁心时,会在二次侧产生电流。
电流互感器的变流比是固定的,通常为 60/5,即一次电流为 60A 时,二次电流为 5A。
电流互感器的计算公式如下:
二次电流(I2)= 一次电流(I1)×变流比(N)
其中,一次电流是指通过互感器的主线电流,二次电流是指通过互感器的副线电流,变流比是指一次电流与二次电流的比值。
举例来说,如果一次电流为 15A,变流比为 60/5,那么可以通过以下公式计算出二次电流:
I2 = I1 × N
I2 = 15A × (60/5)
I2 = 180A
因此,当一次电流为 15A 时,互感器产生的二次电流为 180A。
需要注意的是,电流互感器的二次电流不能直接用于测量,因为其数值较大。
通常需要通过电流表进行测量,而电流表的满偏转电流为 15A。
因此,在实际应用中,需要根据电流互感器的变流比和一次电流,计算出二次电流,以便于通过电流表进行测量。
电流互感器与电压变压器的区别在于,电流互感器试图把电流从原边变换到副边,而电压变压器试图把电压从原边变换到副边。
电流互感器的电压大小由负载决定,而电压变压器的电压大小由原边电压决定。
电流互感器的作用和原理

电流互感器的作用和原理
电流互感器是测量高电流的一种电器元件,其作用是将高电流转换为与之成比例的低电流,方便进行测量和监控。
其原理是基于电磁感应定律,通过在电流互感器的磁芯中产生磁场,使被测电流的变化产生反应并转换为次级线圈中的电压。
具体原理如下:
1. 线圈:电流互感器内部有一个主线圈和一个次级线圈。
主线圈绕在铁芯上,被测电流通过主线圈,形成主磁场。
2. 磁芯:电流互感器的铁芯是由磁导率高的材料制成,如铁、硅钢等。
铁芯起到增强和引导磁场的作用,使其能够有效地感应次级线圈中的电压。
3. 次级线圈:主磁场的变化会在磁芯中感应出次级电流,次级电流在次级线圈中产生电压。
次级线圈通常是由细导线绕成,绕制成比主线圈匝数更多的线圈,以增加电压的变化比例。
4. 变比:电流互感器的变比是次级线圈匝数与主线圈匝数的比值。
通过适当选择匝数比,可以实现将高电流转换成相对较低的电压量,方便进行测量和监控。
综上所述,电流互感器通过电磁感应定律将高电流转化为低电流,并利用变比使测量更加方便和准确。
它广泛应用于电能计量、电力系统保护、电力负荷管理等领域。
电流互感器技术

04 电流互感器技术的发展趋 势
高精度与数字化发展
总结词
详细描述
随着电力系统对监控和保护要求的不断提高, 高精度和数字化已成为电流互感器技术的重 要发展趋势。
高精度电流互感器能够更准确地测量电流, 减少误差,提高电力系统的稳定性和可靠性。 数字化电流互感器则通过数字信号处理技术 实现信号的数字化传输和处理,具有抗干扰 能力强、动态范围广、测量精度高、响应速 度快等优点。
工作原理
基于电磁感应原理,当一次侧电 流发生变化时,在二次侧产生感 应电动势,从而输出与一次侧电 流成比例的二次侧电流。
电流互感器的分类
01
02
03
按用途分类
测量用电流互感器、保护 用电流互感器和特殊用途 电流互感器(如电子式电 流互感器)。
按安装方式分类
母线式电流互感器、套管 式电流互感器和组合式电 流互感器。
通过增加固定螺栓或采用 其他加固措施,确保电流 互感器的安装位置牢固稳 定。
尽可能将电流互感器安装 在远离振动源的位置,以 减少外部振动对其产生的 影响。
在无法远离振动源的情况 下,可以在电流互感器下 方或周围安装减震装置, 以减小振动对其产生的影 响。
THANKS FOR WATCHING
感谢您的观看
阻抗
流互…
积
误差偏大是电流互感器常 见的问题之一,可能导致 测量结果不准确。
误差偏大的问题通常是由 于电流互感器的二次负载 阻抗、励磁阻抗、漏抗等 参数不合适所引起的。为 了解决这个问题,可以采 取以下措施
通过调整二次电缆的长度 和截面积,以及连接的负 载设备的阻抗,使得二次 负载阻抗与电流互感器的 励磁阻抗相匹配,从而减 小误差。
根据实际电流的大小选择 合适的电流互感器变比, 使得实际电流在电流互感 器的线性范围内测量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
TA的工作表现在:
1)电流互感器的一次电流取决于一次电路的电压和阻抗,与其二次负 载无关,即当二次负载变化时,不改变其一次电流值的大小。
2)电流互感器二次电路所消耗的功率随二次电路阻抗的增加而增大,
S2 I22eZb
3)电流互感器二次电路的负载阻抗都是些内阻很小的仪表,如电流表 以及电能表的电流线圈等,所以其工作状态接近于短路状态。
二、电流互感器的工作原理
(1)工作原理与电力变压器 基本相同。 一次匝数少,常串接在电路中;
二次与仪表、继电器等负载串
联。(强调:二次要接地)
•
•
在忽略铁芯中各种损耗时 I1N1 I2 N2
电流互感器的变比
即理论上:电流互感器一次电流、二
KI
I1e I2e
N2 N1
次电流之比与一、二次绕组匝数 成反 比(实际上电流互感器的一次安匝数 大于二次安匝数 )
广泛应用于三相负载平 衡或不平衡电路
公共线中流过的电流为 Ib=-(Ia+Ic)
3台TA——三相星形(Y形)连接 :是六线联接(分相)的 简化,即四线联接
——用三只电流互感器和三只电流表串联
主要用于重要线 路及380V、 220V多用于三相
四线制电路
变压器和电流互感器有何区别
相同的是工作原理,都是由于电磁感应。不同的是结构和用途, 变压器用于电压变化升降,电流互感器用于计量。 两者的主要区别如下:
①电流互感器严禁二次侧开路,因这会引起一次电流全部是铁心 的激磁电流,使之饱和并在二次侧感应示高压,发生绝缘击穿事 故,而变压器无此限制。
②电流互感器二次侧所接负载的阻抗很小,近似短路,变压器二 次侧不允许短路。 ③电流互感器铁心的磁通密度设计值较低,仅0.08~0.1T;而变 压器铁心的磁通密度,冷轧硅钢片≤1.7T,热轧硅钢片≤1.45T。 ④电流互感器的二次电流随一次电流的大小而变化,而变压器则 倒过来,其一次电流的大小,由二次(即负载)电流的大小来决 定。
(1)1台TA的接线— —单相接线
—用一只电流互感器和一 只电流表串联
用于三相负 载平衡时
用于单相负 荷用电户的
电能计量
2台TA——两相星形(V形)连接
——应用两只电流互感 器和两只电流表串联
——即不完全星形接线, 是分相接线的简化(对
10kV及以下的计量装置,可采用 简化的三线连接),简化的三 线连接只能在TA二次回路很短的 计量装置上使用)
TA极性标志
①一次绕组:首端Ll,末端L2。当一 次绕组带有抽头时,首端标为L1,自 第一个抽头起依次标为L2,L3…
②二次绕组:首端K1,末端K2。当 二次绕组带有中间抽头时,首端标为 Kl,自第一个抽头起以下依次标志为 K2,K3…
③对于具有多个二次绕组的电流互 感器,应分别在各个二次绕组的出 线端标志“K”前加注数字,如1K1, 1K2,lK3…2K1,2K2,2K3…
一次端子 L1、L2
二次端子用K1、 K2
④标志符号的排列应当使 一次电流自Ll端流向L2端 时,二次电流自K1流出, 经外部回路流回到K2。
⑤电流互感器一次绕组和二次绕组来 看,电流I1和I2的方向是相反的,这样 的极性关系称为减极性
反之称为加极性。电流互感器一般都 按减极性表示。
5、电流互感器的接线方式