初一数学三角形练习题.docx
(完整版)七年级数学三角形测试题(附答案)

第七章 三角形班级: 姓名: 座号: 评分:一. 选择题。
(每题3分,共24分)1. 若三角形两边长分别是4、5,则周长c 的范围是( )A. B. C. D. 无法确定19c 914c 1018c 2. 一个三角形的三个内角中( )A. 至少有一个等于90°B. 至少有一个大于90°C. 不可能有两个大于89°D. 不可能都小于60°3. 从n 边形的一个顶点作对角线,把这个n 边形分成三角形的个数是( )A. n 个B. (n-1)个C. (n-2)个D. (n-3)个4. n 边形所有对角线的条数有( ) A. B. C. D. ()12n n -条()22n n -条()32n n -条()42n n -条5. 装饰大世界出售下列形状的地砖:正方形;长方形;正五边形;正○1○2○3○4六边形。
若只选购其中某一种地砖镶嵌地面,可供选用的地砖共有()A. 1种B. 2种C. 3种D. 4种6. 下列图形中有稳定性的是( )A. 正方形B. 长方形C. 直角三角形D. 平行四边形7. 如图1,点O 是△ABC 内一点,∠A=80°,∠1=15°,∠2=40°,则∠BOC 等于( )A. 95°B. 120°C. 135°D. 无法确定8. 若一个三角形的三边长是三个连续的自然数,其周长m 满足,则这样的三角形有( )1022m A. 2个 B. 3个 C. 4个 D. 5个二. 填空题。
(每空2分,共38分)1. 锐角三角形的三条高都在 ,钝角三角形有 条高在三角形外,直角三角形有两条高恰是它的 。
2. 若等腰三角形的两边长分别为3cm 和8cm ,则它的周长是 。
3. 要使六边形木架不变形,至少要再钉上 根木条。
4. 在△ABC 中,若∠A=∠C=∠B,则∠A= ,∠B= ,这个三角形13是 。
初一数学三角形知识点+同步提高练习题经典.docx

初一数学三角形知识点+同步提高练习题经典.docx三角形一、三角形相关概念1.三角形的概念由不在同一直线上的三条线段首尾顺次连结所组成的图形叫做三角形要点:①三条线段;②不在同一直线上;③首尾顺次相接.2.三角形的表示通常用三个大写字母表示三角形的顶点,如用A、B、C 表示三角形的三个顶点时,此三角形可记作△ABC,其中线段 AB、 BC、 AC是三角形的三条边,∠A、∠ B、∠ C 分别表示三角形的三个内角.3.三角形中的三种重要线段三角形的角平分线、中线、高线是三角形中的三种重要线段.(1)三角形的角平分线:三角形一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.注意:①三角形的角平分线是一条线段,可以度量,而角的平分线是经过角的顶点且平分此角的一条射线.②三角形有三条角平分线且相交于一点,这一点一定在三角形的内部.③三角形的角平分线画法与角平分线的画法相同,可以用量角器画,也可通过尺规作图来画.(2)三角形的中线:在一个三角形中,连结一个顶点和它的对边中点的线段叫做三角形的中线.注意:①三角形有三条中线,且它们相交三角形内部一点.②画三角形中线时只需连结顶点及对边的中点即可.(3)三角形的高线:从三角形一个顶点向它的对边作垂线,顶点和垂足间的限度叫做三角形的高线,简称三角形的高.注意:①三角形的三条高是线段②画三角形的高时,只需要向对边或对边的延长线作垂线,连结顶点与垂足的线段就是该边上的高.二、三角形三边关系定理a、b、c 的不等式有:a+b>c,b+c>a,①三角形两边之和大于第三边,故同时满足△ABC三边长c+a>b.a、b、c 的不等式有:a>b-c ,b>a-c ,②三角形两边之差小于第三边,故同时满足△ABC三边长c>b-a .注意:判定这三条线段能否构成一个三角形,只需看两条较短的线段的长度之和是否大于第三条线段即可三、三角形的稳定性三角形的三边确定了,那么它的形状、大小都确定了,三角形的这个性质就叫做三角形的稳定性.例如起重机的支架采用三角形结构就是这个道理.四、三角形的内角结论1:三角形的内角和为180°.表示:在△ AB C中,∠ A+∠ B+∠ C=180°结论 2:在直角三角形中,两个锐角互余.注意:①在三角形中,已知两个内角可以求出第三个内角如:在△ ABC中,∠ C=180°-(∠ A+∠ B)②在三角形中,已知三个内角和的比或它们之间的关系,求各内角.如:△ ABC中,已知∠ A:∠ B:∠ C=2:3: 4,求∠ A、∠ B、∠ C 的度数.五、三角形的外角1.意义:三角形一边与另一边的延长线组成的角叫做三角形的外角.2.性质:①三角形的一个外角等于与它不相邻的两个内角的和.②三角形的一个外角大于与它不相邻的任何一个内角.③三角形的一个外角与与之相邻的内角互补3.外角个数过三角形的一个顶点有两个外角,这两个角为对顶角(相等),可见一个三角形共有六个外角.六、多边形①多边形的对角线n(n3)条对角线;②n边形的内角和为(n-2)×180°;③多边形的外角和为360°2与三角形有关的线段A卷一、选择题:1. 如图 , 在△ ABF 中,∠ B 的对边是()2.关于三角形的边的叙述正确的是()A. 三边互不相等B. 至少有两边相等C. 任意两边之和一定大于第三边D.最多有两边相等3.下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是( ), 4cm, 8cm, 7cm, 15cm, 12cm, 20cm, 5cm, 11cm4.等腰三角形两边长分别为3,7 ,则它的周长为 ()或 17 D.不能确定5.在平面直角坐标系中,点A( -3 ,0), B(5, 0), C( 0,4)所组成的三角形ABC的面积是()6.已知三角形的三边长分别为4、 5、 x,则 x 不可能是()7.下列说法错误的是 ( ).A .三角形的三条高一定在三角形内部交于一点B .三角形的三条中线一定在三角形内部交于一点C .三角形的三条角平分线一定在三角形内部交于一点D .三角形的三条高可能相交于外部一点8. 给出下列命题:①三条线段组成的图形叫三角形②三角形相邻两边组成的角叫三角形的内角③三角形的角平分线是射线④三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外⑤任何一个三角形都有三条高、三条中线、三条角平分线⑥三角形的三条角平分线交于一点,且这点在三角形内。
七年级全等三角形测试题(卷)八套

全等三角形测试题一1.下图中全等的三角形是()A.Ⅰ和ⅡB.Ⅱ和ⅣC.Ⅱ和ⅢD.Ⅰ和Ⅲ2.在△ABC和△A'B'C'中 , 要使△ABC≌△A'B'C' , 需满足条件()A.AB=A'B', AC=A'C', ∠B=∠B'B.AB =A'B', BC=B'C', ∠A=∠A'C.AC=A'C', BC=B'C', ∠C=∠C'D.AC=A'C', BC=B'C', ∠C=∠B'3.如图,AB∥CD,AC∥DB,AD与BC交于0,AE⊥BC.于E,DF⊥BC于F,那么图中全等的三角形有( )对A.5 B.6 C.7 D.84.如图,在△ABC中,AC=BC,∠ACB=90°.AD平分∠BAC,BE⊥AD交AC的延长线于F,E为垂足.则结论:①AD=BF;②CF=CD;③AC+CD=AB;④BE=CF;⑤BF=2BE,其中正确结论的个数是( )A.1 B.2 C.3 D.45.如图,△ABD≌△ACE,则AB的对应边是_________,∠BAD的对应角是______.6.已知:如图,△ABE≌△ACD,∠B=∠C,则∠AEB=_______,AE=__ ______.7.如图,0A=0B,OC=OD,∠O=60°,∠C=25°,则∠BED等于8.在△ABC中,高AD和BE交于H点,且BH=AC,则∠ABC=9.如图,已知AE平分∠BAC,BE上AE于E,ED∥AC,∠BAE=36°,那么∠BED=10.如图,把△ABC绕点C顺时针旋转35度,得到△A′B′C, A′B′交AC乎点D,已知∠A′DC=90°,求∠A的度数11.已知:如图AB=CD,AD=BC 求证:AD∥BC.12.已知:如图 , E, B, F, C四点在同一直线上, ∠A=∠D=90° , BE=FC, AB=DF.求证:∠E=∠C13.如图 , AB BC于B , AD DC于D , 且CB=CD , AC , BD相交于O.求证:∠ABD=∠ADB14.已知:如图 , AE , FC都垂直于BD , 垂足为E、F , AD=BC , BE=DF.求证:OA=OC.15.已知:如图 , AB=CD , D、B到AC的距离DE=BF.求证:AB∥CD.16.已知:如图,∠A=∠D=90°,AC,BD交于O,AC=BD.求证:OB=OC.全等三角形测试题二1.如图,已知AB=AD,要使△ABC≌△ADC,可增加条件,理由是定理。
(word完整版)初一数学三角形练习题(有答案)

1.一个三角形的三个内角中 7.如图所示,在厶 ABC 中,/ B=Z C,FD 丄 BC,DE ! AB, / AFD=158 ,则/ EDF=A . 58°B . 68°C . 78°D . 328. 一个多边形的内角和等于它的外角和,这个多边形是 ()A 、三角形B 、四边形C 、 五边形D 、 六边形9•能将三角形面积平分的是三角形的() A 、角平分线 B 、高C 、中线D 、外角平分线10. 如图,AB // CD , Z A=70°, Z B=40°,则Z ACD=()A 、 55°B 、70° C 、 40° D 、 110°11. 长为11, 8, 6, 4的四根木条,选其中三根组成三角形有 _________________ 种选法,它们分别是 _______________12. 一个多边形的内角和是外角和的 3倍,它是()边形;一个多边形的各内角都等于 1200 ,它是()边形。
13. 已知△ ABC 为等腰三角形,①当它的两个边长分别为8 cm 和3 cm 时,它的周长为 _______ ;②如果它的周长为18 cm , —边的长为4 cm ,则腰长为 _________ .14. 如果一个多边形的每一外角都是 240,那么它 _____ 边形15. 如图,Z 仁Z 2=300,Z 3= Z 4,Z A=80°,则 x _______________ , y ____________18. (5 分)如图,△ ABC 中,BD 是Z ABC 的角平分线,DE // BC,交AB 于E, Z A=60° , Z BDC=95 ,求厶BDE 各内角的度数.19. 如图,△ ABC 中,Z A=36°,Z ABC=40 , BE 平分Z ABC Z E=18°, CE 平分Z ACD 吗?为什么?初一三角形练习题B 地,因受大风影响 开始就偏离航线(AB )18 ° (即Z A=18° ),飞到了C 地,已知Z B 地需以 ____ 的角飞行(即Z BCD 的度数). 16.如图飞机要从A 地飞往 ABC=10A ,现在飞机要达到 CCA17题图17.如图,△ ABC 中,高 AD 与CE 的长分别为 2 cm,4cm 求AB 与BC 的比是多少?A 、至少有一个钝角B 、至少有一个直角下列长度的三条线段能组成三角形的是 3, 4, 8 B 、5, 6, 11 C 、 1 , 2, 3如图在△ ABC 中,/ ACB=90°, CD 是边AB 上的高。
七年级数学上册《三角形》练习题一

练习题一1.选择题(1)已知三角形的一个外角小于与它相邻的内角,那么这个三角形( )A .是锐角三角形B .是直角三角形C .是钝角三角形D .以上三种情况都有可能(2)一木工师傅现有两根木条,长分别为40cm 和50cm ,他要选择第三根木条,将它们钉成一个三角形木架,设第三根木条长为x cm ,则x 的取值是( )A .9010<<xB .10020<<xC .5040<<xD .20090<<x(3)下列语句中,正确的是( )A .三角形的一个外角大于它的一个内角B .三角形的一个外角等于它的两个内角的和C .一个三角形的外角中,至少有两个钝角D .一个三角形的外角中,有且只有两个钝角(4)在ABC ∆中,B A ∠︒=∠,55比C ∠大25°,则=∠B ( )A .50°B .75°C .100°D .125°2.填空题(1)三角形三条边的长是三个连续的自然数,且周长为18,则这个三角形三条边的长为_________、_________、__________.(2)三角形的两边长3,3,则最长边c 的取值范围是___________.(3)直角三角形中,两个锐角的平分线相交所成的钝角等于____________度.(4)在钝角三角形中,最大的内角α的度数的取值范围是_________.3.画图与探索(1)画一个锐角三角形(但不是等腰三角形),使它的三条边都不是水平状态;(2)画一个直角三角形和一个钝角三角形,使直角、钝角所对的边呈水平状态;(3)量一量,在所画的三个三角形中,分别是哪个角最大,哪条迷最长;(4)在三个三角形中,最大的角与最大的边之间的关系有什么共同之处?参考答案1.(1)C (与这个外角相邻的内角是钝角)(2)A (需保证每两边之和都大于第三边)(3)C (三个内角中至少有两个锐角,或从外角和考虑)(4)B (︒=∠-∠︒=∠+∠25,125C B C B )2.(1)5、6、7 (18÷3得中间一边的长) (2)63<≤c (等边三角形的任何一边都可称为最长边) (3)135°(两锐角互余) (4)︒<<︒18090α3.画图略,最大的边所对的角也最大.。
全等三角形练习题含答案.docx

七年级全等测试一•选择题(共3小题)1. 如图,EB交AC于M ,交FC于D, AB交FC于N,∠ E=∠ F=90° ∠ B=∠ C, AE=AF给出下列结论:①∠ 1 = ∠2;②BE=CF③厶ACN^△ ABM:④CD=DN 其中正确的结论有()£A. 4个B. 3个C. 2个D. 1个2. 如图,△ ABC为等边三角形,D、E分别是AC、BC上的点,且AD=CE AE与BD相交于点P,BF⊥AE于点F.若BP=4则PF的长()A. 2B. 3C. 1D. 2 二3. 如图,OA=OC OB=OD且OA⊥OB, OC丄OD,下列结论:①△ AOD^△ COB②CD=AB③∠ CDA=Z ABC; 其中正确的结论是()A.①②B.①②③C.①③D.②③.解答题(共11小题)4. 如图,四边形ABCD中,对角线AC BD交于点O, AB=AC点E是BD上点,且AE=AD ∠ EAD=Z BAC(1 求证:∠ ABD=Z ACD(2)若Z ACB=65,求Z BDC的度数.5. (1)如图①,在四边形ABCD中,AB// DC, E是BC的中点,若AE是Z BAD 的平分线,试探究AB, AD,DC之间的等量关系,证明你的结论;(2)如图②,在四边形ABCD中,AB// DC, AF与DC的延长线交于点F, E是BC的中点,若AE是Z BAF的平分线,试探究AB, AF, CF之间的等量关系,证明你的结论.6 .已知:在△ ABC中,AB=AC D为AC的中点,DE⊥ AB, DF⊥ BC,垂足分别为求证:△ ABC是等边三角形.7. 已知,在△ ABC中,Z A=90°, AB=AC点D为BC的中点.(1)如图①,若点E、F分别为AB、AC上的点,且DE⊥DF,求证:BE=AF(2)若点E、F分别为AB、CA延长线上的点,且DE⊥ DF,那么BE=AF吗?请利用图②说明理由.图①8.如图,在Rt A ABC,∠ ACB=90, AC=BC分别过A、B作直线I的垂线,垂足分别为M、N.(1)求证:△ AMC^A CNB(2)若AM=3, BN=5,求AB的长.9. 已知,如图,在等腰直角三角形中,∠ C=90o, D是AB的中点,DE⊥ DF,点E F 在AC BC上,求证:DE=DF10. 如图,OC是∠ MON内的一条射线,P为OC上一点,PAlOM,PB丄ON,垂足分别为A,B,PA=PB连接AB, AB与OP交于点E.(1)求证:△ OPA^A OPB11. 如图,△ ABC和厶ADE分别是以BC, DE为底边且顶角相等的等腰三角形, 点D 在线段BC上,AF平分DE交BC于点F,连接BE, EF.B(1)CD与BE 相等?若相等,请证明;若不相等,请说明理由;(2) 若∠ BAC=90,求证:BF2+CD^=FC2∙12. 如图,OC是∠ AoB的角平分线,P是OC上一点,PD丄0A, PEI0B,垂足分别为D,E. F是OC上另一点,连接DF,EF.13. 如图,OP平分∠ A0B, PEXOA于E,PF⊥OB于F,点M在OA上,点N在OB 上,且PM=PN.求证:EM=FN14. 如图,△ ABC中,D为BC边上一点,BE⊥AD的延长线于E, CF⊥AD于F, BE=CF求证:D为BC的中点.答案B•选择题(共3小题)1. 如图,EB交AC于M ,交FC于D, AB交FC于N,∠ E=∠ F=90° ∠ B=∠ C, AE=AF给出下列结论:①∠ 1 = ∠2;②BE=CF③厶ACN^△ ABM:④CD=DN 其中正确的结论有()A. 4个B. 3个C 2个D. 1个【解答】解:τ∠E=∠ F=90o, ∠ B=∠ C, AE=AF •••△ ABE^△ ACF∙∙∙ BE=CF∠ BAE=/ CAF∠ BAE-∠ BAC=Z CAF-∠ BAC∙∙∙∠ 1=∠ 2△ABE^△ ACF∙∙∙∠ B=∠ C, AB=AC又∠ BAC=/ CAB△ACN^△ ABM.④CD=DN不能证明成立,3个结论对.故选:B.2. 如图,△ ABC为等边三角形,D、E分别是AC、BC上的点,且AD=CE AE与BD相交于点P, BF⊥AE于点F.若BP=4则PF的长()A. 2B. 3 C 1 D. 2 二【解答】解:•••△ ABC是等边三角形,∙∙∙ AB=AC∙∙∙∠ BAC=/ C.在厶ABD和厶CAE中,f AB=AC* ZBAD=ZC,AD=CEI•••△ ABD^△ CAE (SAS .∙∙∙∠ABD=∠ CAE∙∙∙∠APD=Z ABP+∠ PABN BAC=60.∙∙∙∠ BPF=Z APD=60.∙∙∙∠ BFP=90, ∠BPF=60, ∙∙∙∠ PBF=30.∙∙∙ PF= K丄」-故选:A.3. 如图,OA=OC OB=OD且OA⊥OB, OC丄OD,下列结论:①△ AOD^△ COB②CD=AB③∠ CDA=Z ABC; 其中正确的结论是()A.①②B.①②③C.①③D.②③【解答】解:I OA⊥ OB, OC⊥ OD,∙∠AOB=Z COD=9O.∙∠AOB∏∠ AOC=Z COc+∠ AOC即∠COB Z AOD.在厶AOB和厶COD中,'AO=COZAoB-ZCO D,BO^DOL•••△ AoB^△ COD ( SAS,∙∙∙ AB=CD ∠ ABO=∠ CDO.在厶AOD和厶COB中r AO=CO* ZACD=ZCOB,HO 二BO•••△ AOD^△ COB ( SAS∙∙∙∠ CBO=Z ADO,∙∙∙∠ ABO-∠ CBO=Z CDO-∠ ADO,即∠ ABC=/ CDA综上所述,①②③都是正确的.故选:B.二.解答题(共11小题)4. 如图,四边形ABCD中,对角线AC BD交于点O, AB=AC点E是BD上点,且AE=AD ∠ EAD=Z BAC(1)求证:∠ ABD=∠ ACD(2)若∠ ACB=65 ,求∠ BDC的度数.【解答】证明:(1)v∠ BAC=/ EAD∙∙∙∠BAC-∠ EAC∠ EAD-∠ EAC 即:∠ BAE=/ CADf AB=AC在厶ABE和厶ACD中* ZBAE=ZCADAE=ADI(2)τ∠ BOC是厶ABO和ADCO的外角∙∙∙∠BOC=/ ABD+∠ BAC, ∠ BOC=Z ACD+∠ BDC∙∙∙∠ ABcH-∠ BAC=Z ACcH-∠ BDCτ∠ ABD=∠ ACD∙∙∙∠ BAC=/ BDC∙∙∙∠ ACB=65, AB=AC∙∙∙∠ ABC=/ ACB=65∙∙∙∠BAC=180-∠ ABC-∠ ACB=180-65° - 65°=50°∙∙∙∠ BDC=/ BAC=50.5. (1)如图①,在四边形ABCD中,AB// DC, E是BC的中点,若AE是∠ BAD 的平分线,试探究AB, AD, DC之间的等量关系,证明你的结论;(2)如图②,在四边形ABCD中,AB// DC, AF与DC的延长线交于点F, E是BC的中点,若AE是∠ BAF的平分线,试探究AB, AF, CF之间的等量关系,证明你的结论.V E是BC的中点, ∙∙∙ CE=BEV AB// DC,【解答】解: (1)证明:延长AE交DC的延长线于点F,Br ZBAE=ZF在厶AEB和厶FEC中,ZMB二ZFEC,BE=CEI•••△ AEB^△ FEC∙∙∙ AB=FCV AE是∠ BAD的平分线,∙∙∙∠ BAE=/ EAD,V AB// CD,∙∙∙∠ BAE=/ F,∙∙∙∠ EAD=Z F,∙∙∙ AD=DF.∙. AD=DF=DCCF=D(+AB ,(2)如图②,延长AE交DF的延长线于点G , V E是BC的中点,.CE=BEV AB// DC,.∠ BAE=/ G,在厶AEB和厶GEC中,* Z规B=ZGEC,BE=CEI•••△ AEB^△ GEC.AB=GCV AE是∠ BAF的平分线,.∠ BAG=Z FAGV AB// CD,.∠ BAG=Z G ,图① 圏②∙∙∙∠ FAG=∠ G ,∙∙∙ FA=FG∙∙∙ AB=CG=A+CF,6 .已知:在△ ABC 中,AB=AC D 为AC 的中点,DE ⊥ AB, DF ⊥ BC,垂足分别为 点E , F ,且DE=DF 求证:△ ABC 是等边三角形.【解答】证明:T DEXAB, DF ⊥ BC,垂足分别为点E , F ,∙∙∙∠ AED=Z CFD=90,V D 为AC 的中点,∙∙∙ AD=DC在 Rt A ADE 和 Rt A CDF 中,fAD=DCIDE=DF∙∙∙ Rt A ADE ^ Rt A CDF∙∙∙∠ A=∠ C,∙∙∙ BA=BC V AB=AC∙∙∙ AB=BC=AC•••△ ABC 是等边三角形.7. 已知,在厶ABC 中,∠ A=90o ° AB=AC 点D 为BC 的中点.(1) 如图①,若点E 、F 分别为AB 、AC 上的点,且DE ⊥DF ,求证:BE=AF(2) 若点E 、F 分别为AB 、CA 延长线上的点,且 DE ⊥ DF ,那么BE=AF 吗?请【解答】(1)证明:连接AD ,如图①所示.∙∙∙∠ A=90, AB=AC•••△ ABC为等腰直角三角形,∠ EBD=45.•••点D为BC的中点,∙∙∙ ADh BC=BD ∠ FAD=45.2∙∙∙∠BDE∏∠ EDA=90 , ∠ EDA+∠ ADF=90 ,∙∙∙∠ BDE=/ ADF.r ZEBD=ZFAD在△BDE和△ ADF 中,BD=AD ,ZBDE=ZADFL•••△ BDE^△ ADF (ASA ,∙∙∙ BE=AF(2) BE=AF证明如下:连接AD,如图②所示.∙∙∙∠ ABD=∠ BAD=45,∙∙∙∠ EBD=/ FAD=135.∙∙∙∠EDB∏∠ BDF=90, ∠ BDF+∠ FDA=90,∙∙∙∠ EDB=/ FDAr ZEBD=ZFAD在△ EDB和△ FDA 中,BD=AD ,ZEDB=ZFDAI•••△ EDB^△ FDA (ASA),B C图①8. 如图,在Rt A ABC,∠ ACB=90, AC=BC分别过A、B作直线I的垂线,垂足分别为M、N.(1)求证:△ AMC^A CNB(2)若AM=3, BN=5,求AB的长.【解答】解:(1)v AM丄I, BN丄l,∠ ACB=90,∙∙∙∠AMC=∠ ACB=Z BNC=90,∙∙∙∠MAC+∠MCA=90 ,∠MCA+∠NCB=180 - 90°=90°,∙∙∙∠MAC=∠ NCB,在厶AMC和厶CNB中,'Z AJIC=Z BNCZMAC=ZNCB,AC=BCL•••△ AMC^A CNB (AAS;(2)v^ AMC^A CNB,.∙. CM=BN=5∙∙∙Rt△ACM中,AC= 「=,_「=「;:,V Rt A ABC, ∠ACB=90, AC=BC=三,∙AB=I;'= 11 ;=2 ■'.B C9. 已知,如图,在等腰直角三角形中,∠ C=90o, D是AB的中点,DE⊥ DF,点E F 在AC BC上,求证:DE=DF【解答】证明:连接CD.T在等腰直角三角形ABC中,D是AB的中点.∙∙∙ CD为等腰直角三角形ABC斜边BC上的中线.∙∙∙ CD丄AB,∠ ACD=Z BCD=45, CD=BD=AD又V DEX DF∙∙∙∠ EDC∠ FDB在厶ECD^n△ FBD中'Z EDC=Z FDB,CD=BDZECD=ZFBD=45flL•••△ ECD^△ FDB (ASA10. 如图,OC是∠ MON内的一条射线,P为OC上一点,PAlOM, PB丄ON, 垂足分别为A,B,PA=PB连接AB, AB与OP交于点E.(1)求证:△ OPA^A OPB(2)若AB=6,求AE的长.【解答】解:(1)∙∙∙ PA⊥ OM, PB丄0N,∙∙∙∠PAO=∠ PBO=90,又V PA=PB PO=PO∙∙∙ Rt A AOP^ Rt A BoP(2)V A OPA^A OPB∙∙∙∠APE=/ BPE又V PA=PB∙∙∙ AE=BE∙∙∙ AE= AB=3.211. 如图,△ ABC和厶ADE分别是以BC, DE为底边且顶角相等的等腰三角形, 点D 在线段BC上,AF平分DE交BC于点F ,连接BE, EF.(1)CD与BE相等?若相等,请证明;若不相等,请说明理由;(2)若∠ BAC=90 ,求证:Bh+CD2=FD2∙【解答】解:(1)CD=BE理由如下:VA ABC和厶ADE为等腰三角形,∙∙∙ AB=AC AD=AEV∠ EAD=Z BAC∙∙∙∠EAD-∠ BAD=/ BAC-∠ BAD,即∠ EAB=∠ CAD,r AE=AD在厶EAB与厶CAD 中ZEAB=ZCAD,AB=ACI•••△ EAB^△ CAD,∙∙∙ BE=CD(2)τ∠BAC=90,•••△ ABC和厶ADE都是等腰直角三角形,∙∙∙∠ABF=Z C=45,•••△ EAB^△ CAD,∙∙∙∠EBA=/ C ,∙∙∙∠EBA=45 ,∙∙∙∠EBF=90,在Rt A BFE中,BF2+BE Z=ElF ,V AF平分DE ,∙∙∙ AF垂直平分DE,∙∙∙ EF=FD由(1)可知,BE=CD∙∙∙ BF2+CD2=FD212. 如图,OC是∠ AOB的角平分线,P是OC上一点,PD丄OA, PElOB,垂足分别为D , E. F是OC上另一点,连接DF, EF.求证:DF=EF【解答】证明:V OC是∠ AOB的角平分线,P是OC上一点,PD丄OA, PEl OB , ∙∙∙∠DOP=Z EOP PD=PE在 Rt A PoD 和 Rt A PoE 中,严二PE ,L OP=OP∙∙∙ Rt A POD ^ Rt A POE ( HL ),∙∙∙ OD=OEOD-OE在A ODF 和A OEF 中,ZmF=ZEOF ,L OF=OF•••△ ODF ^ A OEF (SAS ,∙∙∙ DF=EF13. 如图,OP 平分∠ AOB, PEXOA 于E , PF ⊥OB 于F ,点M 在OA 上,点N 在 OB 上,且 PM=PN .求证:EM=FN 【解答】证明: B•••点P 在∠ AOB 的平分线上,PE 丄0A 于E , PF 丄OB 于F ,∙∙∙ PF=PE在 Rt A PEM 和 Rt A PEN 中r PH-PN,(PE-PF ∙∙∙ Rt A PEM B Rt A PEN ( HL ), ∙∙∙ EM=FN14. 如图,△ ABC 中,D 为BC 边上一点,BE ⊥AD 的延长线于E, CF ⊥AD 于F , BE=CF 求证:D 为BC 的中点.【解答】 证明:TBEIAD 的延长线于E , CFL AD 于F ,∙∙∙∠ CFD=∠ BED=90,r ZCFD=Z BED= 90β 在△BED和△ CFD中,ZCDF=ZBDEHE 二CF•••△ CDF^△ BDE (AAS∙∙∙ CD=BD∙∙∙ D为BC的中点.。
初一数学三角形练习题(有答案)(K12教育文档)

初一数学三角形练习题(有答案)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(初一数学三角形练习题(有答案)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为初一数学三角形练习题(有答案)(word版可编辑修改)的全部内容。
初一三角形练习题1.一个三角形的三个内角中 ( )A 、至少有一个钝角B 、至少有一个直角C 、至多有一个锐角D 、 至少有两个锐角2. 下列长度的三条线段能组成三角形的是 ( )A 、 3,4,8B 、 5,6,11C 、 1,2,3D 、 5,6,103。
如图在△ABC 中,∠ACB=900,CD 是边AB 上的高。
图中与∠A 相等的角是( )A 、 ∠B B 、 ∠ACDC 、 ∠BCD D 、 ∠BDC4.如图,AC⊥BD,DE⊥AB,下列叙述正确的是()A、∠A=∠B B、∠B=∠D C、∠A=∠D D、∠A+∠D=9005.如图,∠A+∠B+∠C+∠D+∠E+∠F 的和为( ) A.180° B 。
360° C 。
540° D.720°4题图 5题图 7题图 10题图6.等腰三角形两边长分别为 3,7,则它的周长为 ( ) A 、 13 B 、 17 C 、 13或17 D 、 不能确定7。
如图所示,在△ABC 中,∠B=∠C,FD ⊥BC,DE ⊥AB ,∠AFD=158°, 则∠EDF=________度。
A .58° B .68° C .78° D .32°8.一个多边形的内角和等于它的外角和,这个多边形是 ( ) A 、三角形 B 、 四边形 C 、 五边形 D 、 六边形 9.能将三角形面积平分的是三角形的()A 、 角平分线B 、 高C 、 中线D 、外角平分线第(5)题DCBA 第(7)题E DCBADF AECB FED CBA 第(6)题DCBA10。
(完整版)七年级数学认识三角形练习题

三角形的认识练习题一、填空(每空 3 分,共60 分)1.三角形的三边关系:①三角形随意两边之和差第三边 .第三边;②三角形随意两边之2.以下每组分别是三根小木棒的长度,用它们能摆成三角形吗?(填“能”或“不可以”):(1)3 ㎝,4 ㎝, 5 ㎝()(2)8 ㎝,7 ㎝,15㎝()(3)13 ㎝,12 ㎝, 20 ㎝()(4)5 ㎝,5 ㎝,11 ㎝()(5)6cm, 8cm, 10cm()(6)7cm, 7cm, 14cm()3.在△ ABC 中,∠ A=10°,∠ B=30°,则∠ C=_________.( 2 )一个等腰三角形的一边是5cm ,另一边是7cm , 则这个三角形的周长是_____________cm.4.假如∠ B+∠ C=∠ A,那么△ ABC是三角形 .5.在△ ABC 中, AB=6 cm, AC=8 cm 那么 BC 长的取值范围是.6. ABC 中, AD 是 ABC 的中线,且 BC 10cm ,则 BD= cm.7.在 ABC 中, A 80 ,AD为 A 的均分线,则BAD=8.假如一个三角形两边上的高的交点,恰巧是三角形的一个极点,则此三角形是_____________三角形 .9.判断具备下边条件的三角形是直角三角形、锐角三角形仍是钝角三角形:(1)假如A:B:C 1: 3: 4 ,那么 ABC 是三角形;(2)假如 A B ,C 30 ,那么ABC 是三角形;()假如 1C,那么ABC 是3 AB5三角形 .二、选择(每题 3 分,共 27 分)1.在△ ABC 中,∠ A 是锐角,那么△ ABC 是()A 、锐角三角形B、直角三角形C、钝角三角形D、不可以确立2.△ ABC 中,若∠ A∶∠ B∶∠ C=1∶2∶3,则△ ABC 的形状是()A 、锐角三角形B、直角三角形C、钝角三角形D、不确立3.以下是由四位同学描绘三角形的三种不一样的说法,正确的选项是()A 、由三个角构成的图形叫三角形B、由三条线段构成的图形叫三角形C、由三条直线构成的图形叫三角形D、由不在同向来线上的三条线段首尾按序相接所构成的图形叫三角形4.△ ABC 中,已知a=8, b=5,则 c 为( )A 、c=3 B、c=13 C、c 能够是随意正整数D、c 能够是大于 3 小于13 的随意数值5.下边说法中正确的选项是:()1 / 3A、三角形的角均分线 , 中线 , 高都在三角形内B、直角三角形的高只有一条C、钝角三角形的三条高都在三角形外D、三角形起码有一条高在三角形内6.假如一个三角形的三条高线的交点恰巧是三角形的一个极点,那么这个三角形是()A 、直角三角形B、锐角三角形C、钝角三角形D、不可以确立7.在一个三角形,若A 、直角三角形8.三角形的高线是A B 40 ,则ABC 是(B、锐角三角形C、钝角三角形()A、线段B、垂线)D、以上都不对C、射线D、直线9. 在Rt△中,两个锐角关系是() A、互余 B 、互补 C 、相等 D 、以上都不对三、解答题1.如图 ,在△ ABC 中 ,∠BAC=60 °,∠B=45°,AD 是△ ABC 的一条角均分线求∠ ADB的度数 . (7 分)AO2.在以下图中,分别画出三角形的三条高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一三角形练习题
1.一个三角形的三个内角中()
A 、至少有一个钝角
B 、至少有一个直角 C、至多有一个锐角
D、至少有两个锐角
2.下列长度的三条线段能组成三角形的是()
A、 3 ,4, 8 B 、 5 ,6,11 C 、 1 ,2,3 D 、 5 ,6,10
3.
)如图在△ ABC中,∠ ACB=90, CD是边 AB上的高。
图中与∠ A相等的角是(
A、∠B B 、∠ACD C 、∠BCD D 、∠BDC
4.如图,AC⊥BD,DE⊥AB,下列叙述正确的是()
0
A、∠A=∠BB、∠B=∠DC、∠A=∠DD、∠A+∠D=90
5.如图 , ∠A+∠B+∠C+∠D+∠E+∠F 的和为 ( )
° ° ° °
4 题图5题图7题图10题图
6.等腰三角形两边长分别为 3 ,7,则它的周长为()
A、 13
B、17
C、13或17
D、不能确定
7. 如图所示 , 在△ ABC中, ∠B=∠C,FD⊥BC,DE⊥AB,∠AFD=158°,则∠ EDF=________度.
A.58° B .68° C.78° D.32°
8. 一个多边形的内角和等于它的外角和,这个多边形是()
A 、三角形
B 、四边形
C 、五边形
D 、六边形
9.能将三角形面积平分的是三角形的()
A、角平分线 B 、高 C 、中线 D 、外角平分线
10. 如图, AB∥CD,∠ A=700,∠ B=400,则∠ ACD=()
A 、 55 0
B 、 70 0
C 、 40 0
D 、 110 0
11. 长为 11,8,6,4 的四根木条,选其中三根组成三角形有种选法,它们分别是
12.一个多边形的内角和是外角和的 3 倍,它是()边形;一个多边形的各内角都
等于 1200,它是()边形。
13.已知△ ABC为等腰三角形,①当它的两个边长分别为8 cm 和 3 cm 时,它的周长为 _____;②如果它的周长为18 cm,一边的长为 4 cm,则腰长为 _____.
14.如果一个多边形的每一外角都是240,那么它边形
15.如图,∠ 1=∠2=300,∠ 3=∠4,∠ A=800,则x, y
16.如图飞机要从 A 地飞往 B 地, 因受大风影响 , 一开始就偏离航线 (AB)18°( 即∠
A=18°) ,飞到了 C 地,已知∠ ABC=10°,现在飞机要达到B 地需以 _____的角飞行( 即
∠B CD的度数 ).
15 题图16题图
17. 如图,△ ABC中,高 AD与 CE的长分别为 2 ㎝, 4 ㎝求AB与BC的比是多少?
18. 如图 , △ ABC中,BD是∠ ABC的角平分线 ,DE∥BC,交 AB于 E, ∠A=60°, ∠BDC=95°,
求△ BDE各内角的度数 .
19.如图,△ ABC中,∠ A=36°,∠ ABC=40°, BE平分∠ ABC,∠ E=18°,CE平分∠ACD吗?为什么?
20. 如图所示 , 已知∠ 1=∠2, ∠ 3=∠4, ∠C=32°, ∠D=28°, 求∠ P 的度数 .
6-10 BBBCB11. 4① 4、6、8②4、6、11③4、8、11.④6、8、11 12. 8,6; ;7 14. 十五°130°°
17因为18.略s
ABC
1
AB CE
1
BC AD 高AD=2㎝CE=4㎝所以AB AD21
BC CE42 22
19. ∠ P= 1
C D 2。