浙教版2020学年《解直角三角形》培优提升特训(Word版无答案)
浙教版《初中数学解直角三角形》单元提优测试题(含答案)

第一章《解直角三角形》单元提优测试题一、选择题(本题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.1﹒在△ABC中,∠C=90°,若斜边AB是直角边BC的3倍,则tan B的值是()A﹒13B﹒3 C﹒24D﹒222﹒如图,在平行四边形ABCD中,对角线AC、BD相交成的锐角为α,若AC=a,BD=b,则平行四边形ABCD的面积是()A﹒12ab sinαB﹒12ab cosαC﹒ab cosαD﹒ab sinα第2题图第4题图第5题图第6题图3﹒若锐角α满足cosα<22,且tanα<3,则α的范围是()A﹒30°<α<45°B﹒45°<α<60°C﹒60°<α<90°D﹒30°<α<60°4﹒如图,若锐角△ABC内接于⊙O,点D在⊙O外(与点C在AB同侧),则下列三个结论:①sin C>sin D;②cos C>cos D;③tan C>tan D中,正确的结论为()A﹒①②B﹒②③C﹒①②③D﹒①③5﹒如图,在四边形ABCD中,E,F分别是AB、AD的中点,若EF=2,BC=5,CD=3,则tan C等于()A﹒34B﹒43C﹒35D﹒456﹒如图,在平面直角坐标系xOy中,已知点P的坐标为(1,1),直线y=kx+b(k≠0)与x轴和y轴的正半轴分别相交于点A、B,若tan∠ABO=3,则点A的坐标为()A.(3,0)B.(4,0)C.(42,0)D.(5,0)7﹒如图,某小型水库栏水坝的横断面是四边形ABCD,DC∥AB,测得迎水坡的坡角α=30°,已知背水坡的坡比为1.2:1,坝顶部宽为2m,坝高为6m,则坝底AB的长为()A﹒(7+63)m B﹒(5+63)m C﹒(7+23)m D﹒(5+23)m第7题图第8题图第9题图第10题图8﹒如图,等腰△ABC中,AB=AC,点E是AB上一点,且满足AE:EB=5:7,EF∥BC交AC于点F,AD是边BC上的中线,若EF=10,tan C=52,则AD的长为()A﹒182B﹒20 C﹒30 D﹒3029﹒如图,在△ABC中,∠ABC=90°,以AB为直径作⊙O交AC于点D,作直径DE交⊙O于E,连结BE,若tan∠ACB=45,BC=6,则BE的长为()A﹒6 B﹒325C﹒245D﹒810.如图,在四边形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,点M、N分别在AB、AD边上,若AM:MB=AN:ND=1:2,则tan∠MCN的值为()A﹒3313B﹒2511C﹒239D﹒5-2二、填空题(本题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.若α为锐角,且sinα=45,则tanα=_________.12.在Rt△ABC中,∠C=90°,若AB=4,sin A=35,则斜边上的高为__________.13.在锐角△ABC中,已知AB=5,AC=5,S△ABC=103,则BC的长为_________.14.如图,在Rt△ABC中,∠ACB=90°,tan B=43,点D、E分别在边AB、AC上,且DE⊥AC于点E,若DE=6,DB=20,则tan∠BCD=__________.第14题图第15题图第16题图15.如图,某小船由西向东航行,在点A测得小岛P在北偏东60°方向上,船航行了10海里后到达点B,这时测得小岛P在北偏东45°方向上,船继续航行到点C时,测得小岛P 恰好在船的正北方,则此时船到小岛的距离为_________海里.16.已知,在△ABC中,AB=AC=8,∠BAC=30°,将△ABC绕点A旋转,使点B落在原△ABC的点C处,此时点C落在点D处,延长线段AD,交原△ABC的边BC的延长线于点E,那么线段DE的长等于_____________.三、解答题(本题有7小题,共66分)解答应写出文字说明,证明过程或推演步骤.17.(6分)如图,CD是平面镜,光线从A点出发经CD上点E反射后照射到B点.若入射角为α,AC⊥CD,BD⊥CD,垂足分别为C、D,且AC=3,BD=6,CD=12,求tanα的值.18.(8分)如图,已知在△ABC中,AB=AC=25,sin B=255,D为边BC的中点,E为边BC的延长线上一点,且CE=BC,连结AE,F为线段AE的中点. 求:(1)线段DE的长;(2)tan∠CAE的值.19.(8分)如图1是“东方之星”救援打捞现场图,小红据此构造出一个如图2所示的数学模型,已知:A、B、D三点在同一水平线上,CD⊥AD,D为垂足,∠A=30°,∠CBD =75°,AB=60m.求:(1)点B到AC的距离;(2)线段CD的长度.图1 图220.(10分)如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足CF:FD=1:3,连结AF并延长交⊙O于点E,连结AD、DE.(1)求证:△ADF∽△AED;(2)若CF=2,AF=3,求tan∠E的值.21.(10分)某海域有A、B、C三艘船正在捕鱼作业,C船突然出现故障,向A、B两船发出紧急求救信号,此时B船位于A船的北偏西72°方向,距离A船24海里的海域,C船位于A船的北偏东33°方向,同时又位于B船的北偏东78°方向.(1)求∠ABC的度数;(2)若A船以每小时30海里的速度前去救援,问多长时间能到出事地点.(结果精确到0.01小时,参考数据:2≈1.414,3≈1.732)22.(12分)如图所示,某数学活动小组选定测量小河对岸大树BC的高度,他们在斜坡上D处测得大树顶端B的仰角是30°,朝大树方向下坡走6米到达坡底A处,在A处测得大树顶端B的仰角是48°,若坡角∠F AE=30°,求大树的高度.(结果保留整数,参考数据:sin48°≈0.74,cos48°≈0.67,tan48°≈1.11,3≈1.73)23.(12分)如图,在矩形ABCD中,P是边AD上的一动点,连结BP、CP,过点B作射线交线段CP的延长线于点E,交边AD与点M,且使得∠ABE=∠CBP,如果AB=2,BC =5,AP=x(2<x≤5),PM=y(1)求y关于x的函数关系式;(2)当AP=4时,求tan∠EBP的值.参考答案Ⅰ﹒答案部分: 一、选择题 题号 1 2 3 4 5 6 7 8 9 10 答案DABDABACBA二、填空题11﹒43. 12﹒4825. 13﹒7. 14﹒83. 15﹒5(3+1). 16﹒43-4.三、解答题17.解答:由光的反射定律可知:∠AEC =∠BED , ∵∠ACE =∠BDE =90°, ∴△ACE ∽△BDE , ∴AC BD =CE DE,即36=12CE CE -,解得:CE =4,在Rt △ACE 中,tan ∠A =CE AC =43,又∵∠A =α,∴tan α=43.18.解答:(1)连结AD , ∵AB =AC ,D 为BC 的中点, ∴AD ⊥BC ,∴∠ADB =90°,∵AB =AC =25,sin ∠B =255, ∴AD AB=255,∴AD =4,由勾股定理得:BD =2, ∴DC =BD =2,BC =4, ∵CE =BC ,∴CE =4, ∴DE =2+4=6;(2)过C 作CM ⊥AE 于M , 则∠CMA =∠CME =90°,在Rt △ADE 中,由勾股定理得;AE =22AD DE +=2246+=213, ∵由勾股定理得;CM 2=AC 2-AM 2=CE 2-EM 2,∴(25)2-AM 2=42-(213﹣AM )2,解得:AM =141313, CM =22AC AM -=221413(25)()13-=81313, ∴tan ∠CAE =CM AM =81313141313=47.19.解答:(1)过点B 作BE ⊥AC 于点E ,在Rt △AEB 中,AB =60m ,sin A =12,BE =AB sin A =60×12=30,cos A =AE AB,∴AE =60×32=303m ,在Rt △CEB 中,∠ACB =∠CBD -∠A =75°-30°=45°, ∴BE =CE =30m ,即点B 到AC 的距离为(30+303)m ; (2)由(1)知:AE =303m ,CE =30m , ∴AC =AE +CE =(30+303)m , 在Rt △ADC 中,sin A =CDAC, ∴CD =(30+303)×12=(15+153)m , 即线段CD 的长度为(15+153)m .20.解答:(1)∵AB 是⊙O 的直径,弦CD ⊥AB , ∴DG =CG ,∴AD =AC ,∠ADF =∠AED , 又∵∠F AD =∠AED , ∴△ADF ∽△AED ;(2)∵CF :FD =1:3,CF =2, ∴FD =6,∴CD =DF +CF =8, ∴CG =DG =4, ∴FG =CG -CF =2,由勾股定理得:AG =22AF FG -=5, ∴tan ∠E =tan ∠ADG =AG DG=54.。
浙教版2020九年级数学下册第1章解直角三角形单元综合培优提升训练题2(附答案详解)

16.如图,在平面直角坐标系 中,已知 经过点 、 、 , ,点 在 轴上,点 在 轴上,点 的坐标为 ,则 的值是_______.
A. 个B. 个C. 个D. 个
10.如图,E为正方形ABCD边AB上一动点(不与A重合),AB=4,将△DAE绕着点A逆时针旋转90°得到△BAF,再将△DAE沿直线DE折叠得到△DME.下列结论:①连结AM,则AM∥FB;②连结FE,当F、E、M共线时,AE=4 -4;③连结EF、EC、FC,若△FEC是等腰三角形,则AE=4 -4;④连结EF,设FC、ED交于点O,若FE平分∠BFC,则O是FC的中点,且AE=2 -2,其中正确的个数有( )个.
(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)
A.10.2B.9.8C.11.2D.10.8
9.如图,在正方形 中, 是 边的中点,将 沿 折叠,使点 落在点 处, 的延长线与 边交于点 .下列四个结论:① ;② ;③ ;④ S正方形ABCD,其中正确结论的个数为()
29.如图1,芜湖临江桥是一座集合交通、休闲为一体的景观桥梁.桥塔线条流畅、圆润,灵感来源于鱼、米造型,象征着芜湖“鱼米之乡”的历史地位.小华是一个数学爱好者,他打算用学过的知识测量一下桥塔 (如图2)的高度,桥塔不远处有一观光楼 他开始站在观光楼上进行观测,观测时的仰角 为 ,回到观光楼下面进行再次观测,发现角度变化了,仰角 为 若他两次观测的高度相差 米(即 ),试求桥塔的高.(参考数据: 结果保留整数)
A. B. C. D.6
浙教版2020九年级数学下册第1章解直角三角形单元综合培优提升训练题1(附答案详解)

②若AB与y轴正半轴的所夹锐角为α,当点C在什么位置时tanα的值最大?
31.如图是小强洗漱时的侧面示意图,洗漱台(矩形 )靠墙摆放,高 ,宽 ,小强身高 ,下半身 ,洗漱时下半身与地面成 ( ),身体前倾成 ( ),脚与洗漱台距离 (点 , , , 在同一直线上).
(3)若⊙O的半径为5,sinA= ,求BH的长.
29.计算: ﹣2tan60°+( ﹣1)0﹣( )﹣1=________.
30.已知点A(3,4),点B为直线x=−1上的动点,设B(-1,y).
(1)如图①,若△ABO是等腰三角形且AO=AB时,求点B的坐标;
(2)如图②,若点C(x,0)且-1<x<3,BC⊥AC垂足为点C;
A. cm2B. cm2C. cm2D. cm2
10.如图,已知∠α的一边在x轴上,另一边经过点A(2,4),顶点为B(-1,0),则sinα的值是()
A. B. C. D.
11.如图,以圆O为圆心,半径为1的弧交坐标轴于A,B两点,P是弧 上一点(不与A,B重合),连接OP,设∠POB=α,则点P的坐标是
19.已知在Rt△ABC中,∠C=90°,tanA= ,则sinA=________.
20.正六边形的边长为8cm,则它的面积为____cm2.
21.将矩形纸片ABCD(如图)那样折起,使顶点C落在Cꞌ处,测量得AB=4,DE=8,则sin∠CꞌED为________________.
22.如图,点E(0,3),O(0,0),C(4,0)在⊙A上,BE是⊙A上的一条弦.则sin∠OBE=___.
(1)求证:△ABD∽△DCE;
(2)设BD=x,AE=y,求y关于x的函数关系式并写出自变量x的取值范围;
浙教版2020九年级数学下册第1章解直角三角形自主学习培优测试卷B卷(附答案详解)

浙教版2020九年级数学下册第1章解直角三角形自主学习培优测试卷B卷(附答案详解)1.如图,在矩形ABCD中,AB=6,BC=6,点E是边BC上一动点,B关于AE的对称点为B′,过B′作B′F⊥DC于F,连接DB′,若△DB′F为等腰直角三角形,则BE的长是()A.6 B.3 C.3D.6﹣62.在△ABC中,若1sin2A=,tanB=1,则这个三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.等腰三角形3.如图所示,河堤横断面迎水坡AB的坡比是1:2,坡高BC=5m,则坡面AB的长度()A.10m B.103m C.53m D.55m4.在Rt△ABC中,∠C=90°,sinB=1213,则cosA的值为()A.512B.125C.1213D.13125.已知∠A+∠B=90°,且cosA=15,则cosB的值为( )A.15B.45C.26D.256.如图,在菱形ABCD中,F为边AB的中点,DF与对角线AC交于点G,过点G作GE⊥AD于点E.若AB=2,且∠1=∠2,则下列结论:①DF⊥AB;②CG=2GA;③CG=DF+GE;④S四边形BFOC =31-.其中正确的有()A.1个B.2个C.3个D.4个7.如图,小丽用一个两锐角分别为30°和60°的三角尺测量一棵树的高度,已知她与树之间的距离为9.0m,眼睛与地面的距离为1.6m,那么这棵树的高度大约是()A.5.2m B.6.8m C.9.4m D.17.2m8.如图,某水库堤坝横断面迎水坡AB的斜面坡度是1:3,堤坝高BC=50m,则迎水坡面AB的长度是()A.100m B.120m C.503m D.1003m 9.下列说法中正确的是( )A.在Rt△ABC中,若tanA=34,则a=4,b=3B.在Rt△ABC中,∠C=90°,则tanA+tanB=1C.在Rt△ABC 中,∠C=90°,若a=3,b=4,则tanA=3 4D.tan75°=tan(45°+30°)=tan45°+tan30°=1+310.如图,将一个Rt△ABC形状的楔子从木桩的底端点P处沿水平方向打入木桩底下,使木桩向上运动,已知楔子斜面的倾斜角为20°,若楔子沿水平方向前移8cm(如箭头所示),则木桩上升了()A.8tan20°B.C.8sin20°D.8cos20°11.如图,为了测量某建筑物AB的高度,在平地上C处测得建筑物顶端A的仰角为30,沿CB方向前进12m到达D处,在D处测得建筑物项端A的仰角为45,则建筑物AB的高度等于________.12.在直角坐标平面内有一点A(3,4),点A与原点O的连线与x轴的正半轴夹角为α,那么角α的余弦值是_____.13.在Rt△ABC中,∠C=90°,a=10,若△ABC的面积为5033,则∠A=______度.14.如图,在△ABC中,BC=7,32AC=,tanC=1,点P为AB边上一动点(点P 不与点B重合),以点P为圆心,PB 为半径画圆,如果点C在圆外,那么PB的取值范围______.15.计算:2sin45°+tan60°•tan30°﹣cos60°=_____.16.已知菱形ABCD中,点O是边CD的中点,点P是边BC的中点,点E是直线CD上一点,若菱形的边长为12.5,sinB=35,DE=2.5,tan∠EPC=_____.17.如图,已知正方形边长为4,以A为圆心,AB为半径作弧BD,M是BC的中点,过点M作EM⊥BC交弧BD于点E,则弧BE的长为_____.18.已知在△ABC中,∠C=90°,3cos B=2,AC=25,则AB=________.19.如图,在△ABC 中,AB=AC,BC=8. O是△ABC的外接圆,其半径为5. 若点A 在优弧BC上,则tan ABC∠的值为_____________.20.在Rt△ABO中,∠AOB=90°,OA=433,OB=4,分别以OA、OB边所在的直线建立平面直角坐标系,D为x轴正半轴上一点,以OD为一边在第一象限内作等边△ODE.(1)如图1,当E点恰好落在线段AB上时,求E点坐标;(2)在(1)问的条件下,将△ODE沿x轴的正半轴向右平移得到△O′D′E′,O′E′、D′E′分别交AB于点G、F(如图2)求证OO′=E′F;(3)若点D沿x轴正半轴向右移动,设点D到原点的距离为x,△ODE与△AOB重叠部分的面积为y,请直接写出y与x的函数关系式.21.如图,为了测量建筑物AB的高度,在D处树立标杆CD,标杆的高是2m,在DB上选取观测点E、F,从E测得标杆和建筑物的顶部C、A的仰角分别为58°、45°.从F 测得C、A的仰角分别为22°、70°.求建筑物AB的高度(精确到0.1m).(参考数据:tan22°≈0.40,tan58°≈1.60,tan70°≈2.75.)22.如图,将△ABC沿着射线BC方向平移至△A′B′C′,使点A′落在∠ACB的外角平分线CD上,连结AA′.(1)判断四边形ACC′A′的形状,并说明理由;(2)在△ABC中,∠B=90°,AB=8,cos∠BAC=45,求CB′的长.23.合肥市打造世界级国家旅游中心,精心设计12个千年古镇。
浙教版九年级数学下册培优练习附答案:1.3解直角三角形

1・3解直角三角形一、选择题(共13小题)1•将一个有…角的三角板的直角顶点放在一张宽为.的纸带边沿上.另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成…角,如图,则三角板的最大边的长为A. 3.B. ImC.D.2. 如图,在坡角为 -的斜坡上要栽两棵树,要求它们之间的水平距离为■:,则这两棵树之间的坡面二的长为A. |z■•:>B. —、.:C. v >D. 2.....3. 在二―中,•,,如果八-二,- ■-,那么「的值是A. B. C. D.4. 如图,小敏同学想测量一棵大树的高度.她站在*处仰望树顶,测得仰角为:,再往大树的方向前进•,测得仰角为…,已知小敏同学身高(爲)为」■,则这棵树的高度为(结果精确到「「,「一)A. 3.5..mB. 3.6. uiC. 4.3..inD. 5.1. jn5. 在丄33中,〃…,幕2.],则• !的度数是A.6. 如图,为了对一颗倾斜的古杉树「进行保护,需测量其长度:在地面上选取一点厂,测得「,一「:..,_[•—」,(参考数据:,一I 2 ,■、,:•-「,:「、;•::. ').则这颗古杉树三」的长约为B. 16 .70 zn7. 如图,•宀是•的内接三角形,「「,「的半径为若点『是上的一点,在中则」的长为■:..:■A.、8. 如图,客轮在海上以:八一的速度由"向匚航行,在占处测得灯塔|的方位角为北偏东卜-,测得处的方位角为南偏东丁,航行」小时后到达*处,在匚处测得匚的方位角为北偏东::,则"到-的距离是B. 15V2U1D. 5 (则十鼻迈)km9. 如图,在nF中,_-',点门为一:「的中点,.:-:,.:.-;,将匸皿沿着一:折叠后,点落在点厂处,则1的长为A.卞B. ;_C. _D."10. 某市进行城区规划,工程师需测某楼幕的高度,工程师在n点用高-的测角仪“;,测得楼顶端|的仰角为…,然后向楼前进' 至U达匚又测得楼顶端:的仰角为「,楼-的高为 :A. 10/1+2B. 1571+2C. 20^ + 2D.11. 如图,等腰;绕点匚顺时针旋转,点用的对应点”落在边上, 已知,心=F , :• - , ,贝y 一」的长为A.八。
浙教版2022-2023学年九下数学第1章 解直角三角形 培优测试卷(解析版)

浙教版2022-2023学年九下数学第1章 解直角三角形 培优测试卷(解析版)一、选择题(本大题有10小题,每小题3分,共30分) 下面每小题给出的四个选项中,只有一个是正确的.1.在Rt△ABC 中,△C =90°,各边都扩大5倍,则tanA 的值( ) A .不变 B .扩大5倍 C .缩小5倍 D .不能确定 【答案】A【解析】∵三角函数值与对应边的比值有关, ∴各边都扩大5倍后,tanA 的值不变. 故答案为:A.2.如图,冬奥会滑雪场有一坡角为20°的滑雪道,滑雪道的长AC 为100米,则BC 的长为( )米.A .100cos20° B .100cos20° C .100sin20° D .100sin20° 【答案】B【解析】∵△B=90°,△C=20°,∴cos∠C =BCAC,∴BC=AC·cos∠C =100cos20°. 故答案为:B. 3.如图是拦水坝的横断面,斜坡AB 的水平宽度为12米,斜面坡度为1:2,则斜坡AB 的长为( )米A .4√3B .6√5C .12√5D .24【答案】B【解析】如图,过B 作BE△AD 于点E ,∵斜面坡度为1:2,AE=12, ∴BE=6,在Rt△ABC 中, AB =√AE 2+BE 2=√122+62=6√5 . 故答案为:B .4.如图所示,在边长相同的小正方形组成的网格中,两条经过格点的线段相交所成的锐角为α,则夹角α的正弦值为( )A .12B .√22C .√32D .1【答案】B【解析】如图,设AB 与CD 交于点E ,过点C 作CF△AB ,连接DF ,∵CF△AB ,∴∠C =∠AEC =α , 设小正方形的边长为1,根据勾股定理得: CD 2=12+32=10 , DF 2=12+22=5 , CF 2=12+22=5 ,∴CF 2+DF 2=CD 2 ,DF=CF , ∴△CDF 为等腰直角三角形, ∴△C=45°,∴sinC =√22,∴夹角α的正弦值为 √22.故答案为:B.5.鹅岭公园是重庆最早的私家园林,前身为礼园,是国家级AAA 旅游景区,园内有一瞰胜楼,登上高楼能欣赏到重庆的优美景色.周末,李明同学游览鹅岭公园,如图,在点A 观察到瞰胜楼楼底点C 的仰角为12°,楼顶点D 的仰角为13°,测得斜坡BC 的坡面距离BC = 510米,斜坡BC 的坡度 i =8:15 .则瞰胜楼的高度CD 是( )米.(参考数据:tan12°≈0.2,tan13°≈0.23)A .30B .32C .34D .36 【答案】D【解析】由斜坡BC 的坡度i =8:15 ,设 CE =8x 、 BE =15x , 在 Rt △BCE 中,BC =√BE 2+CE 2=√(8x)2+(15x)2=17x , 由 BC =17x =510 求得 x =30 , ∴CE =240 米、 BE =450 米,在 Rt △ACE 中,AE =CE tan∠CAE =240tan12°=1200 (米), 在 Rt △ADE 中,DE =AEtan∠DAE =1200×tan13°=276 (米), 则 DC =DE −CE =276−240=36 (米). 故答案为:D.6.若规定 sin(α−β)=sinαcosβ−cosαsinβ ,则sin15°=( ) A .√2−12 B .√2−√64 C .√3−12 D .√6−√24【答案】D【解析】由题意得,sin15°=sin (45°-30°) =sin45°cos30°-cos45°sin30°=√22×√32−√22×12=√6−√24故答案为:D7.如图,在菱形ABCD 中,DE△AB ,cosA =35,AE =3,则tan△DBE 的值是( )A .12B .2C .√52D .√55【答案】B【解析】∵DE△AB ,cosA =35,AE =3,∴AE AD =3AD =35,解得:AD =5. ∴DE = √AD 2−AE 2=√52−32=4, ∵四边形ABCD 是菱形,∴AD=AB=5, ∴BE =5﹣3=2,∴tan△DBE = DE BE =42=2.故答案为:B.8.如图,在△ABC 中,△C=90°,△A=30°,D 为AB 上一点,且AD :DB=1:3,DE△AC 于点E ,连接BE ,则tan△CBE 的值等于( )A .B .C .D .【答案】C【解析】设AB=4a ,∵在△ABC 中,△C=90°,△A=30°,D 为AB 上一点,且AD :DB=1:3, ∴BC=2a ,AC=2 √3 a ,AD :AB=1:4, ∵△C=90°,DE△AC , ∴△AED=90°, ∴△AED=△C , ∴DE△BC ,∴△AED△△ACB ,∴AE AC =AD AB ,∴AE AC =14 ,∴AE= 14×2√3a =√32a ,∴EC=AC ﹣AE= 2√3a −√32a =3√32a ,∴tan△CBE= CE CB =3√32a 2a =3√34,故答案为:C .9.如图,已知扇形OAB 的半径为r ,C 是弧AB 上的任一点(不与A ,B 重合),CM△OA ,垂足为M ,CN△OB ,垂足为N ,连接MN ,若△AOB = α ,则MN 可用 α 表示为( )A .rsinαB .2rsin α2 C .rcosα D .2rcos α2【答案】A【解析】如图,连接OC 交MN ,延长OM 、ON 交于一点D ,∵∵△CMD=△DNO=90°, ∴△D=△D ,∴△CMD△△OND ,∴DM DN =DC DO ,即DM DC =DN DO , ∵△D=△D ,∴△DMN△△DCO , ∴MN CO =DN OD, ∵sin△AON=DN OD ,∴sin△AON=MN CO, 即sin α=MN r,∴MN= rsinα , 故答案为:A.10.如图,在△ABC 中,AB =AC ,BC =8,E 为AC 边的中点,线段BE 的垂直平分线交边BC 于点D.设BD =x ,tan△ACB =y ,则x 与y 满足关系式( )A .x ﹣y 2=3B .2x ﹣y 2=6C .3x ﹣y 2=9D .4x ﹣y 2=12【答案】C【解析】过A 作AQ△BC 于Q ,过E 作EM△BC 于M ,连接DE ,∵BE 的垂直平分线交BC 于D ,BD=x , ∴BD=DE=x ,∵AB=AC ,BC=8,tan△ACB=y , ∴EM MC =AQCQ =y ,BQ=CQ=4, ∴AQ=4y ,∵AQ△BC ,EM△BC , ∴AQ ∥EM ,∵E 为AC 中点,∴CM=QM=12CQ=2,∴EM=2y ,∴DM=8-2-x=6-x ,在Rt△EDM 中,由勾股定理得:x 2=(2y )2+(6-x )2, 即3x -y 2=9. 故答案为:C.二、填空题(本大题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.如图,正方形网格中,点A ,O ,B ,E 均在格点上.△O 过点A ,E 且与AB 交于点C ,点D 是△O 上一点,则tan∠CDE = .【答案】12【解析】由题意可得:△CDE =△EAC , 则tan△CDE =tan△EAC =BE AE =24=12.故答案为:12.12.如图,已知BD 是△ABC 的外接圆直径,且BD =13,tanA =512,则BC = .【答案】5【解析】如图所示,连接C ,D ,由图可知 ∠A =∠D (同弧所对的圆周角相等), 且 ∠BCD =90°(直径所对的圆周角等于90°),∵tanA =512,∴sinA =513,∴sinA =sinD =513,∴BC =BD ⋅sinD =13×513=5,故答案为:5.13.如图所示,在四边形 ABCD 中, ∠B =90° , AB =2 , CD =8 , AC ⊥CD ,若 sin∠ACB =13,则 cos∠ADC = .【答案】45【解析】∵∠B =90° , sin∠ACB =13,∴AB AC =13 ,∵AB =2 ,∴AC =6 ,∵AC ⊥CD ,∴∠ACD =90° ,∴AD =√AC 2+CD 2=√62+82=10 ,∴cos∠ADC =DC AD =810=45. 14.如图,在Rt△ABC 中,△C =90°,AM 是BC 边上的中线,sin△CAM = 35,则tan△B = .【答案】23【解析】Rt△AMC 中,sin△CAM=MC AM =35, 设MC=3x ,AM=5x ,则AC= √AM 2−MC 2 =4x . ∵M 是BC 的中点,∴BC=2MC=6x . 在Rt△ABC 中,tan△B= AC BC =4x 6x =23.故答案为 23.15.如图,在5×5的正方形网格中,点A ,B ,C ,D 为格点,AB 交CD 于点O ,则tan△AOC = .【答案】12【解析】如图:将线段AB 向右平移至FD 处,使得点B 与点D 重合,连接CF ,∴△AOC =△FDC ,设正方形网格的边长为单位1,根据勾股定理可得:CF =√22+12=√5,CD =√42+22=2√5, DF =√32+42=5,∵(√5)2+(2√5)2=52, ∴CF 2+CD 2=DF 2, ∴△FCD =90°,∴tan∠AOC =tan∠FDC =CF CD =√52√5=12.故答案为:12.16.自行车因其便捷环保深受人们喜爱,成为日常短途代步与健身运动首选.如图1是某品牌自行车的实物图,图2是它的简化示意图.经测量,车轮的直径为 66cm ,中轴轴心 C 到地面的距离 CF 为 33cm ,后轮中心 A 与中轴轴心 C 连线与车架中立管 BC 所成夹角 ∠ACB =72° ,后轮切地面 l 于点 D .为了使得车座 B 到地面的距离 BE 为 90cm ,应当将车架中立管 BC 的长设置为 cm .(参考数据: sin72°≈0.95,cos72°≈0.31,tan72°≈3.1)【答案】60【解析】∵车轮的直径为 66cm ∴AD=33cm ∵CF=33cm ∴AC△DF∴EH=AD=33cm ∵BE△ED ∴BE△AC∵BH=BE -EH=90-33=57cm∴△sinACB=sin72°= BH BC =57BC=0.95∴BC=57÷0.95=60cm 故答案为60.三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)解答应写出文字说明,证明过程或推演步骤. 17.求下列各式的值(1)sin45°cos45°+4tan30°sin60° ;(2)cos60°−2sin 245°+23tan60°−sin30° .【答案】(1)解: sin45°cos45°+4tan30°sin60°=√22×√22+4×√33×√32=12+2 =52. (2)解:cos60°−2sin 245°+23tan 260°−sin30° .=12 -2×(√22)2+23×(√3)2-12 =12-1+2-12 =1. 18.在一次课外活动中,某数学兴趣小组测量一棵树CD 的高度.如图所示,测得斜坡BE 的坡度i =1:4(即AB :AE =1:4),坡底AE 的长为8米,在B 处测得树CD 顶部D 的仰角为30°,在E 处测得树CD 顶部D 的仰角为60°.(1)求AB的高;(2)求树高CD.(结果保留根号)【答案】(1)解:作BF△CD于点F,根据题意可得ABCF是矩形,∴CF=AB,∵斜坡BE的坡度i=1:4,坡底AE的长为8米,∴AB=2(米),(2)解:∵AB=2,∴CF=2,设DF=x米,在Rt△DBF中,tan∠DBF=DF BF,则BF=DFtan30∘=√3x(米),在直角△DCE中,DC=x+CF=(2+x)米,在直角△DCE中,tan∠DEC=DC EC∴EC=√33(x+2)米.∵BF-CE=AE,即√3x−√33(x+2)=8.解得:x=4√3+1,则CD=4√3+1+2=(4√3+3)米.答:CD的高度是((4√3+3))米.19.如图,将一个直角三角形形状的楔子(Rt△ABC)从木桩的底端点P沿水平方向打入木桩底下,可以使木桩向上运动.如果楔子底面的斜角为10°,其高度AC为1.8厘米,楔子沿水平方向前进一段距离(如箭头所示),留在外面的楔子长度HC为3厘米.(1)求BH的长;(2)木桩上升了多少厘米?(sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,结果精确到0.1厘米)【答案】(1)解:在Rt△ABC中,∠ABC=10°,tan∠ABC=AC BC,则BC=ACtan∠ABC≈1.80.18=10(cm),∴BH=BC−HC=7(cm),(2)解:在 Rt △BPH 中, ∠ABC =10° , tan∠ABC =PHBH, 则 PH =BH ⋅tan∠ABC ≈7×0.18≈1.3(cm) , 答:木桩上升了大约 1.3 厘米.20.图①是小明在健身器材上进行仰卧起坐锻炼时的情景,图②是小明锻炼时上半身由ON 位置运动到与地面垂直的OM 位置时的示意图.已知AC=0.66米,BD=0.26米,α=20°.(参考数据:sin20°≈0.342,cos20°≈0.940,tan20°≈0.364)(1)求AB 的长(精确到0.01米);(2)若测得ON=0.8米,试计算小明头顶由N 点运动到M 点的路径MN ⌢的长度.(结果保留π)【答案】(1)解:过B 作BE△AC 于E ,则AE=AC ﹣BD=0.66米﹣0.26米=0.4米,△AEB=90°,∴AB =AE sin∠ABE =0.4sin20°≈1.17(米).(2)解:△MON=90°+20°=110°,∴弧MN 的长度是110π×0.8180=2245π米. 21.图1,图2分别是某型号拉杆箱的实物图与平面示意图,具体信息如下:水平滑杆 DE 、箱长 BC 、拉杆 AB 的长度都相等,即 DE =BC =AB ,点 B , F 在线段 AC 上,点 C 在 DE 上,支撑点 F 到箱底 C 的距离 FC =32cm ,CE : CD =1 : 5 , DF ⊥AC 于点 F , ∠DCF =50° ,请根据以上信息,解决下列问题:(1)求水平滑杆 DE 的长度;(2)求拉杆端点 A 到水平滑杆 DE 的距离 ℎ 的值 ( 结果保留到 1cm).( 参考数据:sin50°≈0.77 , cos50°≈0.64 , tan50°≈1.19) . 【答案】(1)解: ∵DF ⊥AC 于点 F , ∠DCF =50° ,在 Rt △CDF 中, cos50°=CFCD,∴CD =CF cos50∘=320.64≈50(cm) ,∵CE : CD =1 : 5 , ∴DE =60cm ;(2)解:如图,过A 作 AG ⊥ED ,交 ED 的延长线于G ,∵DE =BC =AB , DE =60cm , ∴AC =120cm ,在 Rt △ACG 中, sin∠DCF =AGAC,∴ℎ=AG =AC ⋅sin50°=120×0.77=92.4≈92(cm) .22.如图,在等腰三角形ABC 中,△ABC =90°,点D 为AC 边上的中点,过点D 作DE△DF ,交AB 于点E ,交BC 于点F.(1)求证:DE =DF(2)若AE =4,FC =3,求cos△BEF 的值. 【答案】(1)证明:连接BD ,∵ △ABC=90°,D 为AC 边上的中点,∴AD=BD=CD ,△C=△A=△EBD=△FBD=45°,BD△AC ,∵DE△DF ,∴△EDF=△BDC=90°,∴△EDB=△CDF=90°-△BDF , ∴△EDB△△FDC (ASA ), ∴ DE=DF(2)解:∵ △EDB△△FDC ,CF =3, ∴ CF=BE=3,同理AE=BF=4,在Rt△EBF 中,由勾股定理得:EF=√32+42=5,∴ cos△BEF =BF EF =35.23.如图,AB 是△O 的直径,弦CD△AB 于点E ,点P 在△O 上,△1=△BCD .(1)求证:CB△PD ;(2)若BC=3,sin△BPD= 35,求△O 的直径.【答案】(1)证明:∵△D=△1,△1=△BCD,∴△D=△BCD,∴CB△PD;(2)解:连接AC,∵AB是△O的直径,∴△ACB=90°,∵CD△AB,∴BD⌢= BC⌢,∴△BPD=△CAB,∴sin△CAB=sin△BPD= 3 5,即BCAB=35,∵BC=3,∴AB=5,即△O的直径是5.24.如图,在平面直角坐标系xOy中,已知点A(0,8),点B是x轴正半轴上一点,连接AB,过点A作AC△AB,交x轴于点C,点D是点C关于点A的对称点,连接BD,以AD为直径作△Q交BD于点E,连接并延长AE交x轴于点F,连接DF.(1)求线段AE的长;(2)若△ABE=△FDE,求EF的值.(3)若AB﹣BO=4,求tan△AFC的值.【答案】(1)解:∵点A(0,8),∴AO=8,∵点D是点C关于点A的对称点,∴AC=AD,∵AC△AB,∴BC=BD,∴∠C=∠ADB,∵以AD为直径作△Q交BD于点E,∴∠AED=90°,∴在△CAO和△DAE中,{∠COA=∠AED=90°∠C=∠ADBAC=AD∴△CAO≌△DAE(AAS),∴AE=AO=8;(2)解:∵△ABE=△FDE,∴AB ∥DF ,∴∠CAB =∠CDF ,又∵∠C =∠C ,∴△CAB ∽△CDF ,∴AB DF =AC CD =12, ∵△ABE =△FDE ,∠AEB =∠FED , ∴△ABE ∽△FDE ,∴AE FE =AB DF =12,即8FE =12, 解得△FE =16;(3)解:∵AB ﹣BO =4,即AB =BO +4, ∵∠AOB =90°,∴在RtΔABO 中,AO 2+OB 2=AB 2,即82+OB 2=(OB +4)2, 解得△OB =6,AB =10,∵∠BEF =90°,∴BE =√AB 2−AE 2=√102−82=6, ∵∠AOB =∠BEF =90°,∠AFO =∠BFE , ∴△AFO ∽△BFE ,∴AO BE =FO EF =86=43, ∴设EF =3x ,OF =4x ,∴BF =4x −6,∴在RtΔBEF 中,BE 2+EF 2=BF 2,即62+(3x)2=(4x −6)2,解得△x =487, ∴EF =3x =1447, ∴tan∠AFC =tan∠EFB =BE EF =61447=724.。
浙教版2020九年级数学下册第1章解直角三角形单元综合培优提升训练题3(附答案详解)
11.如图,已知直线y=﹣ x+b(b>0)交x轴,y轴于点M,N,点A,B是OM,ON上的点,以AB为边作正方形ABCD,CD恰好落在MN上,已知AB=2,则b的值为( )
A.1+ B. C. D.2+
12.边长为2的菱形纸片ABCD中,∠A=60°,将纸片折叠,点A、D分别落在A'、D'处,且A'D'经过点B,EF为折痕,当D'F⊥CD时,CF的值为( )
A.4﹣2 B.2 ﹣2C. ﹣1D.
13.等腰三角形腰上的高等于腰长的一半,则这个等腰三角形的顶角BC中,∠C=90°.
(1)若AC=5,BC=12,则AB=______,tanA=_______,∠A≈______(精确到1″);
(2)若AC=3,AB=5,则sinA=______,tanB=______,∠A≈_______,∠B≈______(精确到1″).
浙教版2020九年级数学下册第1章解直角三角形单元综合培优提升训练题3(附答案详解)
1.将宽为2cm的长方形纸条折叠成如图所示的形状,那么折痕 的长是()
A. cmB. cmC. cmD.2cm
2.如图, 的半径为2,圆心 在坐标原点,正方形 的边长为2,点 、 在第二象限,点 、 在 上,且点 的坐标为(0,2).现将正方形 绕点 按逆时针方向旋转150°,点 运动到了 上点 处,点 、 分别运动到了点 、 处,即得到正方形 (点 与 重合);再将正方形 绕点 按逆时针方向旋转150°,点 运动到了 上点 处,点 、 分别运动到了点 、 处,即得到正方形 (点 与 重合),……,按上述方法旋转2020次后,点 的坐标为()
第一章:解直角三角形培优训练试题
第一章:解直角三角形培优训练试题一.选择题:(本题共10小题,每小题3分,共30分)温馨提示:每一题的四个答案中只有一个是正确的,请将正确的答案选择出来!1.如图,某地修建的一座建筑物的截面图的高BC =5m ,坡面AB 的坡度为1:3,则AB 的长度为( ) A .10mB .103mC .5mD .53m2.如图,某数学兴趣小组测量一棵树的高度,在点A 处测得树顶C 的仰角为045,在点B 处测得树顶C 的仰角为060,且A ,B ,D 三点在同一直线上,若m AB 16=,则这棵树CD 的高度是( ) A .()m 338-B .()m 338+C .()m 336-D .()m 336+3.如图,由边长为1的小正方形构成的网格中,点A ,B ,C 都在格点上,以AB 为直径的圆经过点C ,D ,则cos ∠ADC 的值为( )A .13132 B .13133 C .32 D .35 4.如图,已知△ABC 内接于半径为1的⊙O ,∠BAC=θ(θ是锐角),则△ABC 的面积的最大值为( ) A .cos θ(1+cos θ) B .cos θ(1+sin θ) C .sin θ(1+sin θ) D .sin θ(1+cos θ)5.在中,、均为锐角,且,则是( )A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形 6.数学活动小组到某广场测量标志性建筑AB 的高度.如图,他们在地面上C 点测得最高点A 的仰角为22°,再向前70m 至D 点,又测得最高点A 的仰角为58°,点C ,D ,B 在同一直线上,则该建筑物AB 的高度约为( )(精确到1m .参考数据:,,,)A .28mB .34mC .37mD .46m7.如图,AB 是半圆的直径,ABC ∠的平分线分别交弦AC 和半圆于E 和D ,若2BE DE =,4AB =,则AE 长为( ) A .2B .21+C .6D .4338.小明去爬山,在山脚看山顶角度为30°,小明在坡比为5:12的山坡上走1300米,此时小明看山顶的角度为60°,山高为( )米A .5250600-B .2503600-C .3350350+D .35009.如图,等腰△ABC 的面积为2,AB=AC ,BC=2.作AE ∥BC 且AE=BC.点P 是线段AB 上一动点,连接PE ,过点E 作PE 的垂线交BC 的延长线于点F ,M 是线段EF 的中点.那么,当点P 从A 点运动到B 点时,点M 的运动路径长为( ) A .3B .3C .32D .410.如图,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,AE ⊥EF .有下列结论:①∠BAE =∠EAF ;②射线FE 是∠AFC 的角平分线;③CF =14CD ;④AF =AB +CF .其中正确结论的个数为( )A .1个B .2个C .3个D .4个二.填空题(本题共6小题,每题4分,共24分) 温馨提示:填空题必须是最简洁最正确的答案!11.如图,在矩形ABCD 中,22==BC AB ,将线段AB 绕点A 按逆时针方向旋转,使得点B 落在边CD 上的点B '处,线段AB 扫过的面积为12.某校数学兴趣小组开展无人机测旗杆的活动:已知无人机的飞行高度为30m ,当无人机飞行至A 处时,观测旗杆顶部的俯角为30°,继续飞行20m 到达B 处,测得旗杆顶部的俯角为60°,则旗杆的高度约为 m .(参考数据:732.13≈,结果按四舍五八保留一位小数)13.如图,在一次数学实践活动中,小明同学要测量一座与地面垂直的古塔AB 的高度,他从古塔底部点处前行m 30到达斜坡的底部点C 处,然后沿斜坡前行m 20到达最佳测量点D 处,在点D 处测得塔顶A 的仰角为030,已知斜坡的斜面坡度3:1=i ,且点A ,B ,C ,D ,在同一平面内,小明同学测得古塔的高度是 .14.如图,在△ABC 中,AC =6,BC =8,点D 、E 分别在AC 、BC 上,点F 在△ABC 内.若四边形CDFE 是边长为2的正方形,则cos ∠ABF =15.如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”,在Rt △ABC 中,∠C=90°,若Rt △ABC 是“好玩三角形”,则tanA=16.如图.点E 在正方形ABCD 的边BC 上,2BE=3CE ,过点D 作AE 的垂线交AB 于F ,点G 为垂足,若FG=3,则EG 的长为三.解答题(共6题,共66分)温馨提示:解答题应将必要的解答过程呈现出来!17.(本题6分)计算下列各式:(1)000030cos 45cos 60tan 30cos ⋅- (2)0002030sin 30tan 2345sin 260cos -+-18.(本题8分)如图,在△ABC 中,∠C=90°,D 是BC 边上一点,以DB 为直径的⊙O 经过AB 的中点E ,交AD 的延长线于点F ,连结EF .(1)求证:∠1=∠F .(2)若55sin =B ,52=EF ,求CD 的长.19(本题8分)如图,在Rt △ABC 中,∠ACB=90°,AC=BC=3,点D 在边AC 上,且AD=2CD ,DE ⊥AB ,垂足为点E ,联结CE ,求:(1)线段BE 的长;(2)求ECB ∠tan20.(本题10分)如图,某大楼的顶部竖有一块广告牌CD ,小明与同学们在山坡的坡脚A 处测得广告牌底部D 的仰角为53°,沿坡面AB 向上走到B 处测得广告牌顶部C 的仰角为45°,已知山坡AB 的坡度i =1:3,AB =10米,AE =21米.(测角器的高度忽略不计,结果精确到0.1米,参考数据:2≈1.41,3≈1.73,sin53°≈54,cos53°≈53,tan53°≈34) (1)求点B 距水平地面AE 的高度;(2)求广告牌CD 的高度.(结果精确到0.1米)21.(本题10分)如图,“中国海监50”正在南海海域A 处巡逻,岛礁B 上的中国海军发现点A 在点B 的正西方向上,岛礁C 上的中国海军发现点A 在点C 的南偏东30°方向上,已知点C 在点B 的北偏西60°方向上,且B 、C 两地相距120海里.(1)求出此时点A 到岛礁C 的距离; (2)若“中海监50”从A 处沿AC 方向向岛礁C 驶去,当到达点A ′时,测得点B 在A ′的南偏东75°的方向上,求此时“中国海监50”的航行距离.(注:结果保留根号)22.(本题12分)如图,抛物线y=﹣x 2+6x 与x 轴交于点O ,A ,顶点为B ,动点E 在抛物线对称轴上,点F 在对称轴右侧抛物线上,点C 在x 轴正半轴上,且OC EF //,连接OE ,CF 得四边形OCFE . (1)求B 点坐标;(2)当tan ∠EOC=34时,显然满足条件的四边形有两个,求出相应的点F 的坐标;(3)当0<tan ∠EOC <3时,对于每一个确定的tan ∠EOC 值,满足条件的四边形OCFE 有两个,当这两个四边形的面积之比为1:2时,求tan ∠EOC .23(本题12分).在△ABC 中,∠ABC=90°.(1)如图1,分别过A 、C 两点作经过点B 的直线的垂线,垂足分别为M 、N ,求证:△ABM ∽△BCN ;(2)如图2,P 是边BC 上一点,∠BAP=∠C ,tan ∠PAC =552 ,求C tan 的值; (3)如图3,D 是边CA 延长线上一点,AE=AB ,∠DEB=90°,sin ∠BAC =53,52AC AD ,直接写出tan ∠CEB 的值.。
2022-2023学年浙教版九年级数学下册《1-3解直角三角形》解答题专题提升训练(附答案)
2022-2023学年浙教版九年级数学下册《1.3解直角三角形》解答题专题提升训练(附答案)1.如图是某水库大坝的横截面,坝高CD=20m,背水坡BC的坡度为i1=1:1.为了对水库大坝进行升级加固,降低背水坡的倾斜程度,设计人员准备把背水坡的坡度改为i2=1:,求背水坡新起点A与原起点B之间的距离.(参考数据:≈1.41,≈1.73.结果精确到0.1m)2.如图是某景区登山路线示意图,其中AD是缆车游览路线,折线A﹣B﹣C﹣D是登山步道,步道AB与水平面AE的夹角α为30°,步道CD与水平面的夹角β为45°,BC是半山观景平台,BC∥AE.现测得AB=300m,CD=450m,缆车路线AD=1000m.其中点A,B,C,D,E在同一平面内,DE⊥AE.(1)求点B到水平面AE的距离;(2)求半山观景平台BC的长度.(结果保留整数)(参考数据:≈1.414,≈1.732.)3.去年,我国南方某地一处山坡上一座输电铁塔因受雪灾影响,被冰雪从C处压折,塔尖恰好落在坡面上的点B处,造成局部地区供电中断,为尽快抢通供电线路,专业维修人员迅速奔赴现场进行处理,在B处测得BC与水平线的夹角为45°,塔基A所在斜坡与水平线的夹角为30°,A、B两点间的距离为16米,求压折前该输电铁塔的高度(结果保留根号).4.如图是一座人行天桥的引桥部分的示意图,上桥通道由两段互相平行并且与地面成37°角的楼梯AD、CE和一段水平平台DE构成.已知天桥高度BC=5.4米,引桥水平跨度AB=9米.(1)求水平平台DE的长度;(2)若与地面垂直的平台立柱MN的高度为3米,求两段楼梯AD、CE的长度之比.(参考数据:取sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)5.2020年5月27日,2020珠峰高程测量登山队成功登顶珠穆朗玛峰完成峰顶测量任务,受此消息鼓舞,某数学小组开展了一次测量小山高度的活动.如图,该数学小组从地面A 处出发,沿坡角为53°的山坡AB直线上行350米到达B处,再沿着坡角为22°的山坡BC直线上行600米到达C处,求小山的高度CD及该数学小组行进的水平距离AD(结果精确到1米).(参考数据:sin22°≈0.37,cos22°≈0.93,sin53°≈0.8,cos53°≈0.6)6.如图,某学习小组在学习了“利用三角函数测高后”,选定测量小河对面一幢建筑物BC 的高度.他们先在斜坡的D处,测得建筑物顶端B的仰角为30°,且D离地面的高度DE为9米,坡底的长度EA=21米,然后在A处测得建筑物顶端B的仰角为45°,点E,A,C在同一水平线上,求建筑物BC的高度.(结果精确到1米,参考数据:≈1.73)7.八仙阁是八仙山公园里的一个主景区,八仙阁也是晋江的一个标志性建筑.在阁楼上可以看到整个八仙山公园全景,甚至周围景观都能尽收眼底.小明想知道它的高度.于是走到点C处,测得此时塔尖A的仰角是37°,向前走了15.5米至点F处,测得此时塔尖A的仰角是45°,已知小明的眼睛离地面高度是1.5米,请聪明的你帮他求出八仙阁AB的高度.(参考数据:sin37°≈,cos37°≈,tan37°≈)8.如图,一座山的一段斜坡BD的长度为400米,且这段斜坡的坡度i=1:3(沿斜坡从B 到D时,其升高的高度与水平前进的距离之比).已知在地面B处测得山顶A的仰角(即∠ABC)为30°,在斜坡D处测得山顶A的仰角(即∠ADE)为45°.求山顶A到地面BC的高度AC是多少来?9.AB是⊙O的直径,C是⊙O上一点,OD⊥BC,垂足为D,过点A作⊙O的切线,与DO的延长线相交于点E.(1)如图1,求证∠B=∠E;(2)如图2,连接AD,若⊙O的半径为2,OE=3,求AD的长.10.如图,AB是⊙O的直径,点C在⊙O上,且AC=8,BC=6.(1)尺规作图:过点O作AC的垂线,交劣弧于点D,连接CD(保留作图痕迹,不写作法);(2)在(1)所作的图形中,求点O到AC的距离及sin∠ACD的值.11.某校数学社团的同学们使用皮尺和自制的测角仪测量“鼎桥”的高度.如图2所示,他们在地面MB上架设测角仪CM,先在点M处测得“鼎桥”最高点A的仰角∠ACD=22°,然后沿MB方向前进155m到达点N处,测得点A的仰角∠ADE=45°(点M,N,B在一条直线上),测角仪的高度为1.6m.请利用同学们的测量数据求“鼎桥”最高点A距离地面的高度AB.(结果精确到0.1m.参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,≈1.41)12.如图所示,在大楼AB的正前方有一斜坡CD(坡角∠DCE=45°),在它们之间有一片水域,现要测量大楼AB的高度.小明在斜坡上的点D处利用热气球探测器测得楼顶点B 处的仰角为60°;当热气球探测器竖直向上上升到点F处,测得楼顶点B处的仰角为30°;已知CD=30米,DF=60米,其中点A、C、E在同一直线上.(1)求斜坡CD的高度DE(精确到十分位);(2)求大楼AB的高度(精确到十分位).(参考数据:≈1.414,≈1.732)13.如图,一座山的一段斜坡BD的长度为100米,且这段斜坡的坡度i=1:3.已知在地面B处测得山顶A的仰角为30°,在斜坡D处测得山顶A的仰角为45°.求山顶A 到地面BC的高度AC是多少米?14.在一次综合实践活动中,某小组对一建筑物进行测量.如图,在山坡坡脚C处测得该建筑物顶端B的仰角为60°,沿山坡向上走20m到达D处,测得建筑物顶端B的仰角为30°.已知山坡坡度i=3:4,即tanθ=,请你帮助该小组计算建筑物的高度AB.(结果精确到0.1m,参考数据:≈1.732)15.某住宅小区,计划在1号楼顶部D和小区大门的上方A之间挂一些彩灯.经测量,得到大门的高度AB=4.8m,大门与1号楼的距离BC=30m.在大门处测得1号楼顶部的仰角为30°,而当时测倾器离地面的距离EB=1.48m.求:(1)小区1号楼CD的高度(参考数据:≈1.414,≈1.732);(2)估算大门顶部A与1号楼顶部D的距离.(结果保留一位小数)16.一次数学活动课上,老师带领学生去测一条东西流向的河宽,如图所示,小明在河北岸点A处观测到河对岸有一点C在A的南偏西60°的方向上,沿河岸向西前行20m到达B 处,又测得C在B的南偏西45°的方向上,请你根据以上数据,帮助小明计算出这条河的宽度.(结果保留根号)17.如图,一艘位于码头C正东方向的货船D,沿正南方向行驶120千米到达码头A处,此时测得码头B位于码头A北偏西60°方向,货船以30千米/小时的速度匀速从码头A 去码头B取货,再以相同的速度将货物送往码头C,此时测得码头B位于码头C南偏西15°方向,码头A位于码头C南偏东30°方向,(忽略货船取货时间,≈1.4,≈1.7,≈2.4)(1)求码头A与码头C之间的距离(结果保留根号)(2)货船能否在6小时内完成取货送货任务?请说明理由.18.公园大门A的正东方向原本有一条通往湖心小岛B的景观步道AB,但为了让市民朋友多角度欣赏公园景色,市政府决定新修一条景观步道通往湖心小岛B,新步道从A出发通向C地,C位于A的北偏西45°方向,AC=800米,再从C地到达湖心小岛B,其中C位于B的北偏西60°方向,甲工程队以每天60米的速度进行单独施工,2天后,为了加快工程进度,乙工程队以每天90米的速度加入项目建设,直到两队起完成景观步道的修建.(参考数据:≈1.4)(1)求A、B两地的距离(结果保留根号);(2)新的景观步道能否在15天内完成?请说明理由.19.某景区A、B两个景点位于湖泊两侧,游客从景点A到景点B须经过C处才能到达.测得景点B在景点A的北偏东30°方向,从景点A出发向正北方向步行600米到达C处,测得景点B在C的北偏东75°方向.当地政府为了方便游客浏览,打算修建一条从景区A到景区B的笔直的跨湖栈道AB.(1)求点C到直线AB的距离;(2)栈道修通后,从景点A到景点B走栈道比原路线少走多少米?(结果保留整数,参考数据:≈1.414,≈1.732)20.4月重庆市巴南区某景区红枫烂漫,迎来大量游客观赏.为了落实防疫要求,景区计划在西门A和东门B之间修建一条笔直的专用通道AB(其中B在A的正东方向上).已知通道AB的一侧有一个半径为800米的圆形湖泊,湖泊正中央是多彩喷泉C,在通道AB 上的有个观景台M,经测得喷泉C在观景台M的北偏东53°方向上,从观景台M向东走300米到达凉亭N处,此时测得喷泉C正好在凉亭N的东北方向上.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)(1)求观景台M与多彩喷泉C之间的距离是多少米?(2)为了不破坏湖泊,修建的通道AB是否需要改变线路?请说明理由.参考答案1.解:在Rt△BCD中,∵BC的坡度为i1=1:1,∴=1,∴CD=BD=20米,在Rt△ACD中,∵AC的坡度为i2=1:,∴=,∴AD=CD=20(米),∴AB=AD﹣BD=20﹣20≈14.6(米),∴背水坡新起点A与原起点B之间的距离约为14.6米.2.解:(1)过点B作BF⊥AE,垂足为F,在Rt△ABF中,∠BAF=30°,AB=300m,∴BF=AB=150(m),∴点B到水平面AE的距离为150m;(2)过点C作CG⊥AE,垂足为G,过点C作CH⊥DE,垂足为H,则BC=FG,CH=GE,BF=HE=150m,在Rt△DCH中,∠DCH=45°,CD=450m,∴DH=CD•sin45°=450×=450(m),CH=CD•cos45°=450×=450(m),∴GE=CH=450m,DE=DH+HE=600(m),在Rt△ADE中,AD=1000m,∴AE===800(m),在Rt△ABF中,∠BAF=30°,AB=300m,∴AF=AB•cos30°=300×=150(m),∴BC=FG=AE﹣AF﹣GE=800﹣150﹣450≈90(m),∴半山观景平台BC的长度约为90m.3.解:由已知可得,BD∥EF,AB=16米,∠E=30°,∠BDA=∠BDC=90°,∴∠E=∠DBA=30°,∴AD=8米,∴BD===8(米),∵∠CBD=45°,∠CDB=90°,∴∠C=∠CBD=45°,∴CD=BD=8米,∴BC===8(米),∴AC+CB=AD+CD+CB=(8+8+8)米,答:压折前该输电铁塔的高度是(8+8+8)米.4.解:(1)延长CE交AB于点F,过点E作EG⊥AB,垂足为G,由题意得:AD∥EF,∴∠A=∠EFG=37°,∵DE∥AF,∴四边形ADEF是平行四边形,∴AD=EF,DE=AF,在Rt△BCF中,BC=5.4米,∴BF=≈=7.2(米),∵AB=9米,∴DE=AF=AB﹣BF=9﹣7.2=1.8(米),∴水平平台DE的长度约为1.8米;(2)由题意得:MN=EG=3米,在Rt△EFG中,EF=≈=5(米),∴AD=EF=5米,在Rt△BCF中,BC=5.4米,∴CF===9(米),∴CE=CF﹣EF=9﹣5=4(米),∴两段楼梯AD、CE的长度之比为:5:4.5.解:如图,过点B作BE⊥CD于点E,过点B作BH⊥AD于点H,则四边形BEDH是矩形,∴DE=BH,BE=DH,在Rt△BCE中,BC=600米,∠CBE=22°,∴CE=BC•sin22°≈600×0.37=222(米),BE=BC•cos22°≈600×0.93=558(米),∴DH=BE=558(米),∵AB=350米,在Rt△ABH中,∠BAH=53°,∴BH=AB•sin53°≈350×0.8=280(米),AH=AB•cos53°≈350×0.6=210(米),∴CD=CE+DE=CE+BH=222+280=502(米),AD=AH+DH=210+558=768(米).答:小山的高度CD为502米,该数学小组行进的水平距离AD为768米.6.解:过点D作DH⊥BC于H,如图所示,则∠BDH=30°,四边形DECH是矩形,∴DH=EC,CH=DE=9,∵∠BAC=45°,∠BCA=90°,∴AC=BC,∴DH=EA+AC=21+BC,∵∠BDH=30°,∴BH=DH=(21+BC)=7+BC,∵BH+CH=BC,∴7+BC+9=BC,解得:BC=≈50(m);答:建筑物BC的高为50m.7.解:由题意得∠DCB=∠FEB=∠GBE=∠BGD=90°,CD∥EF∥AB,则四边形DCEF、FEBG、DCBG均为矩形.所以BG=EF=CD=1.5米,CF=DE=15.5米,在Rt△AGF中,∠AEG=∠EAG=45°,则AG=EG.设AG=EG=x米,在Rt△AGD中,tan∠ADG=,则tan37°=,∴≈,解得:x=46.5,所以AG=46.5米,则AB=46.5+1.5=48(米).答:八仙阁AB的高度为48米.8.解:过点D作DH⊥BC于H,设AE=xm.∵这段斜坡的坡度i=1:3,∴DH:BH=1:3.在Rt△BDH中,DH2+(3DH)2=4002,∴DH=40(m),则BH=120(m).在Rt△ADE中,∠ADE=45°,∴DE=AE=xm.又∵HC=ED,EC=DH,∴HC=xm,EC=40m,在Rt△ABC中,tan30°===,解得x=40,∴AC=AE+EC=(40+40)m.故山顶A到地面BC的高度AC是(40+40)m.9.(1)证明:∵AE与⊙O相切于点A∴AB⊥AE,∴∠A=90°,∵OD⊥BC,∴∠BDO=∠A=90°,∵∠BOD=∠AOE,∴∠B=∠E.(2)如图2,连接AC,∵OA=2,OE=3,∴根据勾股定理得AE=,∵∠B=∠E,∠BOD=∠EOA,∴△BOD∽△EOA,∴=,∴=,∴BD=,∴CD=BD=,∵AB是⊙O的直径,∴∠C=90°,在Rt△ABC中,根据勾股定理得AC=,在Rt△ACD中,根据勾股定理得AD===.10.解:(1)分别以A、C为圆心,大于AC为半径画弧,在AC的两侧分别相交于P、Q 两点,画直线PQ交劣弧于点D,交AC于点E,即作线段AC的垂直平分线,由垂径定理可知,直线PQ一定过点O;(2)∵AB是⊙O的直径,∴∠ACB=90°,在Rt△ABC中,且AC=8,BC=6.∴AB==10,∵OD⊥AC,∴AE=CE=AC=4,又∵OA=OB,∴OE是△ABC的中位线,∴OE=BC=3,由于PQ过圆心O,且PQ⊥AC,即点O到AC的距离为3,连接OC,在Rt△CDE中,∵DE=OD﹣CE=5﹣3=2,CE=4,∴CD===2∴sin∠ACD===.11.解:延长CD,交AB于点F,由题意得,CD=MN=155m,DF=BN,∠AFD=90°,CM=DN=BF=1.6m,设DF=xm,则CF=(x+155)m,在Rt△ADF中,∠ADF=45°,∴AF=xm,在Rt△ACF中,tan22°=≈0.40,解得x≈103.3,经检验,x≈103.3是原方程的解且符合题意,∴AB=AF+BF=103.3+1.6=104.9(m).∴“鼎桥”最高点A距离地面的高度AB约为104.9m.12.解:(1)在Rt△CDE中,CD=30米,∠DCE=45°,sin45°=,解得DE=≈21.2.∴斜坡CD的高度DE约为21.2米.(2)过点D作DG⊥AB于点G,过点F作FH⊥AB于点F,由题意得,DF=HG=60米,DG=FH,DE=AG=21.2米,设BH=x米,则BG=BH+GH=(x+60)米,在Rt△BFH中,tan30°=,解得FH=,∴DG=米,在Rt△BDG中,tan60°==,解得x=30,∴AB=AG+GH+BH=21.2+60+30=111.2(米).∴大楼AB的高度约为111.2米.13.解:过点D作DF⊥BC,垂足为F,则DF=CE,DE=CF,∵斜坡BD的坡度i=1:3,∴=,∴设DF=x米,则BF=3x米,在Rt△BDF中,BD===x,∵BD=100米,∴x=100,∴x=20,∴DF=CE=20米,BF=3x=60(米),设AE=y米,∴AC=AE+CE=(y+20)米,在Rt△ADE中,∠ADE=45°,∴tan45°==1,∴AE=DE=y米,∴BC=BF+CF=BF+DE=(60+y)米,在Rt△ABC中,∠ABC=30°,∴tan30°===,解得:y=20经检验:y=20是原方程的根,∴AC=AE+CE=(20+20)米,∴山顶A到地面BC的高度AC是(20+20)米.14.解:过点D作DE⊥AC,垂足为E,过点D作DF⊥AB,垂足为F,则DE=AF,DF=AE,在Rt△DEC中,tanθ==,设DE=3x米,则CE=4x米,∵DE2+CE2=DC2,∴(3x)2+(4x)2=400,∴x=4或x=﹣4(舍去),∴DE=AF=12米,CE=16米,设BF=y米,∴AB=BF+AF=(12+y)米,在Rt△DBF中,∠BDF=30°,∴DF===y(米),∴AE=DF=y米,∴AC=AE﹣CE=(y﹣16)米,在Rt△ABC中,∠ACB=60°,∴tan60°===,解得:y=6+8,经检验:y=6+8是原方程的根,∴AB=BF+AF=18+8≈31.9(米),∴建筑物的高度AB约为31.9米.15.解:(1)过点E作EF⊥DC,垂足为F,则FC=BE=1.48米,EF=BC=30米,在Rt△DFE中,∠DEF=30°,∴DF=EF•tan30°=30×=10(米),∴DC=DF+CF=10+1.48≈18.8(米),∴小区1号楼CD的高度约为18.8米;(2)过点A作AH⊥DC,垂足为H,则AH=BC=30米,CH=AB=4.8米,∵DC=18.8米,∴DH=DC﹣CH=18.8﹣4.8=14(米),在Rt△DHA中,DA==≈33.1(米),∴大门顶部A与1号楼顶部D的距离约为33.1米.16.解:如图,过点C作CD⊥AB于D.设CD=xm,在Rt△BCD中,∵∠CBD=45°,∴BD=CD=xm.在Rt△ACD中,∠DAC=90°﹣60°=30°,AD=AB+BD=(20+x)m,CD=xm,∴CD=tan30°•AD,∴x=(20+x),解得x=10(+1),∴CD=10(+1)m.答:这条河的宽度约为10(+1)m.17.解:(1)由题意可知,∠CAD=∠ACS=30°,∠BCS=15°,AD=120千米,∠BAD =60°,在Rt△ACD中,AD=120千米,∠CAD=30°,∴AC==80(千米),答:码头A与码头C之间的距离为80千米;(2)如图,过点B作BM⊥AC,垂足为M,∵∠BAD=60°,∠CAD=30°,∴∠BAM=30°,∵∠ACS=30°,∠BCS=15°,∴∠ACB=30°+15°=45°,设CM=x千米,则BM=CM=x千米,BC=x千米,AM=x千米,AB=2x千米,∵AC=80千米,即x+x=80,∴x=120﹣40,∴AB=2x=240﹣80≈104(千米),BC=x=120﹣40≈72(千米),∴需要时间为:(104+72)÷30≈5.8<6(小时),∴货船能在6小时内完成取货送货任务,答:货船能在6小时内完成取货送货任务.18.解:(1)过点C作CH⊥AB交BA的延长线于H,则∠CAH=45°,∵∠AHC=90°,∴sin∠CAH=,∵AC=800米,∴AH=CH=400米,∵∠CHB=90°,∠B=30°,∴tan B=,∴BH=400米,∴AB=BH﹣AH=(400﹣400)米,答:A、B两地的距离为(400﹣400)米;(2)新的景观步道能在15天内完成,理由:∵∠CBH=30°,∴BC=2CH=800米,设甲、乙合作x天完成,则60×2+(60+90)x=800+800,解得x=12,∵12+2=14<15,∴新的景观步道能在15天内完成.19.解:(1)过点C作CD⊥AB于点D,由题意得,∠CAD=30°,AC=600米,在Rt△ACD中,sin30°=,解得CD=300,∴点C到直线AB的距离为300米.(2)在Rt△ACD中,cos30°=,解得AD=,在Rt△BCD中,∠CBD=75°﹣30°=45°,CD=300米,∴BD=300米,BC=米,∴AB=AD+BD=(300+)米,AC+BC=(600+)米,∵600+﹣(300+)≈205(米),∴从景点A到景点B走栈道比原路线少走205米.20.解:(1)过点C作CD⊥AB于点D,由题意得,∠CND=45°,∠CMD=90°﹣53°=37°,MN=300米,设CD=x米,在Rt△CND中,tan45°===1,解得DN=x,∴MD=(x+300)米,在Rt△CDM中,tan37°==≈0.75,解得x=900,sin37°==≈0.60,解得MC≈1500,∴观景台M与多彩喷泉C之间的距离约为1500米.(2)为了不破坏湖泊,修建的通道AB不需要改变线路,理由如下:由(1)可知,CD=900米,∵900米>800米,∴喷泉C到道路AB的距离大于圆形湖泊的半径,道路AB与圆形湖泊所在的圆相离,∴修建的通道AB不需要改变线路.。
浙教版2020八年级数学上册第二章特殊三角形自主学习优生提升训练题2(附答案详解)
浙教版2020八年级数学上册第二章特殊三角形自主学习优生提升训练题 2 (附答案详 解)1 •以下列各数为边长,能组成直角三角形的是( )A • 6, 8, 10B • 4, 5, 6C . 5, 6, 7D . 7, 8, 92 •如图,小明拿一张正方形纸片(如图①) ,沿虚线向下对折一次得到图②,再沿图②中的虚线向下对折一次得到图③, 然后用剪刀沿图③中的虚线剪去一个角, 将剩下的纸 C . 9cm, 12cm, 15cm 4 .下列定理中,没有逆定理的是((乙)以B 为圆心,AB 长为半径画弧,交 BC 于P 点,则P 即为所求.A •两人皆正确B .两人皆错误C .甲正确,乙错误D •甲错误,乙正确7 .如图,BE=CF , AE 丄BC , DF 丄BC ,要根据“ HL 证明Rt A ABE 也Rt A DCF ,则还要添加一个条件是() 2 cm, .6 cm, 3 cm2 cm, 3cm, 4cmA •两直线平行,同旁内角互补; 两个全等三角形的对应角相等C .直角三角形的两个锐角互余; 两内角相等的三角形是等腰三角形5 •石鼓文,秦刻石文字,因其刻石外形似鼓而得名. F 列石鼓文, 是轴对称的是() 6.如图,在MBC 中, BC >AB >AC .甲、乙两人想在 BC 上取一点P ,使得/ APC =2 / ABC ,其作法如下:(甲)作AB 的中垂线, 交BC 于P 点,则P 即为所求;A . 1cm, 2cm, 3cmB . A . B .C . D.8.如图,△ABC中,C.Z B= / CD. AE=BF/ ACB = 90 , CD是高,/ A = 30 ,贝U AD与BD的关系是()A . AD = 3BDB . AD = 2BD C. 2AD = 3BD D . AD = 4BD9 .如图,若A ABC与厶DEF关于直线I对称,BE交I于点0,则下列说法不一定正确的.4……」…cA . AB // EF是()B AC= DF C. AD丄I D BO = EO10 .已知如图A ABC 中,AB=AC,AD 平分/ BAC , BC=4 贝V BDH11 .在A ABC 中,/ C = 90° AC = 8cm,BC= 6cm.动点P从点C开始按A T B T C的路径绕A ABC的边运动一周,速度为每秒3cm,运动的时间为t秒.则A BCP为等腰三角形时t的值是12 •如图,将纸片A ABC沿DE折叠,点A落在点A'处,已知/ A = 50 ° 则/ 1 + Z 2 =813 •如图,以等边 △ABC 的边AC 为腰作等腰 A CAD,使 AC=AD,连接BD,若/ DBC=41 °14. 如图,已知/ ACB=90 ° CD 丄 AB , D 是垂足,若 BC=8cm , BD=7cm , AB=10cm ,15 .如图,长方形纸片ABCD 沿EF 折叠后,ED 交BC 于点G ,点D 、C 分别落在点D'、C'位置上,若/ EFG=55°,/ BGE=16 .如图,在 Rt A ABC 中,/ ACB=90 ° AC=9, BC=12 ,则点 C 到 AB 的距离 CD =18. 在梯形 ABCD 中,AB // CD , AC 平分/ DAB , DC : AB=1 : 1.5,贝U AD : AB=cm •4m 高处折断,折断处仍相连,此时在 3.9m 远处耍的身高O/ CAD = 那么点B 到AC 的距离是 危险•(填有或无)19 .如图,在4X 4方格纸中,小正方形的边长为1,点A , B , C 在格点上,若△ ABC 的面积为2,则满足条件的点 C 的个数是 ________________ . r ~ 'T — = T —■ —…r -_ N 匸 [二二 4 —1 - ----- --fr20 .如图,在4 X4的正方形网格中,每个小正方形的顶点称为格点,每个小正方形的边 长均为1.在图①,图②中已画出线段AB ,在图③中已画出点 A .按下列要求画图: (1)在图①中,以格点为顶点, AB 为一边画一个等腰三角形 ABC ; (2) 在图②中,以格点为顶点, AB 为一边画一个正方形;(3) 在图③中,以点 A 为一个顶点,另外三个顶点也在格点上,画一个面积最大的正方形,这个正方形的面积 = ____________ .21.如图所示,AB 6,BC 8,AD 24,CD 26, B 90,求阴影部分的面积• 22 .如图,直线 AB // CD ,/ ACD 的平分线 CE 交AB 于点F ,/ AFE 的平分线交 CA 延长线于点G.(1) 证明:AC=AF;⑵若/ FCD=30 °,求/ G 的大小.23 .如图,在△ ABC 中,AB= AC, / BAC = 120 ° , D 为 BC 的中点, DE 丄 AC 于点E , BSO團② 图③DAE= 8,求CE的长.24 •如图所示,ABD, ACE分别是以AB、AC为边的等边三角形,连接CD、BE ,它们相交于点0,再连接0A .求证:0A是DOE的角平分线.25 .如图,在△ABC中,/ C = 90 °, AD平分/ CAB, DE丄AB于点E,点F在AC上,BD = FD .那么BE与FC相等吗,并说明理由.26 .我们已经知道,有一个内角是直角的三角形•其中直角所在的两条边叫直角边,直角所对的边叫斜边•数学家已发现在一个直角三角形中,两条直角边边长的平方和等于斜边长的平方•如果设直角三角形的两条直角边长度分别是a和b ,斜边长度是c,那么可以用数学语言表达为:a2 b2c2.(1)在图中,若a 3, b 4,则c等于多少;(2)观察图,利用面积与代数恒等式的关系,试说明a2 b2 c2的正确性•其中两个相同的直角三角形边AE、EB在一条直线上;(3)如图③所示,折叠长方形ABCD的一边AD,使点D落在BC边的点F处,已知AB 8 , BC 10,禾U用上面的结论求的长•27 •如图,已知点B、C、D在同一条直线上,△ABC和△CDE?都是等边三角形.BE交AC于F, AD交CE于H,(1) 求证:ABCE◎△ ACD ;⑵求证:FC=HC⑶求证:FH // BD .28 .如图,在矩形ABCD中,AB 4 , AD 3,点M是边CD上一点,将ADM沿直线AM对折得到ANM , MN , AB的延长线交于点Q , DM 1,求NQ的长.29 .在△ABC的边AC上取一点,使得AB=AD,若点D恰好在BC的垂直平分线上,写出/ ABC与/ C的数量关系,并证明•参考答案1. A【解析】【分析】根据勾股定理即可解答.【详解】解:能够组成三角形,必然满足勾股定理,只有A中62+82 = 102满足,即答案选A .【点睛】本题考查满足勾股定理的三角形是直角三角形的知识,掌握该知识点是解题关键.2. A【解析】【分析】利用图形的翻折,由翻折前后的图形是全等形,通过动手操作得出答案.【详解】【点睛】本题考查剪纸问题,对于此类问题,只要亲自动手操作,答案就会很直观地呈现出来,本题培养了学生的动手能力和空间想象能力•3. C【解析】【分析】根据勾股定理的逆定理对四组数据进行逐一判断即可.【详解】A、••• 12+22工3,二不能构成直角三角形;B、:22+ 3 2工、一6 2,二不能构成直角三角形;C、:92+122=152,二能构成直角三角形;D、:22+32=工4,二不能构成直角三角形.故选C.【点睛】本题考查的是用勾股定理的逆定理判断三角形的形状,即只要三角形的三边满足X+bJc2, 则此三角形是直角三角形.4. B【解析】【分析】先写出各选项的逆命题,判断出其真假即可解答.【详解】A •其逆命题是“同旁内角互补,两直线平行”,正确,所以有逆定理;B •其逆命题是“对应角相等的三角形是全等三角形”,错误,所以没有逆定理;C.其逆命题是“两个锐角互余的三角形是直角三角形”,正确,所以有逆定理;D •其逆命题是“等腰三角形的两个内角相等”,正确,所以有逆定理.故选B.【点睛】本题考查了命题与定理的区别,正确的命题叫定理.5. A【解析】【分析】根据轴对称图形的概念判断即可.【详解】解:A中图形是轴对称图形,B、C、D中图形都不是轴对称图形,故选:A.【点睛】本题考查的是轴对称图形的概念,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.6. C【解析】【分析】根据甲乙两人作图的作法:甲:利用垂直平分线的性质得到AP=PB,得到/ PAB= / PBA,再利用三角形的外角等于不相邻的两个内角的和,即可求出结果乙:根据作图的要求,AB=BP ,得到/ BAP= / APB ,进一步证明即可发现/ APO2 / ABC , 此方法不正确•【详解】贝U PA=PB,•••/ PAB= / PBA ,又/ APC= / PAB+ / PBA ,•••/ APC=2 / ABC ,故甲的作图正确;•/ AB=BP ,•••/ BAP= / APB ,•••/ APC= / BAP+ / ABC ,•••乙错误;故选:C.【点睛】本题考查了线段的垂直平分线的性质,三角形外角的性质,正确的理解题意是解题的关键.7. A【解析】【分析】根据垂直定义求出/ CFD= / AEB=90,再根据全等三角形的判定定理推出即可.【详解】解:条件是AB=DC ,理由是:••• AE丄BC, DF丄BC ,•••/ CFD= / AEB=90 ,在RtAABE 和RtZXDCF 中,AB=CDBE=CF ,••• Rt A ABE 也Rt Z\DCF (HL ),故选:A.【点睛】本题考查全等三角形的判定定理的应用,能灵活运用全等三角形的判定定理进行推理是解题的关键.8. A【解析】【分析】由直角三角形性质,以及角与边的关系,借助CD即可得出AD与BD的关系.【详解】根据题意,••• CD 是高,/ A=30 ,•••在Rt△ ACD 中,AD= CD,•/△ ABC 中,/ ACB=90 , / A=30°,•••/ B=60 , •••在Rt△ CDB 中有CD=竽BD ,:.AD=3BD ,故答案选A.【点睛】本题考查的知识点是含30度角的直角三角形,解题的关键是熟练的掌握含30度角的直角三角形•9. A【解析】【分析】根据轴对称的性质对各选项分析判断后利用排除法求解.【详解】解:•••△ ABC与厶DEF关于直线I对称,••• AC=DF , AD 丄I, BO=EO,故B、C、D 选项正确,AB // EF不一定成立,故A选项错误,所以,不一定正确的是A .故选:A.【点睛】本题考查轴对称的性质与运用,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.10. 2【解析】【分析】根据等腰三角形三线合一的性质,可知AD为BC的中线,继而可得出BD的长度.【详解】解:••• AB=AC ,• △ ABC是等腰三角形,••• AD平分/ BAC交BC于点D ,••• AD是厶ABC的中线,1 1••• BD= — BC — 4 2 ;2 2故答案为:2.【点睛】本题考查了等腰三角形的性质,解题的关键是掌握等腰三角形的三线合一定理【解析】【分析】△ BCP 为等腰三角形时,分点 P 在边AC 和边AB 上讨论计算.【详解】解:△ BCP 为等腰三角形时,当点P 在边AC 上时,CP=CB ,•/ CP=6cm ,此时 t=6 七=2 (秒);当点P 在边AB 上时.① 如图1 ,CP=CB ,作AB 边上的高CD ,X X CD ,在Rt △ CDP 中,根据勾股定理得,「一「「;「: —••• BP=2DP=7.2 ,••• AP=2.8 ,••• t= (AC+AP ) -K3= ( 8+2.8) £=川(秒)fy ② BC=BP ,• BP=6cm , CA+AP=8+10-6=12 (cm ),• t=12 七=4 (秒);③ PB=PC ,•••点P 在BC 的垂直平分线与 AB 的交点处,即在 AB 的中点,此时 CA+AP=8+5=13 (cm ),11.t=13 -3=(秒);综上可知,当t=2秒或秒或4秒或秒时,△ BCP为等腰三角形.故答案为:2或才或4或第.【点睛】本题考查了等腰三角形的判定,熟练掌握等腰三角形的判定定理是解题的关键.12. 100【解析】【分析】连接AA',根据折叠的性质得到AD=A'D, AE=A'E,根据等边对等角和三角形外角的性质即可得到结论.【详解】连接AA',易得AD=A'D , AE=A'E,•/ DAA'=Z DA'A,/ EAA'= / EA'A.故/ 1+ / 2=2 (/ DAA'+ / EAA') =2 / DAE=100 ° .故答案为100.【点睛】本题考查了等腰三角形的性质和三角形外角的性质•通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.13. 82【解析】【分析】根据等边三角形的性质可得:AB=AC,/ ABC= / BAC=60 °,从而求出/ ABD的度数,然后根据已知条件可得:AB= AD,根据等边对等角即可得:/ ADB= / ABD,利用三角形的内角和即可求出/ BAD,从而求出/ CAD的度数.【详解】解:••• △ABC是等边三角形••• AB=AC,/ ABC= / BAC=60 °•/ AC=AD,/ DBC=41°•AB= AD,/ ABD= / ABC -Z DBC=19°•••/ ADB= Z ABD=19 °•Z BAD=180 °-Z ADB -Z ABD=142 °•Z CAD= Z BAD -Z BAC=82 °故答案为:82° .【点睛】此题考查的是等边三角形的性质和等腰三角形的性质,掌握等边三角形的内角都是60°和等边对等角是解决此题的关键•14. 8【解析】【分析】因为Z ACB=90,根据点到直线的距离可知,BC就是点B到AC的距离.【详解】解:•••/ ACB=90•BC就是点B到AC的距离又BC=8cm•••点B到AC的距离为8cm,故答案为8.【点睛】本题主要考查点到直线的距离,正确理解点到直线的距离是解答本题的关键.15. 110【解析】【分析】先根据矩形的性质得AD // BC,再根据平行线的性质得/ DEF= / EFG=55 ° ,接着根据折叠的性质得到/ DEF= / MEF=55。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解直角三角形同步复习与提升
一、选择题
1. 如图,在平面直角坐标系中,点A 的坐标为(4,3),则cos α的值是( ) A. 34 B.43 C.35 D.45
2. 如图,△ABC 内接于半径为5的⊙O 中,圆心O 到弦BC 的距离为3,则∠A 的正切值为( )
A. 35
B.45
C.34
D.43
3. 已知抛物线y=-x 2-2x+3与x 轴交于A ,B 两点,将这条抛物线的顶点记为点C ,连接AC ,则tan ∠CAB 的值为( )
A.12
B.55
C.25
5 D.2
4.如图,在四边形ABCD 中,点E 、F 分别是AB 、AD 的中点,若EF=2,BC=5,CD=3,则tanC=( )
A.34
B.43
C.35
D.45
5.如图,在等腰直角三角形ABC 中,∠C=90°,AC=6,D 是AC 上一点,若tan ∠DBA=1
5 ,则AD 等于( )
A. 2
B.2
C.1
D.2 2 6.如图,在菱形ABCD 中,DE ⊥AB ,cosA=3
5 ,BE=2,则tan ∠DBE 的值是( ) A.12 B.2 C.52 D.55
7.如图,在△ABC 中,若∠B=30°,sinC=3
5 ,AC=10,则AB=( ) A.12 B.14 C.1
6 D.20
8. 如图,△ACB 中,∠ACB=RT ∠,已知∠B=α,∠ADC=β,AB=a ,则BD 的长可以表示( ) A. a·(cosα-cosβ) B.a
tanβ-tanα C.acosa -a ·sinαtanβ D.a ·cos α-asin α·a ·tan β
9. 因为cos60°=12 ,cos240°=- 1
2 ,所以cos240°=cos(180°+60°)=- cos60°;由此猜
想、推理:当α为锐角时有cos (180°+α)= - cosα,由此可知:cos210°=( ) A. -12 B.- 22 C..- 3
2 D.
3 10. 如图,在平面直角坐标系中,AB=35,连结AB 并延长至C ,连结OC ,若满足OC 2=BC ·AC ,tanα=2,则点C 的坐标为( )
A. (-2,4)
B.(-3,6)
C.(-53,103 )
D.(- 263,283
)
二、填空题
11. 在△ABC 中,若|sinA-3
2
|+|cosB - 12 |=0,则∠C= ° 12. 若3tan(α+10°)=1,则锐角α= °
13. 如图,在△ABC 和△DEF 中,∠B=40,∠E=140°,AB=EF=5,BC=DE=8,则两个三角形面积的大小关系为:S △ABC S △DEF .(填“>”,或“=”,“<”)
14. 已知:实常数a ,b ,c ,d 同时满足下列两个等式:①asinθ+bcosθ-c=0;①acosθ-bsinθ+d=0(其中θ为任意角),则a 、b 、c 、d 之间的关系式是:
15. 如图 ,△ABC 中,AD ⊥BC 于D ,CE 平分∠ACB ,∠AEC=45°,若AC=2,tan ∠ACB=34,则AB 的长为 .
16. 如图,在平面直角坐标系xoy 中,已知RT △ABC 可运动(平移或旋转),且∠C=90°,BC=5+4,tanA=12 ,若以点M (3,6)为圆心,2为半径的⊙M 始终在△ABC 的内部,则△ABC
的顶点C 到原点O 的距离的最小值为 . 17. 计算
(1)2sin30°-3cos60° (2)sin 245+cos 230-tan 260
18. 在△A BC 中,AB=6,BC=4,∠B 为锐角且cosB=12 . (1) 求∠B 的度数;
(2)求△ABC的面积;
(3)求tanC.
19.已知:如图,在①ABC中,AD①BC于点D,E是AD的中点,连接CE并延长交边AB
于点F,AC=13,BC=8,cos①ACB= 5 13
(1)求tan①DCE的值.
(2)求AF
BF的值.
20.如图,△ABC中,AB=AC,BC=45,tanB=2.
(1)求AC和AC边上的高;
(2)在AC上取一点M,使得BM=BC,过点M作MH⊥AB,求BH
AH的值.
21.已知:如图,在△ABC中,∠ABC=45°,AD是BC边上的中线,过点D作DE ⊥AB于点
E,且sin∠DAB= 3
5,DB=3 2.求:
(1)AB的长.
(2)∠CAB的正切值.
22.如图,在大楼AB的正前方有一斜坡CD,CD=4m,坡角∠DCE=30°,小红在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的点D处测得楼顶B的仰角为45°,其中点A,C,E在同一条直线上.
(1)求斜坡CD的高度DE.
(2)求大楼AB的高度(结果保留根号).
23.某地的一座人行天桥如图所示,天桥高为6m,坡面BC的坡度为1:1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1: 3.
(1)求新坡面的坡角α.
(2)原天桥底部正前方8m处(PB的长)的文化墙PM是否需要拆桥?请说明理由.。