有关模态基础的一点总结
模态分析的基础理论

模态分析的基础理论模态分析是一种研究系统中不同模式的分布、生成和演化规律的方法。
在这个理论中,模态是指系统中不同状态或形式的存在形式,例如质量分数、温度、湿度等。
模态分析的基础理论包括概率论、统计学和模态分析技术等。
概率论是模态分析的基础之一、它研究随机事件的发生概率和规律。
在模态分析中,我们可以利用概率论来描述不同模态出现的概率分布,并通过分析系统中的模式,得出不同模态的生成规律。
通过概率论的方法,我们可以预测不同模态的变化趋势,从而指导系统的优化设计和运行管理。
统计学也是模态分析的基础理论之一、统计学研究如何收集、处理、分析和解释数据,通过对大量数据的统计分析,揭示数据背后的规律和趋势。
模态分析中,统计学的方法可以用于分析模态数据的分布情况,寻找模态之间的相关性和影响因素,并建立相应的模型来预测和优化系统的运行情况。
在模态分析技术方面,主要包括聚类分析、主成分分析和模态分析方法等。
聚类分析是一种将相似的对象分组的方法,通过对模态数据进行聚类分析,我们可以将相似的模态归为一类,从而描述系统中的不同模态分布情况。
主成分分析是一种降维技术,它可以将高维的模态数据降低到低维,并保留大部分信息。
这可以帮助我们更好地理解系统模态之间的关系和重要性。
模态分析方法包括有限元模态分析、频响函数法和模态参数识别等。
通过这些方法,我们可以对系统的模态进行分析,包括振型、频率和阻尼等,并找出模态的摄动源和分布规律。
模态分析的基础理论对于理解和优化系统具有重要意义。
通过对模态的分析和研究,我们可以了解系统的特性和不同模态之间的关系,从而指导系统的设计和运行。
同时,模态分析也可以帮助我们发现和解决系统中存在的问题,提高系统的稳定性和可靠性。
因此,深入理解和应用模态分析的基础理论对于各个领域的研究和实践具有重要价值。
模态分析的相关知识(目的、过程等)

MODOPT,...
M2-15
模态分析步骤
选择分析类型和选项 (接上页)
振型归一化: • 因为自由度解没有任何实际意义,它只表明了振型,即各个节点相 对于其它节点是如何运动的; • 振型可以或者相对于质量矩阵[M]或者相对于单位矩阵 [I]进行归一 化:。 – 对振型进行相对于质量矩阵[M]的归一化处理是缺省选项,这种 归一化也是谱分析或将接着进行的振型叠加分析所要求的 – 如果想较容易的对整个结构中的位移的相对值进行比较,就选择 对振型进行相对于单位矩阵[I]进行归一化
M2-27
模态分析步骤
观察结果 (接上页)
观察振型: • 首先采用“ First Set”、“ Next Set” 或“By Load Step” • 然后绘制模态变形图: shape : General Postproc > Plot Results > Deformed Shape… • 注意图例中给出了振型序号 ( SUB = ) 和频率 (FREQ = ) 。
模态分析
第一节: 定义和目的
什么是模态分析? • 模态分析是用来确定结构的振动特性的一种技术: – 自然频率 – 振型 – 振型参与系数 (即在特定方向上某个振型在多大程度上 参与了振动)
• 模态分析是所有动力学分析类型的最基础的内容。
M2-1
模态分析
定义和目的(续上页)
模态分析的好处: • 使结构设计避免共振或以特定频率进行振动(例如扬声器); • 使工程师可以认识到结构对于不同类型的动力载荷是如何响 应的; • 有助于在其它动力分析中估算求解控制参数(如时间步长)。
注: PowerDynamics方法
• 子空间技术使用Power求解器(PCG)和 一直质量矩阵;
第1章模态分析理论基础资料.

2.阻尼对频率或周期的影响;
3.阻尼对振幅的影响;
xn xn1
exp( 2
/d )
1.2 单自由度系统自由振动——有阻尼
1,2 2 1
2. 临界阻尼系统(critically-damped system)
1
1 2
过程的轨迹,该轨迹近似为一个圆。(Nyquist图)
2
2
[H
R
()]2
H
I
()
1
4 k
1
4 k
1.4 多自由度系统振动方程
M x(t) C x(t) K x(t) f (t)
m11 m12 M m21 m22
mn1 mn2
m1n
m2
n
mnn
c11 c12 c1n
C c21
c22
c2
n
cn1 cn2
cnn
k11 k12 k1n
K k21
k22
k2n
kn1 kn2
knn
1.5 多自由度无阻尼系统——自K x(t) 0 特解 x(t) Xe jt
(K 2M)X 0
该方程有非零解的 充要条件是其系数 矩阵行列式为零
1.5 多自由度无阻尼系统——自由振动
➢ 振型分析:Mx(t) K x(t) 0
x(t) Xe jt
(K 2M)X 0
(K 0i2M)Xi 0
1.特征向量,或振型, 一般用φi来表示;
2.对n自由度系统,n个 振型;
模态矩阵
1 2
11 21
n
12
22
n1
n
_模态分析理论基础

IVE
Institute of Vibration Engineering, Northwestern Polytechnical University, China
Iration Engineering, Northwestern Polytechnical University, China
有限元分析软件(如ANSYS、NASTRAN、SAP、MAC等)在结 构设计中被普遍采用,但在设计中,由于计算模型和实
际结构的误差,而且受到边界条件很难准 确确定的影响,特别是结构的形状和动态特性很复杂时,
IVE
Institute of Vibration Engineering, Northwestern Polytechnical University, China
e. 为结构动力学优化设计提供目标函数或约束条件
动力学设计,即对主要承受动载荷而动特性又至关重要的结构,以 动态特性指标作为设计准则,对结构进行优化设计。它既可在常规静力 设计的结构上,运用优化技术,对结构的元件进行结构动力修改;也可 从满足结构动态性能指标出发,综合考虑其它因素来确定结构的形状, 乃至结构的拓扑(布局设计、开孔、增删元件)。动力学优化设计就是 在结构总体设计阶段就应对结构的模态参数提出要求,避免事后修补影 响全局。
•解的形式(s为复数)及拉氏 变换: x Xest (ms2 cs k ) x(s) f (s)
IVE
Institute of Vibration Engineering, Northwestern Polytechnical University, China
模态分析理论基础

有限元分析软件(如ANSYS、NASTRAN、SAP、MAC等)在结
构设计中被普遍采用,但在设计中,由于计算模型和实
际结构的误差,而且受到边界条件很难准
确确定的影响,特别是结构的形状和动态特性很复杂时,
有限元简化模型和计算的误差较大。通过对结构进行实验模态分 析,可以正确确定其动态特性,并利用动态实验结果修改有限元 模型,从而保证了在结构响应、寿命预计、可靠性分析、振动与 噪声控制分析与预估以及优化设计时获得有效而正确的结果。
•传递函数和频率响应函数
H(s)m2s(11jg)k
H()m21(1jg)k
(1+jg)k — 复刚度
–用实部和虚部表示
H ()1 k (1 1 2 )22 g2j(1 2)g 2g2
与粘性阻尼系统相比频响函数形式相同 g和2 相互置换即可得各自表达式
位移、速度和加速度传递函数
Hd (s)
e. 为结构动力学优化设计提供目标函数或约束条件
动力学设计,即对主要承受动载荷而动特性又至关重要的结构,以 动态特性指标作为设计准则,对结构进行优化设计。它既可在常规静力 设计的结构上,运用优化技术,对结构的元件进行结构动力修改;也可 从满足结构动态性能指标出发,综合考虑其它因素来确定结构的形状, 乃至结构的拓扑(布局设计、开孔、增删元件)。动力学优化设计就是 在结构总体设计阶段就应对结构的模态参数提出要求,避免事后修补影 响全局。
x(s) f (s)
Hv(s)
v(s) f (s)
Ha(s)
a(s) f (s)
• 位移、速度和加速度频率响应函数
()
x() f ()
Hv()
v() f ()
• 三者之间的关系
Ha()
Ansys模态分析

23
ห้องสมุดไป่ตู้
(3)有预应力的模态分析
在某些情况下,在执行模态分析时可能需要考虑预应力影响。
• • 在进行高速旋转机械的转子系统动力设计时,需要对转动部件进行模 态分析,通过合理的设计使其工作转速尽量远离转子系统的固有频率。 对于高速部件,工作时由于受离心力的影响,其固有频率跟静止时相 比会有一定的变化。为此,在进行模态分析时需要考虑离心力的影响。
有预应力模态分析用于计算有预应力结构的固有频率和模态。 除了首先要通过进行静力分析把预应力加到结构上外,有预应力 模态分析的过程和常规模态分析基本上一样。
24
3、案例分析
案例1:飞机机翼模态分析
25
3、案例分析
案例2:风力发电机叶片预应力模态分析
26
3
(1)什么是振动?
但凡会动的机器、设备、产品等都会有振 动的现象,就连不动的物体都会受到到地 震的影响。 振动可以说无所不在。
4
(2)固有频率
任何结构都具有其固有频率(固有周期),其值由 其本身的结构所决定
5
(3)固有振动模态
系统的每一个固有频率都有一个对应的模态振型,合称为振动模态。 固有振动形态 名称
1阶振动 2阶振动 3阶振动
– 固有模态和固有频率是一一对应的。 对于1阶固有模态,就有以1阶固有频率振动的振动形式,对于2阶固有 模态则有2阶频率振动的振动形式。 – 象这样所定的频率和振动模态组合起来则存在着1阶、2阶、3阶……等 多个振动形式。 6
(4)共振
当结构受外力作用时,若外力的“施力频率”或 称“激振频率”与结构的自然频率相等或相近,就会使 结构有“振动大”的现象,称为共振. 对一般的机器而言,共振现象的发生打斗是造成 机器或结构破坏的主要原因。 设计就要避免出现共振现象
模态分析基本知识

模态分析分析基本知识!1.什么是模态分析?模态分析的经典定义:将线性定常系统振动微分方程组中的物理坐标变换为模态坐标,使方程组解耦,成为一组以模态坐标及模态参数描述的独立方程,以便求出系统的模态参数。
坐标变换的变换矩阵为模态矩阵,其每列为模态振型。
2.模态分析有什么用处?模态分析所的最终目标在是识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。
模态分析技术的应用可归结为以下几个方面:1) 评价现有结构系统的动态特性;2) 在新产品设计中进行结构动态特性的预估和优化设计;3) 诊断及预报结构系统的故障;4) 控制结构的辐射噪声;5) 识别结构系统的载荷。
3.模态试验时如何选择最佳悬挂点??模态试验时,一般希望将悬挂点选择在振幅较小的位置,最佳悬挂点应该是某阶振型的节点。
4.模态试验时如何选择最佳激励点?最佳激励点视待测试的振型而定,若单阶,则应选择最大振幅点,若多阶,则激励点处各阶的振幅都不小于某一值。
如果是需要许多能量才能激励的结构,可以考虑多选择几个激励点。
5.模态试验时如何选择最佳测试点?模态试验时测试点所得到的信息要求有尽可能高的信噪比,因此测试点不应该靠近节点。
在最佳测试点位置其ADDOF(Average Driving DOF Displacement) 值应该较大,一般可用EI(EffectiveIndependance) 法确定最佳测试点。
6. 模态参数有那些?模态参数有:模态频率、模态质量、模态向量、模态刚度和模态阻尼。
7. 什么是主模态、主空间、主坐标?无阻尼系统的各阶模态称为主模态,各阶模态向量所张成的空间称为主空间,其相应的模态坐标称为主坐标。
8. 什么是模态截断?理想的情况下我们希望得到一个结构的完整的模态集,实际应用中这即不可能也不必要。
实际上并非所有的模态对响应的贡献都是相同的。
对低频响应来说,高阶模态的影响较小。
对实际结构而言,我们感兴趣的往往是它的前几阶或十几阶模态,更高的模态常常被舍弃。
模态分析的基础理论

运动微分方程
单自由度系统无阻尼自由振动是简谐振动
2π
m
T 2π
n
k
fn
1 T
n
2π
1 2π
k m
能量关系
mx dx kx dx 0 dt dt
意义:惯性力的功率Fm与弹性力的功率Fs之和为零
d dt
1 2
mx2
1 2
kx 2
0
ET
1 mx2 2
单自由度系统
自由振动 简谐振动 非周期强迫振动
自由振动
振动系统在初始激励下或外加激励消失后的 运动状态。
自由振动时系统不受外界激励的影响,其运 动时的能量来自于初始时刻弹性元件和惯性 元件中存储的能量。
振动规律完全取决于初始时刻存储的能量和 系统本身的性质。
运动微分方程
•使该矢量以等角速度在复平面内旋转(复数旋转矢量)
虚轴
ei x cos i sin
P A
t
z Acost i sint Aeit
实轴
y Asint Im z Im Aeit
运动学
速度、加速度的复数表示
位移 x Aeit
速度 x d Aeit iAAeeiitt / 2
2.0
0.5 和 0.7 临 界 阻 尼 比 无
c/cc=0
抛物线
阻尼曲线更接近理想加
1.5
速度计曲线
c/cc=0.5
1.0
c/cc=0.7
0.5
0 0 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
什么是模态分析
模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。
模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。
这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。
这个分析过程如果是由有限元计算的方法取得的,则称为计算模记分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。
通常,模态分析都是指试验模态分析。
振动模态是弹性结构的固有的、整体的特性。
如果通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。
因此,模态分析是结构动态设计及设备的故障诊断的重要方法。
模态参数
模态参数有:模态频率、模态质量、模态向量、模态刚度和模态阻尼等。
模态分析的经典定义
模态分析的经典定义:将线性定常系统振动微分方程组中的物理坐标变换为模态坐标,使方程组解耦,成为一组以模态坐标及模态参数描述的独立方程,以便求出系统的模态参数。
坐标变换的变换矩阵为模态矩阵,其每列为模态振型
模态分析的基本过程
(1)动态数据的采集及频响函数或脉冲响应函数分析
1)激励方法。
试验模态分析是人为地对结构物施加一定动态激励,采集各点的振动响应信号及激振力信号,根据力及响应信号,用各种参数识别方法获取模态参数。
激励方法不同,相应识别方法也不同。
目前主要由单输入单输出(SISO)、单输入多输出(SIMO)多输入多输出(MIMO)三种方法。
以输入力的信号特征还可分为正弦慢扫描、正弦快扫描、稳态随机(包括白噪声、宽带噪声或伪随机)、瞬态激励(包括随机脉冲激励)等。
2)数据采集。
SISO方法要求同时高速采集输入与输出两个点的信号,用不断移动激励点位置或响应点位置的办法取得振形数据。
SIMO及MIMO的方法则要求大量通道数据的高速并行采集,因此要求大量的振动测量传感器或激振器,试验成本较高。
3)时域或频域信号处理。
例如谱分析、传递函数估计、脉冲响应测量以及滤波、相关分析等。
(2)建立结构数学模型根据已知条件,建立一种描述结构状态及特性的模型,作为计算及识别参数依据。
目前一般假定系统为线性的。
由于采用的识别方法不同,也分为频域建模和时域建模。
根据阻尼特性及频率耦合程度分为实模态或复模态模型等。
(3)参数识别按识别域的不同可分为频域法、时域法和混合域法,后者是指在时域识别复特征值,再回到频域中识别振型,激励方式不同(SISO、SIMO、MIMO),相应的参数识别方法也不尽相同。
并非越复杂的方法识别的结果越可靠。
对于目前能够进行的大多数不是十分复杂的结构,只要取得了可靠的频响数据,即使用较简单的识别方法也可能获得良好的模态参数;反之,即使用最复杂的数学模型、最高级的拟合方法,如果频响测量数据不可靠,则识别的结果一定不会理想。
(4)振形动画参数识别的结果得到了结构的模态参数模型,即一组固有频率、模态阻尼以及相应各阶模态的振形。
由于结构复杂,由许多自由度组成的振形也相当复杂,必须采用动画的方法,将放大了的振形叠加到原始的几何形状上。
以上四个步骤是模态试验及分析的主要过程。
结构动力修改与灵敏度分析
结构动力修改(Structure Dynamic Modify——SDM)有两个含义:①如果机器作了某种设计上的修改,它的动力学特性将会有何种变化?这个问题被称为SDM的正问题。
②如果要求结构动力学参数作某种改变,应该对设计作何种修改?这是SDM的反问题。
上述两个问题,如果局限在有限元计算模型内解决,其正问题是比较简单的,即只要改变参数重新计算一次就可以。
其反问题就是特征值的反问题,由于结构的复杂性和数学处理的难度较大,目前在理论上还不完善。
只有涉及雅可比矩阵的问题得到了比较完善的解决,相应的力学模型是弹簧质量单向串联系统或杆件经过有限元或差分法离散的系统。
此外,特征值反问题的解决要求未修改系统计算的特征值及特征向量是精确的。
因此,现在通常所指的SDM是指在试验模态分析基础上的。
不论是结构动力修改的正问题还是反问题,都要涉及针对结构进行修改。
为了避免修改的盲目性,人们自然要问,如何修改才是最见成效的?换而言之,对一个机械系统,是进行质量修改,还是进行刚度修改?质量或刚度修改时,在机械结构上何处修改才是最灵敏部位,使得以较少的修改量得到较大的收获?由此,引出了结构动力修改中的灵敏度分析技术。
目前较为常见的是基于摄动的灵敏度分析。
模态分析的用处
模态分析所的最终目标在是识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。
模态分析技术的应用可归结为一下几个方面:
1) 评价现有结构系统的动态特性;
2) 在新产品设计中进行结构动态特性的预估和优化设计;
3) 诊断及预报结构系统的故障;
4) 控制结构的辐射噪声;
模态试验时如何选择最佳悬挂点
模态试验时,一般希望将悬挂点选择在振幅较小的位置,最佳悬挂点应该是某阶振型的节点。
模态试验时如何选择最佳激励点
最佳激励点视待测试的振型而定,若单阶,则应选择最大振幅点,若多阶,则激励点处各阶的振幅都不小于某一值。
如果是需要许多能量才能激励的结构,可以考虑多选择几个激
励点。
模态试验时如何选择最佳测试点
模态试验时测试点所得到的信息要求有尽可能高的信噪比,因此测试点不应该靠近节点。
在最佳测试点位置其ADDOF(Average Driving DOF Displacement)值应该较大,一般可用EI(Effective Independance)法确定最佳测试点。
模态截断
理想的情况下我们希望得到一个结构的完整的模态集,实际应用中这即不可能也不必要。
实际上并非所有的模态对响应的贡献都是相同的。
对低频响应来说,高阶模态的影响较
小。
对实际结构而言,我们感兴趣的往往是它的前几阶或十几阶模态,更高的模态常常被舍弃。
这样尽管会造成一点误差,但频响函数的矩阵阶数会大大减小,使工作量大为减小。
这种处理方法称为模态截断。
主模态、主空间、主坐标?
无阻尼系统的各阶模态称为主模态,各阶模态向量所张成的空间称为主空间,其相应的模态坐标称为主坐标。
实模态和复模态
按照模态参数(主要指模态频率及模态向量)是实数还是复数,模态可以分为实模态和复模态。
对于无阻尼或比例阻尼振动系统,其各点的振动相位差为零或180度,其模态系数是实数,此时为实模态;对于非比例阻尼振动系统,各点除了振幅不同外相位差也不一定为零或180度,这样模态系数就是复数,即形成复模态。
模态分析和有限元分析结合使用
1)利用有限元分析模型确定模态试验的测量点、激励点、支持点(悬挂点),参照计算振型队测试模态参数进行辩识命名,尤其是对于复杂结构很重要。
2)利用试验结果对有限元分析模型进行修改,以达到行业标准或国家标准要求。
3)利用有限元模型对试验条件所产生的误差进行仿真分析,如边界条件模拟、附加质量、附加刚度所带来的误差及其消除。
4)两套模型频谱一致性和振型相关性分析。
5)利用有限元模型仿真分析解决实验中出现的问题!
用试验模态分析的结果修正有限元分析的结果
1)结构设计参数的修正,可用优化方法进行。
2)子结构校正因子修正。
3)结构矩阵元素修正,包括非零元素和全元素修正两种。
4)刚度矩阵和质量矩阵同时修正。