特殊的平行四边形复习课教案

合集下载

平行四边形的性质及判定复习课教案

平行四边形的性质及判定复习课教案

平行四边形的性质及判定复习课教案平行四边形的性质及判定复习课教案「篇一」一教学目标:1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法.2.会综合运用平行四边形的判定方法和性质来解决问题.3.培养用类比、逆向联想及运动的思维方法来研究问题.二重点、难点1.重点:平行四边形的判定方法及应用.2.难点:平行四边形的判定定理与性质定理的灵活应用.3.难点的突破方法:平行四边形的判别方法是本节课的核心内容.同时它又是后面进一步研究矩形、菱形、正方形判别的基础,更是发展学生合情推理及说理的良好素材.本节课的教学重点为平行四边形的判别方法.在本课中,可以探索活动为载体,并将论证作为探索活动的自然延续与必要发展,从而将直观操作与简单推理有机融合,达到突出重点、分散难点的目的.(1)平行四边形的判定方法1、2都是平行四边形性质的逆命题,它们的证明都可利用定义或前一个方法来证明.(2)平行四边形有四种判定方法,与性质类似,可从边、对角线两方面进行记忆.要注意:①本教材没有把用角来作为判定的方法,教学中可以根据学生的情况作为补充;②本节课只介绍前两个判定方法.(3)教学中,我们可创设贴近学生生活、生动有趣的问题情境,开展有效的数学活动,如通过欣赏图片及识别图片中的平行四边形,使学生建立对平行四边形的直觉认识.并复习平行四边形的定义,建立新旧知识间的相互联系.接着提出问题:小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?从而组织学生主动参与、勤于动手、积极思考,使他们在自主探究与合作交流的过程中,从整体上把握“平行四边形的判别”的方法.然后利用学生手中的学具——硬纸板条,通过观察、测量、猜想、验证、探索构成平行四边形的条件.在学生拼图的活动中,教师可以以问题串的形式展开对平行四边形判别方法的探讨,让学生在问题解决中,实现对平行四边形各种判别方法的掌握,并发展了学生说理及简单推理的能力.(4)从本节开始,就应让学生直接运用平行四边形的性质和判定去解决问题,凡是可以用平行四边形知识证明的问题,不要再回到用三角形全等证明.应该对学生提出这个要求.(5)平行四边形知识的运用包括三个方面:一是直接运用平行四边形的性质去解决某些问题.例如,求角的度数,线段的长度,证明角相等或线段相等;二是判定一个四边形是平行四边形,从而判定直线平行等;三是先判定一个四边形是平行四边形,然后再眼再用平行四边形的性质去解决某些问题.(6)平行四边形的概念、性质、判定都是非常重要的基础知识,这些知识是本章的重点内容,要使学生熟练地掌握这些知识.三例题的意图分析本节课安排了3个例题,例1是教材P96的例3,它是平行四边形的性质与判定的综合运用,此题最好先让学生说出证明的思路,然后老师总结并指出其最佳方法.例2与例3都是补充的题目,其目的就是让学生能灵活和综合地运用平行四边形的判定方法和性质来解决问题.例3是一道拼图题,教学时,可以让学生动起来,边拼图边说明道理,即可以提高学生的动手能力和学生的思维能力,又可以提高学生的学习兴趣.如让学生再用四个不等边三角形拼一个如图的大三角形,让学生指出图中所有的平行四边形,并说明理由.四课堂引入1.欣赏图片、提出问题.展示图片,提出问题,在刚才演示的图片中,有哪些是平行四边形?你是怎样判断的?2.【探究】:小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?让学生利用手中的学具——硬纸板条,通过观察、测量、猜想、验证、探索构成平行四边形的条件,思考并探讨:(1)你能适当选择手中的硬纸板条搭建一个平行四边形吗?(2)你怎样验证你搭建的四边形一定是平行四边形?(3)你能说出你的做法及其道理吗?(4)能否将你的探索结论作为平行四边形的'一种判别方法?你能用文字语言表述出来吗?(5)你还能找出其他方法吗?从探究中得到:平行四边形判定方法1 两组对边分别相等的四边形是平行四边形。

平行四边形复习课教案

平行四边形复习课教案

《平行四边形》复习教案仁德一中妥连军一学习目标:1.知识目标:通过运用平行四边形、矩形、菱形、正方形的性质和判定解决问题,加深对平行四边形、矩形、菱形、正方形的性质和判定的理解.2.能力目标:(1)通过平行四边形、矩形、菱形、正方形性质和判定的归纳梳理,建立良好的思维体系.(2)通过探究平行四边形有关问题,建立模型,提高探究能力.3.情感目标:在学习过程中积累经验,体验成功,激发兴趣,发展创新精神和实践能力.二教学重点:平行四边形、矩形、菱形、正方形的性质和判定的灵活运用.三教学难点:综合运用平行四边形、矩形、菱形、正方形的性质和判定解决问题.四知识链接:平行四边形、矩形、菱形、正方形的性质和判定,三角形中位线定理.五课时安排:1课时六教学过程设计:昆明中考考情分析:1、考频及权重分析平行四边形在昆明市近五年的中考中,共考了9次。

其中市统测(2015,2016,2018)三年出现5次,省统测(2017,2019)两年出现4次。

分值在11-14分之间,所占比重为10%左右。

2、题型分析在填空题和选择题中主要考查平行四边形及特殊平行四边形的性质以及利用性质求长度、角度、三角函数值等计算;简答题中主要考查判定与计算,也常以平行四边形、特殊平行四边形为载体,考查全等、线段位置关系及圆的计算等。

在压轴题中以会出现平行四边形哦,主要考查平行四边形的存在性、探究性等问题。

【任务一】知识梳理(一)思维导图回顾平行四边的性质判定:(二)平行四边形及特殊平行四边形的性质(三)平行四边形及特殊平行四边形的判定【任务二】条件探索如图,在△ABC中,D、E、F分别是BC、AB、AC的中点,(1)猜想四边形AEDF是什么四边形,并证明你的结论.(2)当△ABC的边和角满足什么条件时,四边形AEDF是矩形?(3)当△ABC的边和角满足什么条件时,四边形AEDF是菱形?(4)当△ABC的边和角满足什么条件时,四边形AEDF是正方形?教学策略:学生看、说、展示思维,构建模型,教师展示规范答题格式。

初中数学_特殊平行四边形复习课教学设计学情分析教材分析课后反思

初中数学_特殊平行四边形复习课教学设计学情分析教材分析课后反思

菱形正方形特殊平行四边形的判定矩形菱形正方形AB= .对角线AC= .是.学情分析“特殊的平行四边形”是学生继学习了平行四边形之后的一个学习内容,学生已经学习了平行四边形的有关知识,对平行四边形的性质和判定已有一定的认识,学生在小学也接触过矩形,菱形,正方形的一些简单应用。

本节主要复习三种特殊平行四边形的性质和判定,以及对他们的比较。

研究过程中以类比,归类为主要方法,同时,九年级学生已经具备比较强的归纳、总结能力,利用学生间相互评价、相互提问,使之参与课堂的热情提高。

效果分析一、探究学习过程本节课从三种特殊平行四边形的关系入手,使学生进一步认识矩形、菱形、正方形的内在关系:不仅要让学生了解三种特殊平行四边形的性质和判定,更重要的是让学生通过观察、比较、归类找出他们内在的转化方法。

通过自己动手经历和体验图形的变化过程,进一步发展学生的空间观念。

二、例题学习过程学生在讲解例题与联系的过程中,能说出每一步推理的依据,养成步步有据、准确表达的良好学习习惯,思维非常活跃,并且每一步推理的依据都能够集体回答或个别举手回答正确,达到预期教学目的。

三、达标检测过程大多数掌握较好,准确率95%以上。

有错的老师个别辅导达标。

四边形是人们日常生活中应用较广的一种几何图形,尤其是平行四边形、矩形、菱形、正方形等特殊平行四边形的用处更多。

本章的教学重点(1)三种特殊平行四边形性质和判定的复习。

(2)三种特殊平行四边形的关系。

本章教学难点:总结关系方法的多样性和系统性。

本章的教学内容之间联系比较紧密,研究问题的思路和方法也类似,推理论证的难度也不大。

相当来说,平行四边形与各种特殊的平行四边形之间的联系与区别,是本章的教学难点。

因为各种特殊的平行四边形概念交错,容易混淆,常会出现“张冠李戴”的现象,在应用它们的性质和判定的时候,也会常常出错、多用、少用的错误。

教学中要注意结合教材中的结构图,分清这些四边形的从属关系,梳理他们的性质和判定方法,克服这一难点。

复习课《特殊平行四边形》教案

复习课《特殊平行四边形》教案
【思维点击】:折叠问题是特殊四边形中经常遇到的问题,注意折叠、平移、旋转和轴对称都不改变图形的形状和大小,重合部分是全等图形。
【设计意图】:
三道例题的选取有代表性,都是充分综合应用特殊平行四边形的性质和判定,其中例1让学生灵活应用正方形的判定定理解题;例2则矩形问题,引导学生在解决这类问题时,可以灵活的改变思路,从题目的结论入手,同培养学生的发散思维;例3是考试时经常遇到的折叠问题,通过几种折叠方法,使学生自己总结出解决此类问题的方法。
4、直角三角形的推论及三角形的中位线定理
(1)、直角三角形中斜边上的中线等于斜边的一半。
(2)、直角三角形中,300所对的直角边等于斜边的一半。
【设计意图】:
复习几种特殊平行四边形的性质定理和判定定理,为下面几何题的证明做好准备。采用小组合作的方式,共同回顾所学知识,力求学生能较快的找出解题的方法。
3、要使一个矩形成为正方形需添加的一个条件是_______________________
4、要使一个菱形成为正方形需增加的一个条件是____________________。
(三)、填空题
1、在平行四边形、直角三角形、菱形、梯形中,既是中心对称图形又是轴对称图形的是_______________。
【思维点击】:判断出三角形EFD是等腰直角三角形是解答本题的关键。
3、如图,矩形纸片ABCD中,AB=8,将纸片折叠,使顶点B落在边AD的E点上,BG=10.
(1)当折痕的另一端F在AB边上时,如图(1).求△EFG的面积.
(2)当折痕的另一端F在AD边上时,如图(2).证明四边形BGEF为菱形,并求出折痕GF的长.
6、若平行四边形一边长为8cm,一条对角线长为6cm,则另一条对角线长X的取值范围是_____________。

丹东市第二十四中学 第一章 特殊平行四边形 复习课

丹东市第二十四中学    第一章  特殊平行四边形       复习课

丹东市第二十四中学 第一章 特殊平行四边形 复习课主备: 辅备: 审核: 2014年8月13日 一、学习准备:1、定义:两组 分别平行的四边形是平行四边形2、根据右图,填空:∵□ABCD∴AB= ; =BC ; ∥CD AD ∥ AO CO ;BO= 3、平行四边形的判定方法a 、两组对边 的四边形是平行四边形b 、一组对边 的四边形是平行四边形c 、对角线 的四边形是平行四边形4、已知□ABCD 的周长为32,AB=6,则BC=5、已知在△ABC 中,∠ACB=90°,AB=10,E 是AB 中点,则CE=6、如右上图所示在□ABCD 中,E 、F 分别是AD 、BC 上的两点,且DE=BF ,求证BE=DF 二、学习目标:1、回顾与复习平行四边形的相关定义、性义及判定2、 能根据题意及图形的相关知道熟练运用平行四边形的相关知道3、 初步掌握平行四边形开放性问题的解题方法与思路三、自学提示: 探究活动(一)1、如图E ,F 是四边形ABCD 的对角线AC 上的两点AF=CE ,DF=BE ,DF ∥BE ,求证:四边形ABCD 是平行四边形点拨:要证明一个四边形是平行四边形,要根据题目及图形的已知中分析出是边、还是对角线的角度来证明这是一个平行四边形。

2、如图,△ABC 中,∠ACB=90°,点D 、E 分别是AC 、AB 的中点, 点F 在BC 的延长线上,且∠CDF = ∠A,求证四边形DECF 为平行四边形。

探究活动(二) 1、(双柏)E ,F 是平行四边形ABCD 的对角线AC 上的点,CE=AF ,请你猜想:BE 与DF 有怎样的位置关系....和数量关系....?并加以证明 猜想:证明:FB点拨:开放型的猜想类问题,要充分根据已知条件出发,理出条件与要猜想对象之间的联系。

2、在□ABCD 中,E ,F 分别是BC ,AD 的中点。

(1)求证:△ABE ≌△CDF ;(2)连结AC ,若四边形AECF 是菱形,则△ABC 需增加的一个条件是 (不再标注其他字母,不得添加辅助线)并加以证明;点拨:开放型增加条件类问题,要分析题中的已知与结论之间缺少的内容,缺什么补什么。

平行四边形复习课教案设计

平行四边形复习课教案设计

第18章平行四边形【教学目标】1、通过对几种平行四边形的回顾与思考,使学生梳理所学的知识,系统地复习平行四边形与各种特殊平行四边形的定义、性质、判定方法,三角形的中位线定理等;2、正确理解平行四边形与各种特殊平行四边形的联系与区别,在反思和交流过程中,逐渐建立知识体系;3、引导学生独立思考,通过归纳、概括、实践等系统数学活动,感受获得成功的体验,形成科学的学习习惯。

【教学重点】1、平行四边形与各种特殊平行四边形的区别。

2、梳理平行四边形、矩形、菱形、正方形、三角形的中位线定理的知识体系及应用方法。

【教学难点】平行四边形与各种特殊平行四边形的定义、性质、判定的综合运用。

【教学模式】以题代纲,梳理知识-----变式训练,查漏补缺-----综合训练,总结规律-----测试练习,提高效率。

【教具准备】三角板、实物投影仪、电脑、自制课件。

【教学过程】一、以题代纲,梳理知识(一)开门见山,直奔主题同学们,今天我们一起来复习《平行四边形》的相关知识,先请同学们迅速地完成下面几道练习题,请看大屏幕。

(二)诊断练习1、根据条件判定它是什么图形,并在括号内填出,在四边形ABCD中,对角线AC和BD相交于点O:(1)AB=CD,AD=BC (平行四边形)(2)∠A=∠B=∠C=90°(矩形)(3)AB=BC,四边形ABCD是平行四边形(菱形)(4)OA=OC=OB=OD ,AC⊥BD (正方形)(5)AB=CD, ∠A=∠C ( ? )2、菱形的两条对角线长分别是6厘米和8厘米,则菱形的边长为5厘米。

3、顺次连结矩形ABCD各边中点所成的四边形是菱形。

4、若正方形ABCD的对角线长10厘米,那么它的面积是50平方厘米。

5、平行四边形、矩形、菱形、正方形中,轴对称图形有:矩形、菱形、正方形,中心对称图形的有:平行四边形、矩形、菱形、正方形,既是轴对称图形,又是中心对称图形的是:矩形、菱形、正方形。

(三)归纳整理,形成体系1、性质判定,列表归纳2、基础练习:(1)矩形、菱形、正方形都具有的性质是(C)A.对角线相等(距、正)B. 对角线平分一组对角(菱、正)C.对角线互相平分D. 对角线互相垂直(菱、正)(2)正方形具有,矩形也具有的性质是(A)A.对角线相等且互相平分B. 对角线相等且互相垂直C. 对角线互相垂直且互相平分D.对角线互相垂直平分且相等(3)如果一个四边形是中心对称图形,那么这个四边形一定(D) A.正方形 B.菱形 C.矩形 D.平行四边形都是中心对称图形,A、B、C都是平行四边形(4)矩形具有,而菱形不一定具有的性质是(B)A. 对角线互相平分B. 对角线相等C. 对边平行且相等D. 内角和为3600问:菱形的对角线一定不相等吗?错,因为正方形也是菱形。

《特殊的平行四边形》复习课教案

《特殊的平行四边形》复习课教案

N M图1ODC B A 图 2AB CDOE O D C B A 图 3F ODC B A 图4图 6ABDE F图 7ABDE F 《特殊的平行四边形》复习课【教学目标】1、知识目标:掌握平行四边形和特殊平行四边形的性质和判定;并能运用有关知识进行推理证明和计算;2、能力目标:通过探索,进行观察、猜想、分析、归纳、推理,培养学生发散思维能力;同时提高学生分析问题,解决问题的能力;3、情感目标:通过基础题和探究题体验数学活动的逻辑性和趣味性,同时增强解题的自信心;【重点、难点】1.重点:特殊四边形的性质.2.难点:特殊四边形性质的灵活应用.【教学手段】多媒体教学、投影仪. 【教学实施】教案+学案. 【教学过程】一、复习提问、提取回忆2、几点推论:三角形的中位线平行于第三边且等于第三边的一半;直角三角形斜边上的中线等于斜边的一半. 二、例题讲授、上升理性【例1】如图1,矩形ABCD 的对角线AC 、BD 相交于点O ,过O 点作MN ⊥AC 交AB 于M 点,交BC 于N 点, (1)若AD=8,AB=4,求△MDC 的周长; (2)在(1)的条件下, 求AM 的长;(3)判断四边形AMCN 的形状。

(试题背景:2008·济南市中考试题)【例2】如图2,菱形ABCD 的边长为2cm ,∠ABC =60°,请你设计一道试题,并想想设计问题的依据或目的?(例题背景:2009·河北省中考试题)变式1、如图3,取BC 边的中点E ,求OE 的长;(问题背景:2008·台州市中考试题)变式2、如图4,过A 作AF ⊥BC 于F 点,求AF 的长(问题背景:2009·凉山州中考试题)变式3、如图5,将菱形放置在平面直角坐标系中,使得点B 放置在坐标原点O ,求点D 的坐标;(问题背景:2009·长春市中考试题)【小结】基本思路1:“矩形菱形—等腰三角形—等边三角形”; 基本思路2:“菱形—对角线互相垂直—面积=12×对角线乘积”; 基本思路3:“矩形、菱形—直角三角形—勾股定理”.【例3】如图6,点O 是正方形ABCD 的两条对角线的交点,正方形的边长为4,点E 为BC 上任意一点,OE ⊥OF 交CD 于F 点,连接EF 。

北师大版九年级数学上册优秀教学案例:第一章《特殊的平行四边形》回顾与复习

北师大版九年级数学上册优秀教学案例:第一章《特殊的平行四边形》回顾与复习
2.鼓励学生主动思考和探究,培养他们的创新意识和解决问题的能力。
3.教师对学生的作业情况进行评价,及时给予反馈和指导,帮助学生提高学习能力。
五、案例亮点
1.生活实例导入:通过引入生活实例,如教室里的矩形窗户、足球场的菱形图案等,让学生感受到数学与生活的紧密联系,激发学生的学习兴趣和好奇心。这种教学方式能够使学生更加积极主动地参与到课堂中来,提高他们的学习积极性。
2.设计小组活动,让学生通过实践操作、讨论交流等方式,共同解决问题。
3.培养学生的团队合作精神,提高他们的沟通能力和协作能力。
(四)反思与评价
1.引导学生对自己的学习过程进行反思,总结自己的学习方法和策略。
2.鼓励学生相互评价,互相学习和借鉴他人的优点。
3.教师对学生的学习情况进行评价,及时给予反馈和指导,帮助学生提高学习能力。
北师大版九年级数学上册优秀教学案例:第一章《特殊的平行四边形》回顾与复习
一、案例背景
本案例背景以北师大版九年级数学上册第一章《特殊的平行四边形》回顾与复习为主题。本节课是在学生已经掌握了平行四边形的性质和判定方法的基础上进行的一节复习课。特殊的平行四边形包括矩形、菱形和正方形,它们既有平行四边形的性质,又有自己独特的性质。在复习过程中,我旨在帮助学生巩固特殊的平行四边形的性质和判定方法,提高他们的数学思维能力和解决问题的能力。
3.培养学生积极主动的态度,让他们勇于尝试、勇于挑战自我,培养他们的创新意识。
三、教学策略
(一)情景创设
1.通过生活实例引入特殊的平行四边形,让学生感受到数学与生活的紧密联系。
2.设计有趣的数学问题或游戏,激发学生的学习兴趣和好奇心。
3.利用多媒体课件或实物模型,展示特殊的平行四边形的性质和判定方法,增强学生的直观感受。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

特殊的平行四边形复习课教案
教学目标
知识技能:
1、掌握本章的知识体系,
2、综合应用本章知识解决实际应用问题。

过程与方法:从问题出发有效组织学生独立思考,合作学习,通过综合的证明过程,体会证明的有关证明的思维方法。

情感态度价值感:通过师生活动以及多媒体教学软件的应用,培养学生的直觉性,积极性,是学生发现数学中所用蕴含美。

教学重点:知识体系的形成。

教学难点:知识体系的综合应用。

教学过程
一、梳理本章知识体系
1、课件展示特殊平行四边形之间的关系。

2、课件展示特殊平行四边形的性质。

3、课件展示特殊平行四边形的判定方法。

二、梳理练习(课件出示)
三、合作探究
合作活动一
1、已知:△ABC中AB=AC=a,M为底边BC上任意一点,
过点M分别作AB、AC的平行线交AC于P,交AB于Q.
1)线段QM、PM、AB之间有什么关系?
(2)图中的三角形之间有什么关系?
2、已知:△ABC中AB=AC=a,M为底边BC上任意一点,
过点M分别作AB、AC的平行线交AC于P,交AB于Q.
探究:当M位于BC的什么位置时, 四边形AQMP是菱形?
并说明你的理由
当△ABC满足什么条件菱形AQMP是正方形?
合作活动二
李大爷有一个边长为a的正方形鱼塘,鱼塘四个角的顶点A、B、C、D上各有一棵大树,现在李大爷想把鱼塘扩建成一个圆形或正方形鱼塘(原鱼塘周围的面积足够大).又不想把树挖掉(四棵大树要在新建鱼塘的边沿上).
(1)若按圆形设计,请画出你设计的示意图,并求出圆形鱼塘的
面积;(2)若按正方形设计,请画出你设计的示意图.
四、巩固练习
1、检查一个门框是矩形的方法是()
A、测量两条对角线是否相等.
B、测量有三个角是直角.
C、测量两条对角线是否互相平分.
D、测量两条对角线是否互相垂直.
2、顺次连接矩形各边中点所得的四边形是()
A、矩形
B、菱形
C、梯形
D、正方形
3、菱形的周长等于高的8倍,则其最大内角等于()
A、60°
B、90°
C、120°
D、150°
4、矩形ABCD中,AB=8,BC=6,E、F是AC的三等分点,则△BEF的面积是()
A、8
B、12
C、16
D、24
5、在矩形ABCD中,AB=16,BC=8.将矩形沿AC折叠,点D落在点E处,且CE交AB于点F,求AF的长.
五:本节课的收获。

相关文档
最新文档