二次函数拱桥应用题

合集下载

二次函数应用(拱桥类)

二次函数应用(拱桥类)

1.河北省赵县的赵州桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系,其函数的关系式为y =-125x 2,当水面离桥拱顶的高度DO 是4 m 时,这时水面宽度AB 为( )A .-20 mB .10 mC .20 mD .-10 m2.某工厂大门是一抛物线形的水泥建筑物,大门底部宽AB=4m,顶部C 离地面的高度为4.4m,现有载满货物的汽车欲通过大门,货物顶部距地面 2.7m,装货宽度为 2.4m.这辆汽车能否顺利通过大门?若能,请你通过计算加以说明;若不能,请简要说明理由.3.如图是一个横截面为抛物线形状的拱桥,当水面宽4米时,拱顶(拱桥洞的最高点)离水面2米.水面下降1米时,水面的宽度为________米.4.一个涵洞成抛物线形,它的截面如图,现测得,当水面宽AB =1.6 m 时,涵洞顶点与水面的距离为2.4 m .这时,离开水面1.5 m 处,涵洞宽ED 是多少?是否会超过1 m ?5. 某大学的校门是一抛物线形水泥建筑物,大门的地面宽度为8米,两侧距地面4米高处各有一个挂校名横匾用的铁环,两铁环的水平距离为6米.求校门的高6.有一辆载有长方体体状集装箱的货车要想通过洞拱横截面为抛物线的隧道,如图1,已知沿底部宽AB 为4m ,高OC 为3.2m ;集装箱的宽与车的宽相同都是2.4m ;集装箱顶部离地面2.1m 。

该车能通过隧道吗?请说明理由.7.如图,隧道的截面由抛物线和长方形构成,长方形的长是8m ,宽是2m ,抛物线可以 用 表示.(1)一辆货运卡车高4m ,宽2m ,它能通过该隧道吗?(2)如果该隧道内设双行道,那么这辆货运卡车是否可以通过?8.如图,有一抛物线拱桥,已知水位线在AB 位置时,水面的宽为64m ,水位上升4m 就到达警戒线CD ,这时水面的宽为34m ,若洪水到来时,水位以每小时0.5m 的速度上升,测水过警戒线后几小时淹没到拱桥顶端M 处?2144y x =-+。

二次函数中抛物线形拱桥及答案

二次函数中抛物线形拱桥及答案

二次函数中抛物线形与拱桥问题1 有一座抛物线形拱桥,正常水位时,桥下水面宽度为20m,拱顶距离水面4m.(1)在如图所示的直角坐标系中,求出该抛物线的表达式;(2)在正常水位的基础上,当水位上升h(m)时,桥下水面的宽度为d(m),求出将d表示为h 的函数表达式;(3)设正常水位时桥下的水深为2m,为保证过往船只顺利航行,桥下水面宽度不得小于18m,求水深超过多少米时就会影响过往船只在桥下的顺利航行.解:(1)设抛物线的解析式为y=ax2,且过点(10,-4)∴-==-4101252a a×,故y x=-1252(2)设水位上升h m时,水面与抛物线交于点(dh24,-)则hd-=-412542×∴d h=-104(3)当d=18时,18104076=-=h h,.0762276..+=∴当水深超过2.76m时会影响过往船只在桥下顺利航行。

2、如图,有一座抛物线形的拱桥,桥下面处在目前的水位时,水面宽AB=10m,如果水位上升2m,就将达到警戒线CD,这时水面的宽为8m.若洪水到来,水位以每小时0.1m 速度上升,经过多少小时会达到拱顶?解:以AB所在的直线为x轴,AB中点为原点,建立直角坐标系,则抛物线的顶点E在y轴上,且B 、D两点的坐标分别为(5,0)、(4,2)设抛物线为y=ax2+k.由B、D两点在抛物线上,有解这个方程组,得所以,顶点的坐标为(0,)则OE=÷0.1=(h)所以,若洪水到来,水位以每小时0.1m速度上升,经过小时会达到拱顶.3、如图4,有一座抛物线形拱桥,抛物线可用y=表示.在正常水位时水面AB 的宽为20m,如果水位上升3m时,水面CD的宽是10m.(1)在正常水位时,有一艘宽8m、高2.5m的小船,它能通过这座桥吗?(2)现有一辆载有救援物资的货车从甲地出发需经过此桥开往乙地,已知甲地距此桥280km(桥长忽略不计).货车正以每小时40km的速度开往乙地,当行驶1小时时,忽然接到紧急通过:前方连降暴雨,造成水位以每小时0.25m的速度持续上涨(货车接到通知时水位在CD处,当水位达到桥拱最高点O时,禁止车辆通行).试问:如果货车按原来的速度行驶,能否安全通过此桥?若能,请说明理由.若不能,要使货车安全通过此桥,速度应超过每小时多少千米?解:(1)由对称性,当x=4时,y=.当x=10时,y=.故正常水位时,AB距桥面4米,由,故小船能通过.(2)水位由CD处涨到点O的时间为1÷0.25=4小时.货车按原来的速度行驶的路程为40×1+40×4=200<280.∴货车按原来的速度行驶不能安全通过此桥.设货车速度提高到x千米/时,当4x+40×1=280时,x=60.∴要使货车安全通过此桥,货车的速度超过60千米/时。

二次函数与实际问题(拱桥)

二次函数与实际问题(拱桥)

二次函数的运用拱桥问题学习过程:一、预备练习:1、如图所示的抛物线的解析式可设为 ,若AB ∥x 轴,且AB=4,OC=1,则点A 的坐标为 ,点B 的坐标为 ;代入解析式可得出此抛物线的解析式为 。

2、 某涵洞是抛物线形,它的截面如图所示。

现测得水面宽AB=4m ,涵洞顶点O 到水面的距离为1m ,于是你可推断点A 的坐标是 ,点B 的坐标为 ;根据图中的直角坐标系内,涵洞所在的抛物线的函数解析式可设为 。

二、新课导学:例1、有座抛物线形拱桥(如图),正常水位时桥下河面宽20m ,河面距拱顶4m ,为了保证过往船只顺利航行,桥下水面的宽度不得小于18m ,求水面在正常水位基础上上涨多少米时,就会影响过往船只航行。

例2、某涵洞是抛物线形,它的截面如图所示,现测得水面宽1.6m ,涵洞顶点O 到水面的距离为2.4m ,在图中直角坐标系内,涵洞所在的抛物线的函数关系式是什么?三、练习:1、河北省赵县的赵州桥的桥拱是抛物线型,建立如图所示的坐标系,其函数的解析式为y=2251x ,当水位线在AB 位置时,水面宽 AB = 30米,这时水面离桥顶的高度h 是( )A 、5米B 、6米;C 、8米;D 、9米2、、一座抛物线型拱桥如图所示,桥下水面宽度是4m,拱高是2m.当水面下降1m 后,水面的宽度是多少?(结果精确到0.1m).3、一个涵洞成抛物线形,它的截面如图,现测得,当水面宽AB =1.6 m 时,涵洞顶点与水面的距离为2.4 m .这时,离开水面1.5 m 处,涵洞宽ED 是多少?是否会超过1 m ?4、某工厂大门是一抛物线型水泥建筑物,如图所示,大门地面宽AB=4m ,顶部C 离地面高度为4.4m .现有一辆满载货物的汽车欲通过大门,货物顶部距地面2.8m ,装货宽度为2.4m .请判断这辆汽车能否顺利通过大门.5、如图,隧道的截面由抛物线和长方形构成,长方形的长是8m ,宽是2m ,抛物线可以用y=-41x 2+4表示. (1)一辆货运卡车高4m ,宽2m ,它能通过该隧道吗?(2)如果该隧道内设双行道,那么这辆货运卡车是否可以通过?6.如图26.3.2,公园要建造圆形的喷水池,在水池中央垂直于水面处安装一个柱子OA ,OA=1.25m ,水流在各个方向沿形状相同的抛物线路线落下,为使水流形状较为漂亮,要求设计成水流在离OA 距离为1m 处达到距水面最大高度2.25m .(1)若不计其他因素,那么水池的半径至少要多少米,才能使喷出的水流不致落到池外?(2)若水流喷出的抛物线形状与(1)相同,水池的半径为3.5m ,要使水流不落到池外,此时水流最大高度应达多少米?(精确到0.1m )7.一场篮球赛中,球员甲跳起投篮,如图2,已知球在A处出手时离地面20/9 m,与篮筐中心C的水平距离是7m,当球运行的水平距离是4 m时,达到最大高度4m(B处),设篮球运行的路线为抛物线.篮筐距地面3m. ①问此球能否投中? (选做)②此时对方球员乙前来盖帽,已知乙跳起后摸到的最大高度为3.19m,他如何做才能盖帽成功?8.某跳水运动员在进行10m跳台跳水训练时,身体(看成一点)在空中的运动路线是如图所示的一条抛物线.在跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面 10又3分之3m,入水处距池边的距离为4m,同时运动员在距水面高度5m以前,必须完成规定的翻腾动作,并调整好入水姿势时,否则就会出现失误.(1)求这条抛物线的函数关系式;(2)在某次试跳中,测得运动员在空中的运动路线是(1)中的抛物线,且运动员在空中调整好入水姿势时,距池边的水平距离为3又5分之3m,问此次跳水会不会失误?并通过计算说明理由.例1、例2:例3:第3题:第8题、。

二次函数的应用拱桥问题

二次函数的应用拱桥问题

学习目标
1.会建立直角坐标系解决实际问题; 2.会解决桥洞水面宽度问题.
学 1、完成新知探究的填空 2、做完后小组交流做题的方法
情境创设: 赵州桥桥拱跨径37.02m, 拱高7.23m. 你能建立恰当的直角坐标系并写出与该抛物线桥拱对应的二 次函数关系式吗?试试看.
1、先建立直角坐标系; 以桥拱的最高点为原点,过原点的水平线为横轴,过原点的铅垂线为纵轴建立直角坐标系.
(1)试在恰当的直角坐标系中求出与该抛物线桥探拱对应的二次函数关系式; (2)当水位上升1m时,水面宽多少m?
问题探究
y O
D A
x
C (?,-2) B (3,-3)
y 1 x2 3
问题1 一座抛物线拱桥,桥下的水面 离桥孔顶部3m时,水面宽6m.
问题研究
(3)一艘装满防汛器材的船在这条河流中航行,露出水面部分的高为0.5m,宽为4m.当水位上升1m时,这艘船能从桥 下通过吗?
y O
F D A
E (?,-1.5) C
B
x
y 1
谢谢
二次函数的应用拱桥问题
常见的桥孔形状有半圆型、椭圆型、马蹄形, 还有抛物线型.
太湖公园 拱桥
江苏周庄 拱桥
法国加尔 拱桥
卢浦大桥
湘潭湘江四大桥
链接
你对
赵有州哪桥些认识?
闻名中外的赵州桥是我国隋朝工匠李春和众多石匠发明并建造的一座扁平抛物线石拱桥. 赵州桥是我国造桥史上的杰作,世界桥梁史上的首创,是世界著名的古代石拱桥,到现在已经一千三百多 年了,比欧洲早了近1300年.赵州桥在桥梁建筑史上占有重要的地位,对我国后代桥梁建筑有着深远的影响.
2、求抛物线对应的二次函数关系式. y
o

二次函数的实际应用(拱桥问题)教师

二次函数的实际应用(拱桥问题)教师

二次函数中抛物线形与拱桥问题1 有一座抛物线形拱桥,正常水位时,桥下水面宽度为20m ,拱顶距离水面4m .(1)在如图所示的直角坐标系中,求出该抛物线的表达式;(2)在正常水位的基础上,当水位上升h (m )时,桥下水面的宽度为d (m ),求出将d 表示为h 的函数表达式;(3)设正常水位时桥下的水深为2m ,为保证过往船只顺利航行,桥下水面宽度不得小于18m ,求水深超过多少米时就会影响过往船只在桥下的顺利航行.解:(1)设抛物线的解析式为y =ax 2,且过点(10,-4) ∴ 故(2)设水位上升h m 时,水面与抛物线交于点()则∴(3)当d =18时,∴当水深超过2.76m 时会影响过往船只在桥下顺利航行。

2、如图,有一座抛物线形的拱桥,桥下面处在目前的水位时,水面宽AB=10m ,如果水 位上升2m ,就将达到警戒线CD ,这时水面的宽为8m.若洪水到来,水位以每小时0.1m 速度上升,经过多少小时会达到拱顶解: 以AB 所在的直线为x 轴,AB 中点为原点,建立直角坐标系,则抛物线的顶点E 在y 轴上,且B 、D 两点的坐标分别为(5,0)、(4,2)设抛物线为y=ax2+k.由B 、D 两点在抛物线上,有-==-4101252a a ×,y x =-1252d h 24,-h d -=-412542×d h =-10418104076=-=h h ,.0762276..+=解这个方程组,得所以,顶点的坐标为(0,)则OE=÷=(h)所以,若洪水到来,水位以每小时0.1m速度上升,经过小时会达到拱顶.3、如图4,有一座抛物线形拱桥,抛物线可用y=表示.在正常水位时水面AB 的宽为20m,如果水位上升3m时,水面CD的宽是10m.(1)在正常水位时,有一艘宽8m、高2.5m的小船,它能通过这座桥吗(2)现有一辆载有救援物资的货车从甲地出发需经过此桥开往乙地,已知甲地距此桥280km(桥长忽略不计).货车正以每小时40km的速度开往乙地,当行驶1小时时,忽然接到紧急通过:前方连降暴雨,造成水位以每小时0.25m的速度持续上涨(货车接到通知时水位在CD处,当水位达到桥拱最高点O时,禁止车辆通行).试问:如果货车按原来的速度行驶,能否安全通过此桥若能,请说明理由.若不能,要使货车安全通过此桥,速度应超过每小时多少千米解:(1)由对称性,当x=4时,y=.当x=10时,y=.故正常水位时,AB距桥面4米,由,故小船能通过.(2)水位由CD处涨到点O的时间为1÷=4小时.货车按原来的速度行驶的路程为40×1+40×4=200<280.∴货车按原来的速度行驶不能安全通过此桥.设货车速度提高到x千米/时,当4x+40×1=280时,x=60.∴要使货车安全通过此桥,货车的速度超过60千米/时。

人教版九年级上册数学22.3实际问题与二次函数--拱桥问题训练

人教版九年级上册数学22.3实际问题与二次函数--拱桥问题训练

人教版九年级上册数学22.3实际问题与二次函数--拱桥问题训练1.一座拱桥的轮廓是抛物线型(如图1所示),拱高6m,跨度20m,相邻两支柱间的距离均为5m.(1)将抛物线放在所给的直角坐标系中(如图2所示),求抛物线的解析式;(2)求支柱EF的长度;(3)拱桥下地平面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道能否并排行驶宽2m、高3m的三辆汽车(汽车间的间隔忽略不计)?请说明你的理由.2.如图,一隧道的横截面是由一段抛物线及矩形的三边围成的,隧道宽BC=10米,矩形部分高AB=3米,抛物线型的最高点E离地面OE=6米,按如图建立一个以BC 为x轴,OE为y轴的直角坐标系.(1)求抛物线的解析式;(2)如果该隧道内设有双车道,现有一辆货运卡车高4.5米,宽3米,这辆货运卡车能顺利通过隧道吗?3.如图,隧道的截面由抛物线和长方形构成.长方形的长是8m ,宽是2m ,抛物线可以用2144y x =-+表示.()1一辆货运卡车高4m ,宽2m ,它能通过该隧道吗?()2如果该隧道内设双行道,那么这辆货运卡车是否可以通过?4.建立适当的坐标系,运用函数知识解决下面的问题:如图,是某条河上的一座抛物线形拱桥,拱桥顶部点E 到桥下水面的距离EF 为3米时,水面宽AB 为6米,一场大雨过后,河水上涨,水面宽度变为CD ,且CD=26米,此时水位上升了多少米?5.如图所示,有一座抛物线形拱桥,桥下面在正常水位时,AB宽20 m,水位上升到警戒线CD时,CD到拱桥顶E的距离仅为1 m,这时水面宽度为10 m.(1)在如图所示的坐标系中求抛物线的解析式;(2)若洪水到来时,水位以每小时0.3 m的速度上升,从正常水位开始,持续多少小时到达警戒线?6.如图所示的是水面一桥拱的示意图,它的形状类似于抛物线,在正常水位时,该桥下水面宽度为20米,拱顶距离正常水面4米,建立平面直角坐标系如图所示,求抛物线的解析式.7.如图,东湖隧道的截面由抛物线和长方形构成,长方形的长OA为12 m,宽OB为4 m,隧道顶端D到路面的距离为10 m,建立如图所示的直角坐标系.(1)求该抛物线的表达式;(2)一辆货车载有一个长方体集装箱,集装箱最高处与地面距离为6 m,宽为4 m,隧道内设双向行车道,问这辆货车能否安全通过?(3)在抛物线形拱壁上需要安装两排离地面高度相等的灯,如果灯离地面的高度不超过8.5 m,那么这两排灯的水平距离最小是多少米?8.如图,是一座古拱桥的截面图,拱桥桥洞的上沿是抛物线形状,当水面的宽度为10m 时,桥洞与水面的最大距离是5m.(1)经过讨论,同学们得出三种建立平面直角坐标系的方案(如图),你选择的方案是(填方案一,方案二,或方案三),则B点坐标是,求出你所选方案中的抛物线的表达式;(2)因为上游水库泄洪,水面宽度变为6m,求水面上涨的高度.9.某地欲搭建一桥,桥的底部两端间的距离AB=L,称跨度,桥面最高点到AB的距离CD=h称拱高,当L和h确定时,有两种设计方案可供选择:①抛物线型,②圆弧型. 已知这座桥的跨度L=32米,拱高h=8米.(1)如果设计成抛物线型,以AB所在直线为x轴, AB的垂直平分线为y轴建立坐标系,求桥拱的函数解析式;(2)如果设计成圆弧型,求该圆弧所在圆的半径;(3)在距离桥的一端4米处欲立一桥墩EF支撑,在两种方案中分别求桥墩的高度.10.某菜农搭建了一个横截面为抛物线的大棚,尺寸如图:(1)如图建立平面直角坐标系,使抛物线对称轴为y轴,求该抛物线的解析式;(2)若需要开一个截面为矩形的门(如图所示),已知门的高度为1.60米,那么门的宽度最大是多少米(不考虑材料厚度)?(结果保留根号)11.如图,是一座古拱桥的截面图,拱桥桥洞上沿是抛物线形状,抛物线两端点与水面的距离都是1m,拱桥的跨度为10m,桥洞与水面的最大距离是5m,桥洞两侧壁上各有一盏距离水面4m的景观灯,把拱桥的截面图放在平面直角坐标系中.(1)求抛物线对应的函数解析式,并写出自变量的取值范围;(2)求两盏景观灯之间的水平距离.12.如图,小河上有一拱桥,拱桥及河道的截面轮廓线由抛物线的一部分ACB和矩形的三边AE、ED、DB组成,已知河底ED是水平的,ED=16m,AE=8m,抛物线的顶点C到ED的距离是11m,以ED所在的直线为x轴,抛物线的对称轴为y轴建立平面直角坐标系.(1)求抛物线的解析式;(2)已知从某时刻开始的40h内,水面与河底ED的距离h(单位:m)随时间t(单位:h)的变化满足函数关系h=-1128(t-19)2+8(0≤t≤40)且当水面到顶点C的距离不大于5m时,需禁止船只通行,请通过计算说明:在这一时段内,需多少小时禁止船只通行?13.施工队要修建一个横断面为抛物线的公路隧道,其高度为6米,宽度OM为12米.现以O点为原点,OM所在直线为x轴建立直角坐标系(如图1所示).(1)求出这条抛物线的函数解析式,并写出自变量x的取值范围;(2)隧道下的公路是双向行车道(正中间是一条宽1米的隔离带),其中的一条行车道能否行驶宽2.5米、高5米的特种车辆?请通过计算说明;(3)施工队计划在隧道门口搭建一个矩形脚手架CDAB,使A、D点在抛物线上.B、C点在地面OM线上(如图2所示).为了筹备材料,需测算“脚手架”三根钢杆AB、AD、DC的长度之和的最大值是多少,请你帮施工队计算一下.14.有一个抛物线形的桥洞,桥洞离水面的最大高度BM为3米,跨度OA为6米,以OA所在直线为x轴,O为原点建立直角坐标系(如图所示).(1)请你直接写出O、A、M三点的坐标;(2)一艘小船平放着一些长3米,宽2米且厚度均匀的矩形木板,要使该小船能通过此桥洞,问这些木板最高可堆放多少米(设船身底板与水面同一平面)?15.一隧道内设双行公路,隧道的高MN为6米.下图是隧道的截面示意图,并建立如图所示的直角坐标系,它是由一段抛物线和一个矩形CDEF的三条边围成的,矩形的长DE是8米,宽CD是2米.(1)求该抛物线的解析式;(2)为了保证安全,要求行驶的车辆顶部与隧道顶部至少要有0.5米的距离.若行车道总宽度PQ(居中,两边为人行道)为6米,一辆高3.2米的货运卡车(设为长方形)靠近最右边行驶能否安全?请写出判断过程;(3)施工队计划在隧道门口搭建一个矩形“脚手架”ABHG,使H、G两点在抛物线上,A、B两点在地面DE上,设GH长为n米,“脚手架”三根木杆AG、GH、HB的长度之和为L,当n为何值时L最大,最大值为多少?16.某工厂大门是一抛物线水泥建筑物(如图),大门地面宽AB=4 m,顶部C离地面高为4.4 m.(1)以AB所在直线为x轴,抛物线的对称轴为y轴,建立平面直角坐标系,求该抛物线对应的函数表达式;(2)现有一辆载满货物的汽车欲通过大门,货物顶点距地面2.8 m,装货宽度为2.4 m,请通过计算,判断这辆汽车能否顺利通过大门.17.某涵洞是抛物线形,它的截面如图所示,现测得水面宽AB=1.6m,涵洞顶点O到水面的距离为2.4m,在图中直角坐标系内,求涵洞所在抛物线的函数表达式.18.如图:河上有一座抛物线形桥洞,已知桥下的水面离桥拱顶部3m时,水面宽AB =6m,建立如图所示的坐标系.(1)当水位上升0.5m时,求水面宽度CD为多少米?(结果可保留根号)(2)有一艘游船它的左右两边缘最宽处有一个长方体形状的遮阳棚,此船正对着桥洞在上述河流中航行,若这船宽(最大宽度)2米,从水面到棚顶高度为1.8米.问这艘船能否从桥下洞通过?参考答案1.解:(1)根据题目条件,A 、B 、C 的坐标分别是(-10,0)、(10,0)、(0,6). 设抛物线的解析式为y =ax2+c ,将B 、C 的坐标代入y =ax2+c ,得60100c a c ⎧⎨⎩=,=+ 解得a =350-,c =6. 所以抛物线的表达式是y =350-x2+6. (2)可设()5F F y ,,于是2356 4.550F y -⨯=+=, 从而支柱EF 的长度是10-4.5=5.5米.(3)设DN 是隔离带的宽,NG 是三辆车的宽度和,则G 点坐标是()70,. 过G 点作GH 垂直AB 交抛物线于H ,则2376 3.06350H y -⨯==+>. 根据抛物线的特点,可知一条行车道能并排行驶这样的三辆汽车.2.(1)设抛物线的解析式为y =ax 2+c .∵点E (0,6),点A (﹣5,3)在此抛物线上,∴2653c a c =⎧⎨⨯-+=⎩(),得:3256a c ⎧=-⎪⎨⎪=⎩,∴此抛物线的解析式为y 2325x =-+6; (2)当x =±3时,y 23325=-⨯±+()6=4.92>4.5,即这辆货运卡车能顺利通过隧道. 3. 解:()1把422y =-=代入2144y x =-+得: 21244x =-+, 解得22x =±,∴此时可通过物体的宽度为()2222422--=>,∴能通过;()2∵一辆货运卡车高4m ,隧道的截面由抛物线和长方形构成.长方形的长是8m ,宽是2m ,∴货车上面有2m ,在矩形上面,当2y =时,21244x =-+, 解得22x =±,∵222>,∴能通过.4.以点E 为原点、EF 所在直线为y 轴,垂直EF 的直线为x 轴建立平面直角坐标系,根据题意知E (0,0)、A (﹣3,﹣3)、B (3,﹣3),设y=kx 2(k <0),将点(3,﹣3)代入,得:k=﹣13, ∴y=﹣13x 2, 将6代入,得:y=﹣2,∴上升了1米.5.解:(1)设所求抛物线的解析式为y =ax 2.∵CD =10 m ,CD 到拱桥顶E 的距离仅为1 m ,∴C (-5,-1).把点C 的坐标代入y =ax 2,得a =-,故抛物线的解析式为y =-x 2.(2)∵AB 宽20 m ,∴可设A (-10,b).把点A 的坐标代入抛物线的解析式y =-x 2中,解得b =-4,∴点A 的坐标为(-10,-4).设AB 与y 轴交于点F ,则F (0,-4),∴EF =3 m.∵水位以每小时0.3 m 的速度上升,∴3÷0.3=10(时).答:从正常水位开始,持续10小时到达警戒线.6.试题解析:设抛物线解析式为2y ax =,把点()104B -,代入解析式得:2410a -=⨯, 解得:125a =-, ∴抛物线的解析式为2125y x =-. 7.试题分析:(1)设出抛物线的解析式,根据抛物线顶点坐标,代入解析式;(2)令x=10,求出y 与6作比较;(3)求出y=8.5时x 的值即可得.试题解析:(1)根据题意,该抛物线的顶点坐标为(6,10),设抛物线解析式为:y=()26a x -+10,将点B (0,4)代入,得:36a+10=4,解得:a=16-, 故该抛物线解析式为y=()2166x --+10; (2)根据题意,当x=6+4=10时,y=16-×16+10=223>6, ∴这辆货车能安全通过.(3)当y=8.5时,有:()2166x --+10=8.5, 解得:1x =3,2x =9,∴2x ﹣1x =6,答:两排灯的水平距离最小是6米.考点:二次函数的应用.8.:解:方案1:(1)点B 的坐标为(5,0),设抛物线的解析式为:(5)(5)y a x x =+-.由题意可以得到抛物线的顶点为(0,5),代入解析式可得:15a =-,∴抛物线的解析式为:1(5)(5)5y x x =-+-; (2)由题意:把3x =代入1(5)(5)5y x x =-+-,解得:165y ==3.2,∴水面上涨的高度为3.2m .方案2:(1)点B 的坐标为(10,0).设抛物线的解析式为:(10)y ax x =-.由题意可以得到抛物线的顶点为(5,5),代入解析式可得:15a =-,∴抛物线的解析式为:1(10)5y x x =--; (2)由题意:把2x =代入1(10)5y x x =--解得:165y ==3.2,∴水面上涨的高度为3.2m . 方案3:(1)点B 的坐标为(5, 5-),由题意可以得到抛物线的顶点为(0,0).设抛物线的解析式为:2y ax =,把点B 的坐标(5, 5-),代入解析式可得:15a =-, ∴抛物线的解析式为:21y x 5=-; (2)由题意:把3x =代入21y x 5=-解得:95y =-= 1.8-,∴水面上涨的高度为5 1.8-=3.2m . 9.解析:(1)抛物线的解析式为y=ax 2+c ,又∵抛物线经过点C (0,8)和点B (16,0),∴0=256a+8,a=-132. ∴抛物线的解析式为y=-132x 2+8(-16≤x≤16); (2)设弧AB 所在的圆心为O ,C 为弧AB 的中点,CD ⊥AB 于D ,延长CD 经过O 点,设⊙O 的半径为R ,在Rt △OBD 中,OB 2=OD 2+DB 2∴R 2=(R-8)2+162,解得R=20;(3)①在抛物线型中设点F (x ,y )在抛物线上,x=OE=16-4=12,EF=y=3.5米;②在圆弧型中设点F′在弧AB 上,作F′E′⊥AB 于E′,OH ⊥F′E′于H ,则OH=D E′=16-4=12,O F′=R=20,在Rt △OH F′中,H F′= 222012-,∵HE′=OD=OC -CD=20-8=12,E′F′=HF′-HE′=16-12=4(米)∴在离桥的一端4米处,抛物线型桥墩高3.5米; 圆弧型桥墩高4米.10.解:(1)由图可设抛物线的解析式为:y=ax 2+2,由图知抛物线与x 轴正半轴的交点为(2,0),则:a×22+2=0, ∴a=﹣,∴抛物线的解析式为y=﹣x 2+2;(2)当y=1.60时,知1.6=﹣x 2+2,解得:x=,所以门的宽度最大为2×=米. 考点:二次函数的应用.11.(1)抛物线的顶点坐标为(5,5),与y 轴交点坐标是(0,1),设抛物线的解析式是y =a(x ﹣5)2+5,把(0,1)代入y =a (x ﹣5)2+5,得:a =﹣425,∴y =﹣425(x ﹣5)2+5(0≤x ≤10),即2481255y x x =-++(0≤x ≤10); (2)由已知得两景观灯的纵坐标都是4,∴4=﹣425(x ﹣5)2+5,∴425(x ﹣5)2=1,∴x 1=152,x 2=52,∴两景观灯间的距离为 152﹣52=5米. 12.二次函数的应用,待定系数法,曲线上点的坐标与方程的关系.(1)根据抛物线特点设出二次函数解析式,把B 坐标代入即可求解.(2)水面到顶点C 的距离不大于5米时,即水面与河底ED 的距离h 至多为6,把6代入所给二次函数关系式,求得t 的值,相减即可得到禁止船只通行的时间.13.(1)∵M (12,0),P (6,6).∴设这条抛物线的函数解析式为y=a(x -6)2+6,∵把(0,0)代入解得a=-16, ∴这条抛物线的函数解析式为y=-16(x -6)2+6, 即y=-16x 2+2x (0≤x≤12); (2)当x=6-0.5-2.5=3(或x=6+0.5+2.5=9)时,y=4.5<5∴不能行驶宽2.5米、高5米的特种车辆;(3)设点A的坐标为(m,-16m2+2m),∴OB=m,AB=DC=-16m2+2m根据抛物线的轴对称可得OB=CM=m,∴BC=12-2m,即AD=12-2m∴L=AB+AD+DC=-13m2+2m+12=-13(m-3)2+15∴当m=3,即OB=3米时,三根木杆长度之和L的最大值为15米.14.解:(1)0(0,0),A(6,0),M(3,3).(2)设抛物线的关系式为y=a(x-3)2+3,因为抛物线过点(0,0),所以0=a(0-3)2+3,解得a=,所以,要使木板堆放最高,依据题意,得B点应是木板宽CD的中点,把x=2代入,得,所以这些木板最高可堆放米.15.解:(1)由题意得M(0,4),F(4,0)可设抛物线的解析式为y=ax2+4,将F(4,0)代入y=ax2+4中,得a=-14,∴抛物线的解析式为y=-14x2+4;(2)当x=3,y=74, 74+2-12=3.25>3.2,∴能安全通过; (3)由GH=n ,可设H (24216n n -+,), ∴GH+GA+BH=n+(2416n -+)×2+2×2=21128n n -++, ∴L=21128n n -++, ∵a <0,抛物线开口向下,∴当n=-2b a=4时,L 有最大值,最大值为14. 16.解:(1)如图,过AB 的中点作AB 的垂直平分线,建立平面直角坐标系.点A ,B ,C 的坐标分别为 A(-2,0),B(2,0),C(0,4.4).设抛物线的表达式为y =a(x -2)(x +2).将点C(0,4.4)代入得a(0-2)(0+2)=4.4,解得a =-1.1,∴y =-1.1(x -2)(x +2)=-1.1x 2+4.4.故此抛物线的表达式为y =-1.1x 2+4.4.(2)∵货物顶点距地面2.8 m ,装货宽度为2.4,∴只要判断点(-1.2,2.8)或点(1.2,2.8)与抛物线的位置关系即可.将x =1.2代入抛物线,得 y =2.816>2.8,∴点(-1.2,2.8)和点(1.2,2.8)都在抛物线内.∴这辆汽车能够通过大门.17.解:设此抛物线所对应的函数表达式为:2y ax =,∵ 1.6AB m =,涵洞顶点O 到水面的距离为2.4m ,∴A 点坐标应该是()0.8, 2.4--,把A 点代入得:22.4(0.8)a -=-⨯, 解得:154a =-,故涵洞所在抛物线的函数表达式2154y x =-. 18. (1)设抛物线形桥洞的函数解析式为y=ax 2+c , 把A (3,0),E (0,3)代入得:解得: ∴由题意得:点C 与D 的纵坐标为0.5, ∴解得:∴(米), 则水面的宽度CD 为米;(2)当x =1时,∵ ∴这艘游船能从桥洞下通过.。

二次函数的实际应用(拱桥问题)教师

二次函数的实际应用(拱桥问题)教师

二次函数的实际应用(拱桥问题)教师work Information Technology Company.2020YEAR二次函数中抛物线形与拱桥问题1 有一座抛物线形拱桥,正常水位时,桥下水面宽度为20m ,拱顶距离水面4m .(1)在如图所示的直角坐标系中,求出该抛物线的表达式;(2)在正常水位的基础上,当水位上升h (m )时,桥下水面的宽度为d (m ),求出将d 表示为h 的函数表达式;(3)设正常水位时桥下的水深为2m ,为保证过往船只顺利航行,桥下水面宽度不得小于18m ,求水深超过多少米时就会影响过往船只在桥下的顺利航行.解:(1)设抛物线的解析式为y =ax 2,且过点(10,-4)∴故 (2)设水位上升h m 时,水面与抛物线交于点()则∴ (3)当d =18时,∴当水深超过2.76m 时会影响过往船只在桥下顺利航行。

2、如图,有一座抛物线形的拱桥,桥下面处在目前的水位时,水面宽AB=10m ,如果水位上升2m ,就将达到警戒线CD ,这时水面的宽为8m.若洪水到来,水位以每小时0.1m速度上升,经过多少小时会达到拱顶解: 以AB 所在的直线为x 轴,AB 中点为原点,建立直角坐标系,则抛物线的顶点E 在y 轴上,且B 、D 两点的坐标分别为(5,0)、(4,2)-==-4101252a a ×,y x =-1252d h 24,-h d -=-412542×d h =-10418104076=-=h h ,.0762276..+=设抛物线为y=ax2+k.由B、D两点在抛物线上,有解这个方程组,得所以,顶点的坐标为(0,)则OE=÷0.1=(h)所以,若洪水到来,水位以每小时0.1m速度上升,经过小时会达到拱顶.3、如图4,有一座抛物线形拱桥,抛物线可用y=表示.在正常水位时水面AB 的宽为20m,如果水位上升3m时,水面CD的宽是10m.(1)在正常水位时,有一艘宽8m、高2.5m的小船,它能通过这座桥吗(2)现有一辆载有救援物资的货车从甲地出发需经过此桥开往乙地,已知甲地距此桥280km(桥长忽略不计).货车正以每小时40km的速度开往乙地,当行驶1小时时,忽然接到紧急通过:前方连降暴雨,造成水位以每小时0.25m的速度持续上涨(货车接到通知时水位在CD处,当水位达到桥拱最高点O时,禁止车辆通行).试问:如果货车按原来的速度行驶,能否安全通过此桥?若能,请说明理由.若不能,要使货车安全通过此桥,速度应超过每小时多少千米?解:(1)由对称性,当x=4时,y=.当x=10时,y=.故正常水位时,AB距桥面4米,由,故小船能通过.(2)水位由CD处涨到点O的时间为1÷0.25=4小时.货车按原来的速度行驶的路程为40×1+40×4=200<280.∴货车按原来的速度行驶不能安全通过此桥.设货车速度提高到x千米/时,当4x+40×1=280时,x=60.∴要使货车安全通过此桥,货车的速度超过60千米/时。

二次函数应用--拱桥问题

二次函数应用--拱桥问题
y
CC A
DB
0
C
h
D
A
B
(1)建立平面直角坐标系;
(2)根据题意构建二次函数图象; (3)问题求解; (4)找出实际问题的答案。
一个涵洞成抛物线形,它的截面如图,现 测得,当水面宽AB=1.6 m时,涵洞顶点与水 面的距离为2.4 m.这时,离开水面1.5 m处, 涵洞宽ED是多少?是否会超过1 m?
有一抛物线拱桥,在正常水位AB时水面的宽度 是 20m,水位上升3 m时水面CD宽10m. (1)求抛物线的函数表达式。 (此2桥)35一k条m时船,以桥5k下m水/h的位速正度好向在此AB桥处驶4,来3之,后当水船位距每离 小时上涨0.25m,当水位达到CD处时,将禁止船通行。 如果该船按原来的速度行驶,那么它能否安全通过 此桥?
AB=12Leabharlann yCCD=4
A
D
B
x
探究 图中是抛物线形拱桥,当水面在 L 时,拱
顶离水面2m,水面宽4m,水面下降1m时,水面宽度 是多少?
解一
解二
解三
L

如图所示,
以抛物线的顶点为原点,以抛物线的对称轴为
y轴,
建立平面直角坐标系。
∴可设这条抛物线所表示
的二次函数的解析式为:
y ax2
返回
解二 如图所示,以抛物线和水面的两个交点的连线为x轴,以抛物线 的对称轴为y轴,建立平面直角坐标系. 此时,抛物线的顶点为(0,2) ∴可设这条抛物线所表示 的二次函数的解析式为:
y ax2 2
返回
解三 如图所示,以抛物线和水面的两个交点的连线为x轴,以其中
的一个交点(如左边的点)为原点,建立平面直角坐标系. 此时,抛物线的顶点为(2,2) ∴可设这条抛物线所表示 的二次函数的解析式为:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数的应用-拱桥问题
一、自学:
1
1、抛物线y= —X的顶点坐标是______ ,对称轴是_______ ,开口向_______ ;抛物
4
线y=-3x 1 2 3的顶点坐标是____ ,对称轴是_______ ,开口向_____ .
2、图所示的抛物线的解析式可设为____________ ,若AB// x轴,且AB=4, OC=1
则点A的坐标为_______ ,点B的坐标为______________ ;代入解析式可得出此抛物线的解析
式为____________ 。

3、某涵洞是抛物线形,它的截面如图所示。

现测得水面宽AB=4m涵洞顶点
到水面的距离为1m,于是你可推断点 A的坐标是 _______________ ,点B的坐标
为_____________ ;根据图中的直角坐标系内,涵洞所在的抛物线的函数解析式可
设为。

练习.如图,有一座抛物线型拱桥,已知桥下在正常水位AB时, 水面
宽8m水位上升3m 就达到警戒水位CD这时水面宽4m 若洪水到来时,
水位以每小时 0.2m的速度上升,求水过警戒水位后几小时淹到桥拱
顶.
二、探索学习:
例题:有一座抛物线拱桥,正常水位时桥下水面宽度为20米,拱顶距离
水面4米.
2 女口图所示的直角坐标系中,求出该抛物线的解析式:
3 设正常水位时桥下的水深为2米,为保证过往船只顺利航行,桥下水面的宽度不得小于18米。

求水深超过多少米时就会影响过往船只在桥下顺利航行.
三、当堂练习:
1河北省赵县的赵州桥的桥拱是抛物线型,建立如图所示的坐标系,其函数的解析式为
y=
1 2
x ,当水位线 在AB 位置时,水面宽AB = 3 0米,这时水面 离桥 顶的高度h 是() 25
A 5 米
B 、6 米;
C 、8 米;
D 、9 米
2、一座抛物线型拱桥如图所示 ,桥下水面宽度是4m,拱高是2m.当水面下降1m 后,水面的宽 度是多少?(结果精确到0.1m ).
3、一个涵洞成抛物线形,它的截 面如图,现测得,当水面宽 AB= 1 .6 m 时,涵洞顶点与水
4、某工厂大门是一抛物线型水泥建筑物,如图所示,大门地面宽 AB=4m 顶部C 离地面高
度为4. 4m.现有一辆满载货物的汽车欲通过大门,货物顶部距地面 2. 8m,装货宽度为
2. 4m.请判断这辆汽车能否顺利通过大门.
面的距离为2.4 m .这时,离开水面
1.5 m 处,涵洞宽
5、如图是抛物线形的拱桥,当拱顶离水面 2米时,水面宽4米。

(1) 建立如图所示的平面直菜坐标系,求抛物线的解析式; (2) 如果水面宽2 6米,则水面下降多少米
1m 的A 处飞出(A 在y 轴上),运动员乙在距 0点6m 的B 处发现球在自己头的正上方达到最 高点M 距地面约4m 高•球第一次落地后又弹起•据试验,足球在草坪上弹起后的抛物线 与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.
(1)求足球开始飞出到第一次落地时,该抛物线的表达式; (2)运动员乙要抢到第二个落点
D 他应再向前跑多少米 ?(取4 3 7 , 2,6 5)
6、某跳水运动员进行10米跳台跳水训练时, 身体(看成一点)在空中的运动路线是如图所 示坐标系下经过原点 0的一条抛物线(图中标出的数据为已知条件).在跳某个规定动作时,
2
正常情况下,该运动员在空中的最高处距水面
102
米,入水处距池边的距离为 4米,运动员
3
在距水面高度为5米以前,必须完成规定的翻腾动作, 并调整好入水姿势, 否则就会出现失
误.
(1) 求这条抛物线的解析式; (2)
在某次试跳中,测得运动员在空中的运动路线是(
1)中的抛物线,且运动员在空中完
成规定的翻腾动作并调整好入水姿势时,距池边的水平距离为
33
米,问此次跳水会不会失
5.如图,足球场上守门员在 0处开出一高球,球从离地面
y l 1
4
£ 1
O
S C D x
5 误?并通过计算说明理由.
7、如图,排球运动员站在点 0处练习发球,将球从0点正上方2m的A处发出,把球看成点,
2
其运行的高度y (与运行的水平距离 x(m)满足关系式y=a(x-6) +h.已知球网与0点的水
平距离为9m,高度为2.43m,球场的边界距 0点的水平距离为18m>
(1 )当h=2.6时,求y与x的关系式(不要求写出自变量x的取值范围)
(2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由;
(3)若球
8、如果水面宽为 2\ 6米,则水面下降多少米
Welcome To Download !!!
欢迎您的下载,资料仅供参考!。

相关文档
最新文档