二次函数实际应用题(利润最值问题)

合集下载

专题74 二次函数在实际应用中的最值问题(解析版)

专题74 二次函数在实际应用中的最值问题(解析版)

专题74 二次函数在实际应用中的最值问题1、某水果店在两周内,将标价为10元/斤的某种水果,经过两次降价后的价格为8.1元/斤,并且两次降价的百分率相同.(1)求该种水果每次降价的百分率;(2)从第一次降价的第1天算起,第x 天(x 为整数)的售价、销量及储存和损耗费用的相关信息如表所示.已知该种水果的进价为4.1元/斤,设销售该水果第x (天)的利润为y (元),求y 与x (1≤x <15)之间的函数关系式,并求出第几天时销售利润最大?(3)在(2)的条件下,若要使第15天的利润比(2)中最大利润最多少127.5元,则第15天在第14天的价格基础上最多可降多少元?【答案】(1)10%;(2)217.7352(19){36080(915)x x y x x x -+≤<=-++≤<,第10天时销售利润最大;(3)0.5. 【详解】解:(1)设该种水果每次降价的百分率是x ,10(1﹣x )2=8.1,x =10%或x =190%(舍去). 答:该种水果每次降价的百分率是10%;(2)当1≤x <9时,第1次降价后的价格:10×(1﹣10%)=9,∴y =(9﹣4.1)(80﹣3x )﹣(40+3x )=﹣17.7x +352,∴﹣17.7<0,∴y 随x 的增大而减小,∴当x =1时,y 有最大值,y 大=﹣17.7×1+352=334.3(元); 当9≤x <15时,第2次降价后的价格:8.1元,∴y =(8.1﹣4.1)(120﹣x )﹣(3x 2﹣64x +400)=﹣3x 2+60x +80=﹣3(x ﹣10)2+380,∴﹣3<0,∴当9≤x ≤10时,y 随x 的增大而增大,当10<x <15时,y 随x 的增大而减小,∴当x =10时,y 有最大值,y 大=380(元).综上所述,y 与x (1≤x <15)之间的函数关系式为: 217.7352(19){ 36080(915)x x y x x x -+≤<=-++≤<,第10天时销售利润最大;(3)设第15天在第14天的价格基础上最多可降a 元,由题意得:380﹣127.5≤(4﹣a )(120﹣15)﹣(3×152﹣64×15+400),252.5≤105(4﹣a )﹣115,a ≤0.5. 答:第15天在第14天的价格基础上最多可降0.5元.2、农经公司以30元/千克的价格收购一批农产品进行销售,为了得到日销售量p (千克)与销售价格x (元/千克)之间的关系,经过市场调查获得部分数据如下表:(1)请你根据表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定p 与x 之间的函数表达式;(2)农经公司应该如何确定这批农产品的销售价格,才能使日销售利润最大?(3)若农经公司每销售1千克这种农产品需支出a 元(a >0)的相关费用,当40≤x ≤45时,农经公司的日获利的最大值为2430元,求a 的值.(日获利=日销售利润﹣日支出费用)【答案】(1)p =﹣30x +1500;(2)这批农产品的销售价格定为40元,才能使日销售利润最大;(3)a =2. 【详解】(1)假设P 与x 的一次函数关系,设函数关系式p kx b =+,则3060040300k b k b +=⎧⎨+=⎩,解得301500k b =-⎧⎨=⎩, ∴301500p x =-+,检验:当35,450x P ==,当45,150,x P ==当50,0x P ==,均符合一次函数解析式 ∴所求的函数关系式301500p x =-+,(2)设日销售利润()()()3030150030w P x x x =-=-+-,即()223024004500030403000w x x x =-+-=--+,当40x =时,w 有最大值为3000元,故这批农产口的销售价格定为40元,才能使日销售利润最大, (3)日获利()()()3030150030w p x a x x a =--=-+--, 即()()230240030150045000w x a x a =-++-+,对称轴这()2400301402302a x a +=-=+⨯-,若10a >,则当45x =时,w 有最大值,即22501502430w a =-<(不合题意), 若10a <,则当1402x a =+时,w 有最大值, 把1402x a =+代入,可得2130101004w a a ⎛⎫=-+ ⎪⎝⎭, 当2430w =时,21243030101004a a ⎛⎫=-+⎪⎝⎭, 解得12a =,238a =(舍去), 综上所述,a 的值为2.3、怡然美食店的A 、B 两种菜品,每份成本均为14元,售价分别为20元、18元,这两种菜品每天的营业额共为1120元,总利润为280元. (1)该店每天卖出这两种菜品共多少份;(2)该店为了增加利润,准备降低A 种菜品的售价,同时提高B 种菜品的售价,售卖时发现,A 种菜品售价每降0.5元可多卖1份;B 种菜品售价每提高0.5元就少卖1份,如果这两种菜品每天销售总份数不变,那么这两种菜品一天的总利润最多是多少. 【答案】(1)60;(2)316. 【详解】解:(1)、设该店每天卖出A 、B 两种菜品分别为x 、y 份,根据题意得:()()2018112020141814280x y x y +=⎧⎪⎨-+-=⎪⎩,解得:2040x y =⎧⎨=⎩,答:该店每天卖出这两种菜品共60份;(2)、设A 种菜品售价降0.5a 元,即每天卖(20+a )份,总利润为w 元,因为两种菜品每天销售总份数不变,所以B 种菜品卖(40﹣a )份,每份售价提高0.5a 元. 则w=(20﹣14﹣0.5a )(20+a )+(18﹣14+0.5a )(40﹣a )=(6﹣0.5a )(20+a )+(4+0.5a )(40﹣a )=(﹣0.5a 2﹣4a+120)+(﹣0.5a 2+16a+160) =﹣a 2+12a+280=﹣(a ﹣6)2+316, 当a=6,w 最大,w=316答:这两种菜品每天的总利润最多是316元.4、“五一”期间,恒大影城隆重开业,影城每天运营成本为1000元,试营业期间统计发现,影城每天售出的电影票张数y (张)与电影票售价x (元/张)之间满足一次函数:y=﹣4x+220(10≤x≤50,且x 是整数),设影城每天的利润为w (元)(利润=票房收入﹣运营成本). (1)试求w 与x 之间的函数关系式;(2)影城将电影票售价定为多少元/张时,每天获利最大?最大利润是多少元?【答案】(1)w=﹣4x 2+220x ﹣1000;(2)影城将电影票售价定为27或28元/张时,每天获利最大,最大利润是2024元. 【详解】(1)根据题意,得:w =(﹣4x +220)x ﹣1000=﹣4x 2+220x ﹣1000;(2)∴w =﹣4x 2+220x ﹣1000=﹣4(x ﹣27.5)2+2025,∴当x =27或28时,w 取得最大值,最大值为2024,答:影城将电影票售价定为27或28元/张时,每天获利最大,最大利润是2024元.5、把函数21:23(0)C y ax ax a a =--≠的图象绕点(,0)P m 旋转180,得到新函数2C 的图象,我们称2C 是1C 关于点P 的相关函数.2C 的图象的对称轴与x 轴交点坐标为(,0)t .(1)填空:t 的值为 (用含m 的代数式表示) (2)若1a =-,当12x t ≤≤时,函数1C 的最大值为1y ,最小值为2y ,且121y y -=,求2C 的解析式; (3)当0m =时,2C 的图象与x 轴相交于,A B 两点(点A 在点B 的右侧).与y 轴相交于点D .把线段AD 原点O 逆时针旋转90,得到它的对应线段''A D ,若线''A D 与2C 的图象有公共点,结合函数图象,求a 的取值范围.【答案】(1)21m -;(2)22(2)44y x x x =--=-;(3)103a <≤或1a ≥或13a ≤- 【详解】解:(1)221:23(1)4C y ax ax a a x a =--=--顶点(1,4)a -围绕点(,0)P m 旋转180180°的对称点为(21,4)m a -,2:(21)24C y a x m a =--++,函数的对称轴为:21x m =-,21t m =-,故答案为:21m -; (2)1a =-时,21:(1)4C y x =--,∴当112t ≤<时, 12x =时,有最小值2154y =, x t =时,有最大值21(1)4y t =--+,则21215(1)414y y t -=--+-=,无解; ∴312t ≤≤时, 1x =时,有最大值14y =,12x =时,有最小值22(1)4y t =--+, 12114y y -=≠(舍去); ∴当32t >时, 1x =时,有最大值14y =,x t =时,有最小值22(1)4y t =--+, 212(1)1y y t -=-=,解得:0t =或2(舍去0), 故222:(2)44C y x x x =--=-; (3)0m =,22:(1)4C y a x a =-++,点'',,,,A B D A D 的坐标分别为(1,0),(3,0),(0,3),(0,1),(3,0)a a --, 当0a >时,a 越大,则OD 越大,则点'D 越靠左,当2C 过点'A 时,2(01)41y a a =-++=,解得:13a =, 当2C 过点'D 时,同理可得:1a =,故:103a <≤或1a ≥; 当0a <时,当2C 过点'D 时,31a -=,解得:13a =-,故:13a ≤-;综上,故:103a <≤或1a ≥或13a ≤-. 6、湖州素有鱼米之乡之称,某水产养殖大户为了更好地发挥技术优势,一次性收购了淡水鱼,计划养殖一段时间后再出售.已知每天放养的费用相同,放养天的总成本为万元;放养天的总成本为万元(总成本=放养总费用+收购成本).(1)设每天的放养费用是万元,收购成本为万元,求和的值;(2)设这批淡水鱼放养天后的质量为(),销售单价为元/.根据以往经验可知:与的函数关系为;与的函数关系如图所示.∴分别求出当和时,与的函数关系式;∴设将这批淡水鱼放养天后一次性出售所得利润为元,求当为何值时,最大?并求出最大值.(利润=销售总额-总成本)【答案】(1)a的值为0.04,b的值为30(2)∴y=t+15,y=t+30∴当t为55天时,W最大,最大值为180250元【详解】(1)由题意得解得答:a的值为0.04,b的值为30.(2)∴当0≤t≤50时,设y与t的函数关系式为y=k1t+n1把点(0,15)和(50,25)的坐标分别代入y=k1t+n1,得解得∴y与t的函数关系式为y=t+15当50<t≤100时,设y与t的函数关系式为y=k2t+n2把点(50,25)和(100,20)的坐标分别代入y=k2t+n2,得解得∴y与t的函数关系式为y=t+30∴由题意得,当0≤t≤50时,W=20000×(t+15)-(400t+300000)=3600t∴3600>0,∴当t=50时,W最大值=180000(元)当50<t≤100时,W=(100t+15000)(t+30)-(400t+300000)=-10t2+1100t+150000=-10(t-55)2+180250∴-10<0,∴当t=55时,W最大值=180250综上所述,当t为55天时,W最大,最大值为180250元.7、某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计划中的建筑材料可建围墙的总长度为50m .设饲养室为长为x(m),占地面积为.(1)如图,问饲养室为长x为多少时,占地面积y 最大?(2)如图,现要求在图中所示位置留2m的门,且仍使饲养室占地面积最大.小敏说:“只要饲养室长比(1)中的长多2m就行了.”请你通过计算,判断小敏的说法是否正确.【答案】(1)x=25;(2)小敏的说法不正确.【详解】(1)∴=,∴当x=25时,占地面积y最大;(2)=,∴当x=26时,占地面积y最大.即当饲养室长为26m时,占地面积最大.∴26-25=1≠2,∴小敏的说法不正确.8、铁岭“荷花节”举办了为期15天的“荷花美食”厨艺秀.小张购进一批食材制作特色美食,每盒售价为50元,由于食材需要冷藏保存,导致成本逐日增加,第x天(1≤x≤15且x为整数)时每盒成本为p元,已知p与x之间满足一次函数关系;第3天时,每盒成本为21元;第7天时,每盒成本为25元,每天的销售量为y盒,y与x之间的关系如下表所示:(1)求p与x的函数关系式;(2)若每天的销售利润为w元,求w与x的函数关系式,并求出第几天时当天的销售利润最大,最大销售利润是多少元?(3)在“荷花美食”厨艺秀期间,共有多少天小张每天的销售利润不低于325元?请直接写出结果.【答案】(1)p=x+18;(2)第13天时当天的销售利润最大,最大销售利润是361元;(3)第7、8、9、10、11、12、13天共7天销售利润不低于325元.【详解】(1)设p=kx+b(k≠0),∴第3天时,每盒成本为21元;第7天时,每盒成本为25元,∴321 725 k bk b+=⎧⎨+=⎩,解得:118kb=⎧⎨=⎩,所以p=x+18;(2)1≤x ≤6时,w =10[50﹣(x +18)]=﹣10x +320,6<x ≤15时,w =[50﹣(x +18)](x +6)=﹣x 2+26x +192,所以,w 与x 的函数关系式为210320(16)26192(615)x x w x x x -+≤≤⎧=⎨-++<≤⎩, 当1≤x ≤6时,∴﹣10<0,∴w 随x 的增大而减小,∴当x =1时,w 最大为﹣10+320=310,6<x ≤15时,w =﹣x 2+26x +192=﹣(x ﹣13)2+361,∴当x =13时,w 最大为361,综上所述,第13天时当天的销售利润最大,最大销售利润是361元;(3)w =325时,﹣x 2+26x +192=325,x 2﹣26x +133=0,解得x 1=7,x 2=19,所以,7≤x ≤13时,即第7、8、9、10、11、12、13天共7天销售利润不低于325元.9、2016年12月29日至31日,黔南州第十届旅游产业发展大会在“中国长寿之乡”﹣﹣罗甸县举行,从中寻找到商机的人不断涌现,促成了罗甸农民工返乡创业热潮,某“火龙果”经营户有A 、B 两种“火龙果”促销,若买2件A 种“火龙果”和1件B 种“火龙果”,共需120元;若买3件A 种“火龙果”和2件B 种“火龙果”,共需205元.(1)设A ,B 两种“火龙果”每件售价分别为a 元、b 元,求a 、b 的值;(2)B 种“火龙果”每件的成本是40元,根据市场调查:若按(1)中求出的单价销售,该“火龙果”经营户每天销售B 种“火龙果”100件;若销售单价每上涨1元,B 种“火龙果”每天的销售量就减少5件. ∴求每天B 种“火龙果”的销售利润y (元)与销售单价(x )元之间的函数关系?∴求销售单价为多少元时,B 种“火龙果”每天的销售利润最大,最大利润是多少?【详解】(1)根据题意得:2120{ 32205a b a b +=+= ,解得:a =35,b =50;(2)∴由题意得:y =(x ﹣40)[100﹣5(x ﹣50)]∴y =﹣5x 2+550x ﹣14000;∴∴y=﹣5x2+550x﹣14000=﹣5(x﹣55)2+1125,∴当x=55时,y最大=1125,∴销售单价为55元时,B商品每天的销售利润最大,最大利润是1125元.10、鄂州某个体商户购进某种电子产品的进价是50元/个,根据市场调研发现售价是80元/个时,每周可卖出160个,若销售单价每个降低2元,则每周可多卖出20个.设销售价格每个降低x元(x为偶数),每周销售为y个.(1)直接写出销售量y个与降价x元之间的函数关系式;(2)设商户每周获得的利润为W元,当销售单价定为多少元时,每周销售利润最大,最大利润是多少元?(3)若商户计划下周利润不低于5200元的情况下,他至少要准备多少元进货成本?【答案】(1)y=10x+160;(2)5280元;(3)10000元.【详解】(1)依题意有:y=10x+160;(2)依题意有:W=(80﹣50﹣x)(10x+160)=﹣10(x﹣7)2+5290,∴-10<0且x为偶数,故当x=6或x=8时,即故当销售单价定为74或72元时,每周销售利润最大,最大利润是5280元;(3)依题意有:﹣10(x﹣7)2+5290≥5200,解得4≤x≤10,则200≤y≤260,200×50=10000(元).答:他至少要准备10000元进货成本.11、鄂州某个体商户购进某种电子产品的进价是50元/个,根据市场调研发现售价是80元/个时,每周可卖出160个,若销售单价每个降低2元,则每周可多卖出20个.设销售价格每个降低x元(x为偶数),每周销售为y个.(1)直接写出销售量y个与降价x元之间的函数关系式;(2)设商户每周获得的利润为W元,当销售单价定为多少元时,每周销售利润最大,最大利润是多少元?(3)若商户计划下周利润不低于5200元的情况下,他至少要准备多少元进货成本?【答案】(1)y=10x+160;(2)5280元;(3)10000元.【详解】(1)依题意有:y=10x+160;(2)依题意有:W=(80﹣50﹣x)(10x+160)=﹣10(x﹣7)2+5290,∴-10<0且x为偶数,故当x=6或x=8时,即故当销售单价定为74或72元时,每周销售利润最大,最大利润是5280元;(3)依题意有:﹣10(x﹣7)2+5290≥5200,解得4≤x≤10,则200≤y≤260,200×50=10000(元).答:他至少要准备10000元进货成本.12、某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y(千克)与销售单价x(元/千克)的函数关系如下图所示:(1)求y与x的函数解析式(也称关系式);(2)求这一天销售西瓜获得的利润的最大值.【答案】(1)y与x的函数解析式为()()20022006102001012x xyx⎧-+≤≤⎪=⎨<≤⎪⎩;(2)这一天销售西瓜获得利润的最大值为1250元.【详解】(1)当6≤x≤10时,由题意设y =kx +b(k =0),它的图象经过点(6,1000)与点(10,200),∴1000620010k b k b =+⎧⎨=+⎩, 解得2002200k b =-⎧⎨=⎩, ∴当6≤x≤10时, y =-200x+2200,当10<x≤12时,y =200,综上,y 与x 的函数解析式为()()20022006102001012x x y x ⎧-+≤≤⎪=⎨<≤⎪⎩; (2)设利润为w 元,当6≤x≤10时,y =-200x +2200,w =(x -6)y =(x -6)(-200x +200)=-2002172x -()+1250, ∴-200<0,6∴x≤10,当x =172时,w 有最大值,此时w=1250; 当10<x≤12时,y =200,w =(x -6)y =200(x -6)=200x -1200,∴200>0,∴w =200x -1200随x 增大而增大,又∴10<x≤12,∴当x =12时,w 最大,此时w=1200,1250>1200,∴w 的最大值为1250,答:这一天销售西瓜获得利润的最大值为1250元.13、我市某化工材料经销商购进一种化工材料若干千克,成本为每千克30元,物价部门规定其销售单价不低于成本价且不高于成本价的2倍,经试销发现,日销售量y (千克)与销售单价x (元)符合一次函数关系,如图所示.(1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)若在销售过程中每天还要支付其他费用450元,当销售单价为多少时,该公司日获利最大?最大获利是多少元?【答案】(1)2200(3060)y x x =-+≤≤;(2)每千克60元,最大获利为1950元【详解】解:(1)设一次函数关系式为(0)y kx b k =+≠由图象可得,当30x =时,140y =;50x =时,100y =∴1403010050k b k b =+⎧⎨=+⎩,解得k 2b 200=-⎧⎨=⎩∴y 与x 之间的关系式为2200(3060)y x x =-+≤≤.(2)设该公司日获利为W 元,由题意得2(30)(2200)4502(65)2000W x x x =--+-=--+∴20a =-<;∴抛物线开口向下;∴对称轴65x =;∴当65x <时,W 随着x 的增大而增大;∴3060x ≤≤,∴60x =时,W 有最大值;22(6065)200015=90W -⨯-+=最大值.即,销售单价为每千克60元时,日获利最大,最大获利为1950元.。

二次函数--利润最大值问题-顶点不在范围内

二次函数--利润最大值问题-顶点不在范围内

22.3(3.2)--利润最大值问题-顶点不在范围内
一.【知识要点】
1.利用二次函数解决最大利润问题,首先根据利润问题中常用的两个等量关系建立二次函数模型,然后利用二次函数确定最值。

2.解题步骤:(1).设:设出两变量;(2).列:列出函数解析式;(3).定:确定自变量的取值范围;(4).判:判断存在最大(小)值;(5).求:求出对称轴,并判断对称轴是否在取值范围;(6).算:计算最值。

二.【经典例题】
1.某网店销售一种儿童玩具,进价为每件30元,物价部门规定每件儿童玩具的销售利润不高于进价的60%.在销售过程中发现,这种儿童玩具每天的销售量y(件)与销售单价x(元)满足一次函数关系.当销售单价为35元时,每天的销售量为350件;当销售单价为40元时,每天的销售量为300件.
(1)求y与x之间的函数关系式.
(2)当销售单价为多少时,该网店销售这种儿童玩具每天获得的利润最大,最大利润是多少?
三.【题库】
【A】
1.鄂州市化工材料经销公司购进一种化工原料若干千克,价格为每千克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y (千克)是销售单价x(元)的一次函数,且当x=60时,y=80;x=50时,y=100.在销售过程中,每天还要支付其他费用450元.
(1)求出y与x的函数关系式,并写出自变量x的取值范围.
(2)求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式.(3)当销售单价为多少元时,该公司日获利最大?最大获利是多少元?
【B】【C】【D】。

26[1].3二次函数与实际问题(1)最大利润

26[1].3二次函数与实际问题(1)最大利润
则y=(2+x)(100-10x)=-10x2+80x+200 =-10(x-4)2+360, ∴ 当x=4时,利润y最大,此时售价为1ቤተ መጻሕፍቲ ባይዱ元, 每天所赚利润为360元。
四、自主拓展
某商品现在的售价为每件60元,每星期 可卖出300件,市场调查反映:每涨价1 元,每星期少卖出10件;每降价1元,每 星期可多卖出20件,已知商品的进价为 每件40元,如何定价才能使利润最大?
1.当x= 1 有最大值. 2.已知二次函数y=x2-6x+m的最小值为1,那 么m的值为 10 . 时,二次函数y=-x2+2x-2
基础扫描
1. 二次函数y=a(x-h)2+k的图象是一条 抛物线 ,它的对 称轴是 直线x=h ,顶点坐标是 (h,k) .
. 当a>0时,抛 4ac b 2 物线开口向 上 ,有最 低 点,函数有最 小 值,是 4a ;当
解:(1)y=500-10(x-50) =1000-10x(50≤x≤100) (2)S=(x-40)(1000-10x) =-10x2+1400x-40000 =-10(x-70)2+9000 当50≤x≤70时,利润随着单价的增大而增大.
(3)在超市对该种商品投入不超过10000元的情 况下,使得一周销售利润达到8000元,销售单 价应定为多少? 解:(3)-10x2+1400x-40000=8000 解得:x1=60,x2=80 当x=60时,成本=40×[500-10(60-50)] =16000>10000不符要求,舍去. 当x=80时,成本=40×[500-10(80-50)] =8000<10000符合要求. 所以销售单价应定为80元,才能使一周销售利 润达到8000元的同时,投入不超过10000 元.

二次函数的实际应用(利润最值问题)附答案

二次函数的实际应用(利润最值问题)附答案

第3课时 二次函数的实际应用——最大(小)值问题[例1]:求下列二次函数的最值:(1)求函数322-+=x x y 的最值. 解:4)1(2-+=x y当1-=x 时,y 有最小值4-,无最大值.(2)求函数322-+=x x y 的最值.)30(≤≤x解:4)1(2-+=x y∵30≤≤x ,对称轴为1-=x∴当12330有最大值时;当有最小值时y x y x =-=.[例2]:某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大?解:设涨价(或降价)为每件x 元,利润为y 元,1y 为涨价时的利润,2y 为降价时的利润 则:)10300)(4060(1x x y -+-=)60010(102---=x x 6250)5(102+--=x当5=x ,即:定价为65元时,6250max =y (元))20300)(4060(2x x y +--= )15)(20(20+--=x x6125)5.2(202+--=x当5.2=x ,即:定价为57.5元时,6125max =y (元) 综合两种情况,应定价为65元时,利润最大.[练习]:1.某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.如何提高售价,才能在半个月内获得最大利润? 解:设每件价格提高x 元,利润为y 元, 则:)20400)(2030(x x y --+= )20)(10(20-+-=x x 4500)5(202+--=x 当5=x ,4500max =y (元)答:价格提高5元,才能在半个月内获得最大利润.2.某旅行社组团去外地旅游,30人起组团,每人单价800元.旅行社对超过30人的团给予优惠,即旅行团每增加一人,每人的单价就降低10元.你能帮助分析一下,当旅行团的人数是多少时,旅行社可以获得最大营业额? 解:设旅行团有x 人)30(≥x ,营业额为y 元, 则:)]30(10800[--=x x y )110(10--=x x 30250)55(102+--=x 当55=x ,30250max =y (元)答:当旅行团的人数是55人时,旅行社可以获得最大营业额.[例3]: 某产品每件成本10元,试销阶段每件产品的销售价x (元)与产品的日销售量y (件)之间的关系如下表: 若日销售量y 是销售价x 的一次函数. ⑴求出日销售量y (件)与销售价x (元)的函数关系式;⑵要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元?解:⑴设一次函数表达式为b kx y +=.则1525,220k b k b +=⎧⎨+=⎩ 解得⎩⎨⎧=-=401b k ,•即一次函数表达式为40+-=x y .⑵ 设每件产品的销售价应定为x 元, 所获销售利润为w 元y x w )10(-=)40)(10(+--=x x400502-+-=x x225)25(2+--=x当25=x ,225max =y (元)答:产品的销售价应定为25元时,每日获得最大销售利润为225元.【点评】解决最值问题应用题的思路与一般应用题类似,也有区别,主要有两点: ⑴在“当某某为何值时,什么最大(或最小、最省)”的设问中,•“某某”要设为自变量,“什么”要设为函数;⑵求解方法是依靠配方法或最值公式,而不是解方程. 3.(2006十堰市)市“健益”超市购进一批20元/千克的绿色食品,如果以30•元/千克销售,那么每天可售出400千克.由销售经验知,每天销售量y (千克)•与销售单价x (元) (30≥x )存在如下图所示的一次函数关系式. ⑴试求出y 与x 的函数关系式;⑵设“健益”超市销售该绿色食品每天获得利润P 元,当销售单价为何值时,每天可获得最大利润?最大利润是多少? ⑶根据市场调查,该绿色食品每天可获利润不超过4480元,•现该超市经理要求每天利润不得低于4180元,请你帮助该超市确定绿色食品销售单价x 的范围(•直接写出答案). 解:⑴设y=kx+b 由图象可知,3040020,:402001000k b k k b b +==-⎧⎧⎨⎨+==⎩⎩解之得, 即一次函数表达式为100020+-=x y )5030(≤≤x . ⑵ y x P )20(-=)100020)(20(+--=x x 200001400202-+-=x x∵020<-=a ∴P 有最大值.当35)20(21400=-⨯=x 时,4500max =P (元)(或通过配方,4500)35(202+--=x P ,也可求得最大值)答:当销售单价为35元/千克时,每天可获得最大利润4500元.⑶∵44804500)35(2041802≤+--≤x 16)35(12≤-≤x ∴31≤x •≤34或36≤x≤39.作业布置: 1.二次函数1212-+=x x y ,当x=_-1,_时,y 有最_小_值,这个值是23-. 2.某一抛物线开口向下,且与x 轴无交点,则具有这样性质的抛物线的表达式可能为12--=x y (只写一个),此类函数都有_大_值(填“最大”“最小”).3.不论自变量x 取什么实数,二次函数y =2x 2-6x +m 的函数值总是正值,你认为m 的取值范围是29>m ,此时关于一元二次方程2x 2-6x +m =0的解的情况是_有解_(填“有解”或“无解”)解:29)23(22-+-=m x y ∵0)23(22≥-x ,要使0>y ,只有029>-m ∴29>m4.小明在某次投篮中,球的运动路线是抛物线21 3.55y x =-+的一部分,如图所示,若命中篮圈中心,则他与篮底的距离L 是 4.5米 .解:当05.3=y 时,21 3.55y x =-+05.3= 45.052⨯=x ,5.1=x 或5.1-=x (不合题意,舍去)5.在距离地面2m 高的某处把一物体以初速度V 0(m/s )竖直向上抛出,•在不计空气阻力的情况下,其上升高度s (m )与抛出时间t (s )满足:S=V 0t-12gt 2(其中g 是常数,通常取10m/s 2),若V 0=10m/s ,则该物体在运动过程中最高点距离地面__7_m .解:t t s 1052+-=5)1(52+--=t当1=t 时,5max =s ,所以,最高点距离地面725=+(米).6.影响刹车距离的最主要因素是汽车行驶的速度及路面的摩擦系数.有研究表明,晴天 在某段公路上行驶上,速度为V (km/h )的汽车的刹车距离S (m )可由公式S=1100V 2确定;雨天行驶时,这一公式为S=150V 2.如果车行驶的速度是60km/h ,•那么在雨天 行驶和晴天行驶相比,刹车距离相差_36_米.7.将进货单价为70元的某种商品按零售价100元售出时,每天能卖出20个.若这种商品的零售价在一定范围内每降价1元,其日销售量就增加了1个,为了获得最大利润,则应降价_5_元,最大利润为_625_元.解:设每件价格降价x 元,利润为y 元, 则:)20)(70100(x x y +--=600102++-=x x 625)5((2+--=x 当5=x ,625max =y (元)答:价格提高5元,才能在半个月内获得最大利润.8.如图,一小孩将一只皮球从A 处抛出去,它所经过的路线是某个二次函数图象的一部分,如果他的出手处A 距地面的距离OA 为1 m ,球路的最高点B (8,9),则这个二次函数的表达式为______,小孩将球抛出了约______米(精确到0.1 m) .解:设9)8(2+-=x a y ,将点A )1,0(代入,得81-=a12819)8(8122++-=+--=x x x y令0=y ,得09)8(812=+--=x y98)8(2⨯=-x268±=x ,)0,268(+C ,∴5.242688≈++=OC (米)9.(20XX 年青岛市)在20XX 年青岛崂山北宅樱桃节前夕,•某果品批发公司为指导今年(1)在如图的直角坐标系内,作出各组有序数对(x ,y )所对应的点.连接各点并观察所得的图形,判断y 与x 之间的函数关系,并求出y 与x 之间的函数关系式; (2)若樱桃进价为13元/千克,试求销售利润P (元)与销售价x (元/千克)之间的函数关系式,并求出当x 取何值时,P 的值最大?解:(1)由图象可知,y 是x 的一次函数,设y=kx+b ,• ∵点(•25,2000),(24,2500)在图象上,∴200025500,:25002414500k bk k b b =+=-⎧⎧⎨⎨=+=⎩⎩解得 , ∴y=-500x+14500.(2)P=(x-13)·y=(x-13)·(-500x+14500))37744144142(500)37742(500)29)(13(50022+-+--=+--=---=x x x x x x=-500(x-21)2+32000∴P 与x 的函数关系式为P=-500x 2+21000x-188500,当销售价为21元/千克时,能获得最大利润,最大利润为32000元.10.有一种螃蟹,从海上捕获后不放养,最多只能存活两天.如果放养在塘内,可以延长存活时间,但每天也有一定数量的蟹死去.假设放养期内蟹的个体质量基本保持不变,现有一经销商,按市场价收购这种活蟹1000 kg 放养在塘内,此时市场价为每千克30元,据测算,此后每千克活蟹的市场价每天可上升1元,但是,放养一天需支出各种费用为400元,且平均每天还有10 kg 蟹死去,假定死蟹均于当天全部销售出,售价都是每千克20元.(1)设x 天后每千克活蟹的市场价为p 元,写出p 关于x 的函数关系式; (2)如果放养x 天后将活蟹一次性出售,并记1000 kg 蟹的销售总额为Q 元,写出Q 关于x 的函数关系式.(3)该经销商将这批蟹放养多少天后出售,可获最大利润(利润=Q -收购总额)? 解:(1)由题意知:p=30+x,(2)由题意知:活蟹的销售额为(1000-10x)(30+x)元,死蟹的销售额为200x 元.∴Q=(1000-10x)(30+x)+200x=-10x 2+900x+30000. (3)设总利润为W 元则:W=Q -1000×30-400x=-10x 2+500x=-10(x 2-50x) =-10(x -25)2+6250.当x=25时,总利润最大,最大利润为6250元. 答:这批蟹放养25天后出售,可获最大利润.11.(2008湖北恩施)为了落实国务院副总理李克强同志到恩施考察时的指示精神,最近,州委州政府又出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.市场调查发现,该产品每天的销售量w(千克)与销售价x(元/千克)有如下关系:w=-2x+80.设这种产品每天的销售利润为y(元) .(1)求y与x之间的函数关系式;(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少? (3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元? 解:)802)(20()20(+--=-=x x w x y)40)(20(2---=x x)80060(22+--=x x 200)30(22+--=x 160012022-+-=x x当30=x ,200max =y (元)(1)y 与x 之间的的函数关系式为;160012022-+-=x x y(2)当销售价定为30元时,每天的销售利润最大,最大利润是200元. (3) 150200)30(22=+--x ,25)30(2=-x28351>=x (不合题意,舍去)252=x答:该农户想要每天获得150元的销售利润,销售价应定为25元.12.(2008河北)研究所对某种新型产品的产销情况进行了研究,为投资商在甲、乙两地生产并销售该产品提供了如下成果:第一年的年产量为x (吨)时,所需的全部费用y (万元)与x 满足关系式9051012++=x x y ,投入市场后当年能全部售出,且在甲、乙两地每吨的售价,(万元)均与满足一次函数关系.(注:年利润=年销售额-全部费用)(1)成果表明,在甲地生产并销售吨时,,请你用含的代数式表示甲地当年的年销售额,并求年利润(万元)与之间的函数关系式;(2)成果表明,在乙地生产并销售吨时,(为常数),且在乙地当年的最大年利润为35万元.试确定的值;(3)受资金、生产能力等多种因素的影响,某投资商计划第一年生产并销售该产品18吨,根据(1),(2)中的结果,请你通过计算帮他决策,选择在甲地还是乙地产销才能获得较大的年利润?解:(1)甲地当年的年销售额为万元;.(2)在乙地区生产并销售时,年利润.由,解得或.经检验,不合题意,舍去,.(3)在乙地区生产并销售时,年利润,将代入上式,得(万元);将代入,得(万元).,应选乙地.。

二次函数利润问题含答案

二次函数利润问题含答案

1 / 7二次函数综合题的分类一二次函数综合题的分类一1、 为了落实国务院副总理李克强同志到恩施考察时的指示精神。

为了落实国务院副总理李克强同志到恩施考察时的指示精神。

最近,最近,州委州政府又出台了一系列“三农”优惠政策,使农民收入大幅度增加,某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克,市场调查发现,该产品每天的销售量W (千克)与销售价X (元(元//千克)有如下关系,千克)有如下关系,W=W=W=——2X+802X+80.设:这种农产品每天的销售利润为.设:这种农产品每天的销售利润为y (元)(元) (1)求y 与X 之间的函数关系式;之间的函数关系式;(2)当销售价总为多少元时,每天的销售利润最大?最大利润是多少?)当销售价总为多少元时,每天的销售利润最大?最大利润是多少?(3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元?元的销售利润,销售价应定为多少元?(1)y =(x-20x-20))W=W=((x-20x-20))(-2x+80-2x+80))=-2x 2+120x-1600∴ y 与x 的函数关系式为y=y=--2x 2+120x-1600 +120x-1600(2)y =-2x 2+120x-1600=-2(x-30)2+200 ∴当x=30 时,时,y y有最大值200 所以当销售价定为30元/千克时,每天可获得最大销售利润200元(3)当y =150时,可得方程时,可得方程-2(x-30)-2(x-30)2+200=150 用这个方程,得x 1=25 =25 x 2=35 根据题意x 2=35不合题意,应舍去.不合题意,应舍去.∴当销售量为25元/千克时,该农户每天可获得销售利润150元.元.2、某公司生产的某种时令商品每件成本为20元,经过市场调查发现,这种商品在未来40天内的月销售量m (件)与时间t (天)的关系如下表:(天)的关系如下表:时间t (天)(天) 13 5 10 36 月销售量m (件)9490867624未来40天内,前20天每天的价格y 1(元(元 / /件)件)与时间t (天)的函数关系式为y 1=0.25t+25(1(1≤≤ t ≤20且t 为整数为整数))后20天每天的价格y 2(元/件)与时间t (天)的函数关系式为(天)的函数关系式为 y 2=-0.5t+400.5t+40((2121≤≤t ≤40且t 为整数)下面我们就来研究销售这种商品有关问题。

专题08 二次函数实际应用中的利润问题(解析版)-【压轴必考】

专题08 二次函数实际应用中的利润问题(解析版)-【压轴必考】

专题08 二次函数实际应用中的利润问题 经典例题例1.某电商销售某种商品一段时间后,发现该商品每天的销售量y (单位:千克)和每千克的售价x (单位:元)满足一次函数关系(如图所示),其中5080x ≤≤,(1)求y 关于x 的函数解析式;(2)若该种商品的成本为每千克40元,该电商如何定价才能使每天获得的利润最大?最大利润是多少?【答案】(1)y 关于x 的函数解析式为2200y x =-+;(2)该电商定价为70元时才能使每天获得的利润最大,最大利润是1800元.【解析】(1)设y 关于x 的函数解析式为y kx b =+,则由图象可得()50,100和()80,40,代入得: 501008040k b k b +=⎧⎨+=⎩,解得:2200k b =-⎧⎨=⎩,∴y 关于x 的函数解析式为2200y x =-+; (2)设该电商每天所获利润为w 元,由(1)及题意得:()()240220022808000w x x x x =--+=-+-,∴-2<0,开口向下,对称轴为702b x a=-=, ∴5080x ≤≤,∴当70x =时,w 有最大值,即为22702807080001800w =-⨯+⨯-=; 答:该电商定价为70元时才能使每天获得的利润最大,最大利润是1800元.例2.合肥百货大楼以进价120元购进某种新商品,在5月份试销阶段发现,在售价不低于130元的情况下每件售价(元)与商品的日销量(件)始终存在下表中的数量关系:(1)请你观察上面表格中数据的变化规律,填写表中的a 值为(2)若百货大楼该商品柜组想日盈利达到1600元,应将售价定为多少元?(3)柜组售货员小李发现销售该种商品m 件与n 件的利润相同,且m n ≠,请直接写出m 与n 所满足的关系式.【答案】(1)20;(2)160元;(3)m +n =80【解析】(1)∴130+70=200,135+65=200,140+60=200,∴每件的售价与产品的日销量之和为200,∴a =200-180=20,故答案为:20;(2)由(1)知:当每件产品每涨价1元时,日销售量减少1件,设每件产品定价为x 元(x >120),则产品的日销量为(200-x )元,依题意得:(x -120)(200-x )=1600,整理得:x 2-320x +25600=0,解得:x 1=x 2=160.答:每件产品定价为160元时,每日盈利可达到1600元;(3)由(1)知:当每件产品每涨价1元时,日销售量减少1件,∴当销售该种商品m 件时,定价为:(200-m )元,销售该种商品n 件时,定价为:(200-n )元, 由题意得:(200-m -120)m =(200-n -120)n ,整理得:(m -n )(m +n -80)=0,∴m ≠n ,∴m +n -80=0,即m +n =80.故答案为:(1)20;(2)160元;(3)m +n =80例3.某网店销售一款市场上畅销的蒸蛋器,进价为每个40元,在销售过程中发现,这款蒸蛋器销售单价为60元时,每星期卖出100个.如果调整销售单价,每涨价1元,每星期少卖出2个,现网店决定提价销售,设销售单价为x 元,每星期销售量为y 个.(1)请直接写出y (个)与x (元)之间的函数关系式;(2)当销售单价是多少元时,该网店每星期的销售利润是2400元?(3)当销售单价是多少元时,该网店每星期的销售利润最大?最大利润是多少元?【答案】(1)y =-2x +220;(2)当销售单价是70元或80元时,该网店每星期的销售利润是2400元;(3)当销售单价是75元时,该网店每星期的销售利润最大,最大利润是2450元.【解析】(1)由题意可得,y =100-2(x -60)=-2x +220;(2)由题意可得,(-2x +220)(x -40)=2400,解得,170x =,280x =,∴当销售单价是70元或80元时,该网店每星期的销售利润是2400元.答:当销售单价是70元或80元时,该网店每星期的销售利润是2400元.(3)设该网店每星期的销售利润为w 元,由题意可得w =(-2x +220)(x -40)=223008800-+-x x , 当752b x a=-=时,w 有最大值,最大值为2450, ∴当销售单价是75元时,该网店每星期的销售利润最大,最大利润是2450元.答:当销售单价是75元时,该网店每星期的销售利润最大,最大利润是2450元.【变式训练1】天府新区某商场开业后要经营一种新上市的文具进价为10元/件.试营销阶段发现:当销售单价是13元时,每天的销售量为250件;销售单价每上涨1元,每天的销售量就减少10件,设该商场销售这种文具每天的销售量为y 件,销售单价为x 元/件(3)1x ≥.(1)写出y 与x 之间的函数关系式;(2)设商场每天的销售利润为w (元),若每天销售量不少于150件,求商场每天的最大利润.【答案】(1)10380y x =-+;(2)1950元【解析】(1)当销售单价是13元时,每天的销售量为250件;销售单价每上涨1元,每天的销售量就减少10件,∴销售量y 件,销售单价x 元/件(13)x 之间的关系为:25010(13)10380y x x =--=-+; (2)每天销售量不少于150件,150y ∴,即10380150x -+,解得23x ,商场每天的销售利润2(10)(10)(10380)10(24)1960w x y x x x =-⋅=-⋅-+=--+,w ∴关于x 的抛物线对称轴为24x =,而100-<,开口向下,当23x 时,图象在对称轴左侧,w 随x 的增大而增大,23x ∴=时,w 最大,且w 最大值为1950,∴若每天销售量不少于150件,则商场每天的最大利润是1950元.【变式训练2】某地区在2020年开展脱贫攻坚的工作中大力种植有机蔬菜.某种蔬菜的销售单价与销售月份之间的关系如图(1)所示,每千克成本与销售月份之间的关系如图(2)所示(其中图(1)的图象是直线,图(2)的图象是抛物线).(1)求每千克蔬菜销售单价y 与销售月份x 之间的关系式;(2)判断哪个月份销售每千克蔬菜的收益最大?并求出最大收益;(3)求出一年中销售每千克蔬菜的收益大于1元的月份有哪些?【答案】(1)y =23-x +7;(2)5月出售每千克收益最大,最大为73元;(3)一年中销售每千克蔬菜的收益大于1元的月份有4,5,6三个月.【解析】(1)设y kx b =+,将(3,5)和(6,3)代入得,3563k b k b +=⎧⎨+=⎩,解得237k b ⎧=-⎪⎨⎪=⎩.273y x ∴=-+; (2)设每千克成本与销售月份之间的关系式为:y =a (x -6)2+1,把(3,4)代入得,4=a (3-6)2+1,解得13a =.21(6)13y x ∴=-+,即214133y x x =-+. 收益23W =-217(413)3x x x +--+217(5)33x =--+, 103a =-<,∴当5x =时,73W =最大值.故5月出售每千克收益最大,最大为73元; (3)一年中销售每千克蔬菜的收益:23W =-217(413)3x x x +--+, 当1W =时,23-217(413)13x x x +--+=,解得:x 1=7,x 2=3, 103a =-<,x 为正整数,∴一年中销售每千克蔬菜的收益大于1元的月份有4,5,6三个月. 故答案为:(1)y =23-x +7;(2)5月出售每千克收益最大,最大为73元;(3)一年中销售每千克蔬菜的收益大于1元的月份有4,5,6三个月.【变式训练3】红星公司销售一种成本为40元/件的产品,若月销售单价不高于50元/件.一个月可售出5万件;月销售单价每涨价1元,月销售量就减少0.1万件.其中月销售单价不低于成本.设月销售单价为x (单位:元/件),月销售量为y (单位:万件).(1)直接写出y 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)当月销售单价是多少元/件时,月销售利润最大,最大利润是多少万元?(3)为响应国家“乡村振兴”政策,该公司决定在某月每销售1件产品便向大别山区捐款a 元.已知该公司捐款当月的月销售单价不高于70元/件,月销售最大利润是78万元,求a 的值.【答案】(1)5(4050)0.110(50100)x y x x ≤≤⎧=⎨-+<≤⎩;(2)当月销售单价是70元/件时,月销售利润最大,最大利润是90万元;(3)4.【解析】(1)由题意,当4050x ≤≤时,5y =,当50x >时,50.1(50)0.110y x x =--=-+,0y ≥,0.1100x ∴-+≥,解得100x ≤,综上,5(4050)0.110(50100)x y x x ≤≤⎧=⎨-+<≤⎩; (2)设该产品的月销售利润为w 万元,①当4050x ≤≤时,5(40)5200w x x =-=-,由一次函数的性质可知,在4050x ≤≤内,w 随x 的增大而增大,则当50x =时,w 取得最大值,最大值为55020050⨯-=;②当50100x <≤时,2(40)(0.110)0.1(70)90w x x x =--+=--+,由二次函数的性质可知,当70x =时,w 取得最大值,最大值为90,因为9050>,所以当月销售单价是70元/件时,月销售利润最大,最大利润是90万元;(3)捐款当月的月销售单价不高于70元/件,月销售最大利润是78万元(大于50万元), 5070x ∴<≤,设该产品捐款当月的月销售利润为Q 万元,由题意得:(40)(0.110)Q x a x =---+,整理得:221400.1()390240a a Q x a +=--+-+, 140702a +>,∴在5070x <≤内,Q 随x 的增大而增大, 则当70x =时,Q 取得最大值,最大值为(7040)(0.17010)903a a ---⨯+=-,因此有90378a -=,解得4a =.【变式训练4】某企业研发了一种新产品,已知这种产品的成本为30元/件,且年销售量y (万件)与售价x (元/件)的函数关系式为()()2140,406080.6070x x y x x ⎧-+≤<⎪=⎨-+≤≤⎪⎩ (1)当售价为60元/件时,年销售量为________万件;(2)当售价为多少时,销售该产品的年利润最大?最大利润是多少?(3)若销售该产品的年利润不少于750万元,直接写出x 的取值范围.【答案】(1)20;(2)当售价为50元/件时,年销售利润最大,最大为800万元;(3)4555x ≤≤【解析】(1)=6080608020x y x y =-+=-+=当时,代入中,得.(2)设销售该产品的年利润为W 万元,当60x ≤40<时,()()()2302140250800W x x x =--+=--+.∴20<-,∴当50x =时,800W =最大当6070≤≤x 时,()()()2308055625W x x x =--+=--+∴10-<,6070≤≤x ,∴当60x =时,600W =最大∴800600>,∴当50x =时,800W =最大∴当售价为50元/件时,年销售利润最大,最大为800万元.(3)4555x ≤≤理由如下:由题意得 ()()3021407504555x x x --+≥≤≤解得:故答案为:(1)20;(2)当售价为50元/件时,年销售利润最大,最大为800万元;(3)4555x ≤≤ 课后训练1.某超市销售一种商品,每件成本为50元,销售人员经调查发现,销售单价为100元时,每月的销售量为50件,而销售单价每降低2元,则每月可多售出10件,且要求销售单价不得低于成本.(1)求该商品每月的销售量y (件)与销售单价x (元)之间的函数关系式;(不需要求自变量取值范围) (2)若使该商品每月的销售利润为4000元,并使顾客获得更多的实惠,销售单价应定为多少元?(3)超市的销售人员发现:当该商品每月销售量超过某一数量时,会出现所获利润反而减小的情况,为了每月所获利润最大,该商品销售单价应定为多少元?【答案】(1)5550y x =-+;(2)70元;(3)80元.【解析】(1)∴依题意得()150100102y x =+-⨯⨯, ∴y 与x 的函数关系式为5550y x =-+;(2)∴依题意得()504000y x -=,即()()5550504000x x -+-=,解得:170x =,290x =, ∴7090<∴当该商品每月销售利润为4000,为使顾客获得更多实惠,销售单价应定为70元;(3)设每月总利润为w ,依题意得 ()()()250555050580027500w y x x x x x =-=-+-=-+-∴50-<,此图象开口向下∴当()8008025x =-=⨯-时, w 有最大值为:258080080275004500-⨯+⨯-=(元),∴当销售单价为80元时利润最大,最大利润为4500元,故为了每月所获利润最大,该商品销售单价应定为80元.2.红星工厂研发生产某种产品,成本为3万元/吨,每天最多能生产15吨.工厂为持续发展,尝试与博飞销售公司建立产销合作关系,双方约定:合作第一个月,工厂产品仅由博飞销售公司订购代销,并每天按博飞销售公司当日订购产品数量生产,当日出厂价格y (万元/吨)与当日订购产品数量x (吨)之间的关系如图所示:(1)直接写出y 与x 的函数关系式,并写出自变量x 的取值范围;(2)红星工厂按产销合作模式生产这种产品,设第一个y (万元/吨)月单日所获利润为w (万元), ①求w (万元)与x (吨)的函数关系式;②为响应国家“乡村振兴”政策,红星工厂决定,将合作第一个月中单日所获最大利润捐赠给附近村委会.试问:工厂这次为“乡村振兴”最多捐赠多少万元?【答案】(1)9(05)4(515)x x y x -+≤≤⎧=⎨≤⎩<;(2)①w =26(05)(515)x x x x x ⎧-+≤≤⎨≤⎩<;②工厂这次为“乡村振兴”最多捐赠15万元.【解析】(1)当0≤x ≤5时,设函数关系式为:y =kx +b ,把(0,9),(5,4)代入上式,得945b k b =⎧⎨=+⎩,解得:19k b =-⎧⎨=⎩,∴y =-x +9, 当5<x ≤15时,y =4,综上所述:9(05)4(515)x x y x -+≤≤⎧=⎨≤⎩<; (2)①由题意得:w =(y -3)x =()()6(05)43(515)x x x x x ⎧-+≤≤⎪⎨-≤⎪⎩<,∴w =26(05)(515)x x x x x ⎧-+≤≤⎨≤⎩<; ②当05x ≤≤时,w =()22639x x x -+=--+,此时x =3,w 最大值=9,当515x ≤<时,w =x ,此时,x =15,w 最大值=15,综上所述:工厂这次为“乡村振兴”最多捐赠15万元.3.一大型商场经营某种品牌商品,该商品的进价为每件3元,根据市场调查发现销售量y (件)与售价x (元/件)(x 为正整数)之间满足一次函数关系:(1)求y 与x 的函数关系式(不求自变量的取值范围);(2)在销售过程中要求销售单价不低于成本价,且不高于15元/件.若某一周该商品的销售量不少于6000件,求这一周该商场销售这种商品获得的最大利润及此时的销售单价分别为多少元?【答案】(1)50012000y x =-+;(2)一周该商场销售这种商品获得的最大利润为54000元,销售单价分别为12元【解析】(1)设y 和x 的函数表达式为y kx b =+,则10000495005k b k b =+⎧⎨=+⎩,解得50012000k b =-⎧⎨=⎩, 故y 和x 的函数表达式为50012000y x =-+;.(2)设这一周该商场销售这种商品的利润为w 元,由题意得:3155001200006000x x ≤≤⎧⎨-+≥⎩, 解得312x ≤≤,这一周该商场销售这种商品获得利润:()()()235001200035001350036000w y x x x x x =-=-+-=-+-,∴22750055125551252w x ⎛⎫=--+≤ ⎪⎝⎭, ∴312x ≤≤,故12x =时,w 有最大值为54000,答:一周该商场销售这种商品获得的最大利润为54000元,销售单价为12元.4.夏天到了,宁波人最惦记的水果——杨梅进入成熟期,一水果店老板进行杨梅销售,已知杨梅进价为25元/千克.如果售价为30元/千克,那么每天可售出150千克:如果售价为32元/千克,那么每天可售出130千克.经调查发现:每天销售盘y (千克)与售价x (元/千克)之间存在一次函数关系.(1)求出y 关于x 的一次函数关系式;(2)若杨梅售价不得高于36元/千克,该店主销售杨梅每天要获得960元的毛利润,则销售单价应定为多少元/千克?(毛利润=销售额-进货成本〉(3)设杨梅每天销售的毛利润为W 元,当杨梅的售价定为多少元/千克时,每天销售获得的毛利润最大?最大毛利润是多少元?【答案】(1)y=-10x+450;(2)33元/千克;(3)售价定为35元/千克时,每天销售获得的毛利润最大,最大毛利润是1000元.【解析】(1)∴每天销售量y(千克)与售价x(元/千克)之间存在一次函数关系,∴设y=kx+b,∴x=30时,y=150,x=32时,y=130,则1503013032k bk b=+⎧⎨=+⎩,解得:10450kb=-⎧⎨=⎩,∴y关于x的一次函数关系式:y=-10x+450;(2)设销售单价应定为x元/千克,由题意得:(x-25)(-10x+450)=960,解得:x=37或x=33,∴杨梅售价不得高于36元/千克,∴x=37不合题意,∴x=33,答:销售单价应定为33元/千克;(3)设杨梅的售价定为m元/千克时,每天销售获得的毛利润最大,则W=(m-25)(-10m+450)=-10m2+700m-11250=-10(m-35)2+1000,∴-10<0,∴当m=35时,W有最大值,最大值1000元,答:杨梅的售价定为35元/千克时,每天销售获得的毛利润最大,最大毛利润是1000元.5.某商店从厂家以每件2元的价格购进一批商品,在市场试销中发现,此商品的月销售量y(单位:万件)与销售单价x(单位:元)之间有如下表所示关系:(1)根据表中的数据,在图中描出实数对(,)x y所对应的点,并画出y关于x的函数图象;(2)根据画出的函数图象,求出y关于x的函数表达式;(3)设经营此商品的月销售利润为P(单位:万元).①写出P关于x的函数表达式;②该商店计划从这批商品获得的月销售利润为10万元(不计其它成本),若物价局限定商品的销售单价不.得超过...进价的200%,则此时的销售单价应定为多少元? 【答案】(1)图象见解析;(2)216y x =-+;(3)①222032P x x =-+-;②销售单价应定为3元.【解析】(1)y 关于x 的函数图象如图所示:(2)由(1)可设y 与x 的函数关系式为y kx b =+,则由表格可把()()4,8,5,6代入得:4856k b k b +=⎧⎨+=⎩,解得:216k b =-⎧⎨=⎩,∴y 与x 的函数关系式为216y x =-+; (3)①由(2)及题意可得:()()()22221622032P x y x x x x =-=--+=-+-;∴P 关于x 的函数表达式为222032P x x =-+-;②由题意得:2200x ≤⨯%,即4x ≤,∴22203210x x -+-=,解得:123,7x x ==,∴3x =; 答:此时的销售单价应定为3元.。

二次函数利润最大问题

二次函数利润最大问题

1. (2011湖南怀化,16,3)出售某种手工艺品,若每个获利x 元,一天可售出(8-x )个,则当x =________元时,一天出售该种手工艺品的总利润y 最大.【答案】4【思路分析】总利润=单件产品利润×销售数量,因此y =x (8-x )=-(x -4)2+16,当x =4时,总利润y 有最大值16.【方法规律】①了解总利润的计算方法;②运用配方法求二次三项式的最值是解本题的难点;③解实际问题,要考虑所求的解是否符合实际意义.【易错点分析】配方过程易出现错误.【关键词】二次函数,二次函数与实际问题.【推荐指数】★★★☆☆【题型】常规题1. (2011广东佛山,24,10)商场对某种商品进行市场调查,1至6月份该种商品的销售情况如下:①销售成本p (元/千克)与销售月份x 的关系如图所示:②销售收入q (元/千克)与销售月份x 满足q=-32x+15 ③销售量m (千克)与销售月份x 满足m=100x+200.试解决以下问题:(1)根据图形,求与p 与x 之间的函数关系式:(2)求该种商品每月的销售利润y (元)与销售月份X 的函数关系式,并求出哪个月的销售利润最大?【答案】解:(1)根据图形可知;p 与x 之间的关系符合一次函数.故可设为p=kx+b ,并有946k b k b =+⎧⎨=+⎩解得110k b =-⎧⎨=⎩故p 与x 的函数关系式为p=-x +10.(2)根据题意,月销售利润y=(q-p)m=[(-32x+15)-(-x+10)](100x+200),化简得y=-50x²+400x+10000,所以4月份销售利润最大。

【思路分析】(1)观察图象,可以判断p 与x 之间的关系符合一次函数,于是设出其解析式,选取其中两组点坐标,利用待定系数法求解.(2)依题意,有月销售利润y=(q-p)m ,进而可以得到二次函数,并利用二次函数的性质求解.【方法规律】利用对问题的转化和待定系数法,结合函数性质求解.【易错点分析】对于(2)容易错误地认为销售利润y=pm.【关键词】一次函数、二次函数的应用 【难度】★★★★☆ 【题型】好题、综合题.3. (2011湖北荆州,23,10分)(本题满分10分)2011年长江中下游地区发生了特大旱情,为抗旱保丰收,某地政府制定民农户投资购买抗旱设备的补贴办法,其中购买Ⅰ型、Ⅱ型抗旱设备所投资的金额与政府补贴的额度存在下表所示的函数对应关系.16p (元/千克)x (月份) 49o型 号金 额Ⅰ型设备 Ⅱ型设备 投资金额x (万元)x 5 x 2 4 补贴金额y (万元) y 1=kx(k≠0)2 y 2=ax 2+bx(a≠0) 2.4 3.2 (1)分别求出1y 和2y 的函数解析式;(2)有一农户同时对Ⅰ型、Ⅱ型两种设备共投资10万元购买,请你设计一个能获得最大补贴金额的方案,并求出按此方案能获得的最大补贴金额.【答案】解:(1)由题意得:①5k =2,k =52 ∴x y 521= ②⎩⎨⎧=+=+2.34164.224b a b a ,解之得:⎪⎪⎩⎪⎪⎨⎧=-=5851b a ,∴x x y 585122+-= (2)设购Ⅱ型设备投资t 万元,购Ⅰ型设备投资(10-t )万元,共获补贴Q 万元 ∴t t y 524)10(521-=-=,t t y 585122+-= 529)3(5158515242221+--=+--=+=t t t t y y Q ∴当t =3时,Q 有最大值为529,此时10-t =7(万元) 即投资7万元购Ⅰ型设备,投资3万元购Ⅱ型设备,共获最大补贴5.8万元.【思路分析】第(1)小题考查学生求函数解析式的能力,坡度设置合理,学生上手容易,只需根据函数的解析式,直接代入就可求出,对于(2)主要考查了学生自己用函数关系表示题目中的数量关系,并进一步求二次函数的极值的方法.【方法规律】掌握待定系数法求解析式的基本方法,以及求二次函数最值的方法,即当ab x 2-=时,y 有最大(小)值a b ac 442-. 【易错点分析】对于第(2)不能正确列出函数关系式【关键词】待定系数法求函数解析式 二次函数的极值【推荐指数】★★★☆☆【题型】常规题 好题4. (2011湖北随州,23,12分)我市某镇的一种特产由于运输原因,长期只能在当地销售.当地政府对该特产的销售投资收益为:每投入x 万元,可获得利润()216041100P x =--+(万元).当地政府拟在“十二•五”规划中加快开发该特产的销售,其规划方案为:在规划前后对该项目每年最多可投入100万元的销售投资,在实施规划5年的前两年中,每年都从100万元中拨出50万元用于修建一条公路,两年修成,通车前该特产只能在当地销售;公路通车后的3年中,该特产既在本地销售,也在外地销售.在外地销售的投资收益为:每投入x 万元,可获利润()()299294101001601005Q x x =--+-+(万元) ⑴若不进行开发,求5年所获利润的最大值是多少?⑵若按规划实施,求5年所获利润(扣除修路后)的最大值是多少?⑶根据⑴、⑵,该方案是否具有实施价值?【答案】解:⑴当x =60时,P 最大且为41,故五年获利最大值是41×5=205万元. ⑵前两年:0≤x ≤50,此时因为P 随x 增大而增大,所以x =50时,P 值最大且为40万元,所以这两年获利最大为40×2=80万元.后三年:设每年获利为y ,设当地投资额为x ,则外地投资额为100-x ,所以y =P +Q =()216041100x ⎡⎤--+⎢⎥⎣⎦+2992941601005x x ⎡⎤-++⎢⎥⎣⎦=260165x x -++=()2301065x --+,表明x =30时,y 最大且为1065,那么三年获利最大为1065×3=3495万元,故五年获利最大值为80+3495-50×2=3475万元.⑶有极大的实施价值.【思路分析】(1)由代数式()216041100P x =--+可知当x =60时,可获得利润最大值,即可求出5年所获利润的最大值;3495万元.所以有实施价值.(2)前两年得利润加上后三年的利润再除去前两年每年拨出的利润50万元即可.(3)不开发5年所获利润的最大值是205万元;若按规划实施,5年所获利润(扣除修路后)的最大值是3475元,有极大的实施价值.【方法规律】二次函数的实际应用问题的解题关键是理解题意,找到合适函数;取得最大值,是解此题的关键,还要注意后三年的最大值的求解方法,要考虑其它的费用.【易错点分析】配方时易出现计算错误.6. (2011江苏常州,26,7分)某商店以6元/千克的价格购进某干果1140千克,并对其进行筛选分成甲级干果与乙级干果后同时开始销售,这批干果销售结束后,店主从销售统计中发现:甲级干果与乙级干果在销售过程中每天都有销售量,且在同一天卖完;甲级干果从开始销售至销售的第x 天的总销售量1y (千克)与x 的关系为2140y x x =-+;乙级干果从开始销售至销售的第t 天的总销售量2y (千克)与t 的关系为22y at bt =+,且乙级干果的前三天的销售量的情况见下表:t 1 2 32y21 44 69 (1)求a 、b 的值.(2)若甲级干果与乙级干果分别以8元/千克和6元/千克的零售价出售,则卖完这批干果获得的毛利润为多少元?(3)此人第几天起乙级干果每天的销售量比甲级干果每天的销售量至少多千克?(说明:毛利润=销售总金额-进货总金额.这批干果进货至卖完的过程中的损耗忽略不计.)【答案】(1)选取表中两组数据,如当t=1时,y 2=21当t=2时,y 2=44;分别代入22y at bt =+,得⎩⎨⎧+=+=ba b a 244421,解得a=1,b=20. (2)设甲级干果与乙级干果n 天销完这批货.则1140204022=+++-n n n n ,即60n=1140,解之得n=19,当n=19时,1399y =,2y =741.毛利润=399×8+741×6-1140×6=798(元).(3)第n 天甲级干果的销售量为-2n+41,第n 天乙级干果的销售量为2n+19.(2n+19)-(-2n+41)≥6解之得n≥7.【思路分析】(1)选取表中两组数据,求得a=1,b=20.(2)设n 天消完这批货,根据“甲级干果销售量+乙级干果销售量=总量”可求出n ,计算出销售量,从而可求出毛利润.(3)用前n 天的销售量减去前(n-1)天的销售量,即可求出甲、乙两种干果第n 天的的销售量,从而可列出不等式求解.【方法规律】本题第(1)问考查利用待定系数法,求二次函数关系式;(2)、(3)需要根据题目中提供的有关信息建立数学模型,进而解决问题.【易错点分析】第n 天的销售量会直接用总的销售量除以天数,从而导致错误.【关键词】待定系数法、二次函数【推荐指数】★★★☆☆【题型】应用题7. (2011江苏徐州,25,8分)某网店以每件60元的价格购进一批商品,若以单价80元销售,每月可售出300件.调查表明:单价每上涨1元,该商品每月的销售量就减少10件.(1)请写出每月销售该商品的利润y (元)与单价上涨x (元)间的函数关系式;(2)单价定为多少元时,每月销售商品的利润最大?最大利润为多少?【答案】(1)y=(x -60)[300-10(x -80)]=(x -60)(300-10x+800)=(x -60)(1100-10x )=210170066000x x -+-即y=210170066000x x -+-(2)y=210170066000x x -+-=210(85)6250x --+.因为-10<0,所以当x =85时,y 有最大值,y 最大值=6250.即单价定为85元时,每月销售商品的利润最大,最大利润为6250元.【思路分析】(1)上涨x 元后,所销售的件数是[300-10(x -80)];每件的销售利润为(x -60)所以y=(x -60)[300-10(x -80)],整理得y=210170066000x x -+-;(2)根据二次函数的配方法可以求得最大利润.【方法规律】本题是综合考查二次函数的最值问题,需要熟悉二次函数的相关基本概念和配方法即可解题.要注意解题过程的完整性.【易错点分析】每件销售利润=每件销售收入-每件购进成本,这里销售利润只与进价 60元,不要把利润与定价80直接联系起来误把利润写成(x -80)元.【关键词】二次函数的应用.【推荐指数】★★★★★9. (2011山东菏泽,20,9分)我市一家电子计算器专卖店每只进价13元,售价20元,多买优惠 ;凡是一次买10只以上的,每多买1只,所买的全部计算器每只就降低0.10元,例如,某人买20只计算器,于是每只降价0.10×(20-10)=1(元),因此,所买的全部20只计算器都按照每只19元计算,但是最低价为每只16元.(1) 求一次至少买多少只,才能以最低价购买?(2) 写出该专卖店当一次销售x (只)时,所获利润y (元)与x (只)之间的函数关系式,并写出自变量x 的取值范围;(3)若店主一次卖的只数在10至50只之间,问一次卖多少只获得的利润最大?其最大利润为多少?【答案】解:(1)设一次购买x 只,才能以最低价购买,则有:0.1(x -10)=20-16,解这个方程得x =50;答:一次至少买50只,才能以最低价购买.(2) 220137(001[(2013)0.1(10)]8(1050)101613=3(50)x x x x y x x x x x x x x -=⎧⎪⎪=---=-+⎨⎪⎪-⎩<≤1)<<≥. (说明:因三段图象首尾相连,所以端点10、50包括在哪个区间均可)(3)将21810y x x =-+配方得21(40)16010y x =--+,所以店主一次卖40只时可获得最高利润,最高利润为160元.(也可用公式法求得)【思路分析】(1)由题意知最低价是16元,则可优惠4元,凡是一次买10只以上的,每多买1只,所买的全部计算器每只就降低0.10元,可设一次购买x 只,才能以最低价购买,则可列方程0.1(x -10)=20-16求解;(2)由题意可知分3种情况,当0<x ≤10时不优惠,当10<x <50时,每多买1只,所买的全部计算器每只就降低0.10元,当x ≥50时,每只都是最低价16元;(3)当只数在10至50只之间时,y 是x 的二次函数,求出最大值即可.【方法规律】本题是考查学生用方程,函数的思想解决实际问题,本题关键要想到由自变量的取值不同分情况讨论.【易错点分析】学生不易想到分类讨论的思想【关键词】一元一次方程,函数,分类讨论【推荐指数】★★★★☆【题型】、新题,好题,难题10.(2011山东泰安,28 ,10分)某商店经营一种小商品,进价为每件20元,据市场分析,在一个月内,售价定为每件25元时,可卖出105件,而售价每上涨1元,就少卖5元.(1)当售价定为每件30元时,一个月可获利多少元?(2)当倍价定为每件多少元时,一个月的获利最大?最大利润是多少元?【答案】(1)获利:(30-20)[105-5(30-25)]=800(元)(2)设售价为每件x 元时,一个月的获利为y 元由题意,得:y =(x -20)[105-5(30-25)]=-5x 2+330x -4600=-5(x -33)2+845当x =33时,y 的最大值是845故当售价为定价格为33元时,一个月获利最大,最大利润是845元.【思路分析】(1)可根据题意列出算术,并进行计算;(2)根据题意列出二次函数关系式,用配方法求得最值.【方法规律】考查了有理数的运算,二次函数最值的求法,运用了配方法求二次函数的最大值.【易错点分析】 最值时,凭直觉求得;列错算式.【关键词】二次函数的最值【推荐指数】★☆☆【题型】常规题.11. (2011山东潍坊,22,10分)2010年上半年,某种农产品受不良炒作的影响,价格一路上扬,8月初国家实施调控措施后,该农产品的价格开始回落.其中,1月份至7月份,该农产品的月平均价格y 元/千克与月份x 呈一次函数关系;7月份至12月份,月平均价格元/千克与月份x 呈二次函数关系.已知1月、7月、9月和12月这四个月的月平均价格分别为8元/千克、26元/千克、14元/千克、11元/千克.(1)分别求出当1≤x ≤7和7≤x ≤12时,y 关于x 的函数关系式;(2)2010年的12个月中,这种农产品的月平均价格哪个月最低?最低为多少?(3)若以12个月份的月平均价格的平均数为年平均价格,月平均价格高于年平均价格的月份有哪些?【解】(1)当17x ≤≤时,设y kx m =+,将点(1,8)、(7,26)分别代入y kx m =+,得8,726.k m k m +=⎧⎨+=⎩解之,得5,3.m k =⎧⎨=⎩ ∴函数解析式为35y x =+.当712x ≤≤时,设2y ax bx c =++,将(7,26)、(9,14)、(12,11)分别代入2y ax bx c =++,得: 49726,81914,1441211.a b c a b c a b c ++=⎧⎪++=⎨⎪++=⎩解之,得1,22,131.a b c =⎧⎪=-⎨⎪=⎩∴函数解析式为222131y x x =-+.(2)当17x ≤≤时,函数35y x =+中y 随x 的增大而增大,∴当1x =最小值时,3158y =⨯+=最小值.当712x ≤≤时,()22221311110y x x x =-+=-+, ∴当11x =时,10y =最小值.所以,该农产品平均价格最低的是1月,最低为8元/千克.(3)∵1至7月份的月平均价格呈一次函数,∴4x =时的月平均价格17是前7个月的平均值.将8x =,10x =和11x =分别代入222131y x x =-+,得19y =,11y =和10y =. ∴后5个月的月平均价格分别为19,14,11,10,11. ∴年平均价格为17719141110114615.3123y ⨯+++++==≈(元/千克). 当3x =时,1415.3y =<,∴4,5,6,7,8这五个月的月平均价格高于年平均价格.【思路分析】(1)当1≤x ≤7时,y 与x 间成一次函数关系,当7≤x ≤12时,y 与x 间成二次函数关系,运用待定系数法可求出相应的函数关系式.(2)分别结合一次函数与二次函数的性质,可确定在(1)中所求得的两个函数解析式中y 的最小值,由此可以进行分析判断.(3)要求年平均价格,需要知道该年月平均价格的和,由于1月份至7月份月平均价格呈一次函数,所以可取4x =时的月平均价格作为前7个月的平均值,在后5个月中,9月和12月的月平均价格一直,而其余3个月(8月,10月,11 月)的月平均价格可利用(1)中所求得的函数解析式求得.求出年平均价格后,把每月的平均价格与之相比即可作出判断.【规律总结】对于分段函数,在确定函数解析式时,要根据自变量的取值范围确定相对应的函数值,运用待定系数法确定函数解析式,利用函数解析式确定函数的最值时,要充分利用相应函数的性质.【易错点分析】计算量较大,在具体计算时易出现数据错误.【关键词】待定系数法,一次函数,二次函数,最值问题,平均数【推荐指数】★★★★☆【题型】新题,易错题13. (2011重庆,25,10分)某企业为重庆计算机产业基地提供电脑配件.受美元走低的影响,从去年1至9月,该配件的原材料价格一路攀升,每件配件的原材料价格y 1(元)与月份x (1≤x ≤9,且x 取整数)之间的函数关系如下表:月份x 1 2 3 45 6 7 8 9 价格y 1(元/件) 560 580 600620 640 660 680 700 720 随着国家调控措施的出台,原材料价格的涨势趋缓,10至12月每件配件的原材料价格y 2(元)与月份x (10≤x ≤12,且x 取整数)之间存在如图所示的变化趋势:(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y1与x之间的函数关系式,根据如图所示的变化趋势,直接写出y2与x之间满足的一次函数关系式;(2)若去年该配件每件的售价为1000元,生产每件配件的人力成本为50元,其它成本30元,该配件在1至9月的销售量p1(万件)与月份x满足关系式p1=0.1x+1.1(1≤x≤9,且x取整数),10至12月的销售量p2(万件)p2=-0.1x+2.9(10≤x≤12,且x取整数).求去年哪个月销售该配件的利润最大,并求出这个最大利润;(3)今年1至5月,每件配件的原材料价格均比去年12月上涨60元,人力成本比去年增加20%,其它成本没有变化,该企业将每件配件的售价在去年的基础上提高a%,与此同时每月销售量均在去年12月的基础上减少0.1 a%.这样,在保证每月上万件配件销量的前提下,完成1至5月的总利润1700万元的任务,请你参考以下数据,估算出a 的整数值.(参考数据:992=9801,982=9604,972=9409,962=9216,952=9025) 【解】(1)y1与x之间的函数关系式为y1=20x+540,y2与x之间满足的一次函数关系式为y2=10x+630.(2)去年1至9月时,销售该配件的利润w=p1(1000-50-30-y1)=(0.1x+1.1)(1000−50−30−20x−540)=(0.1x+1.1)(380−20x)=-2x2+160x+418=-2( x-4)2+450,(1≤x≤9,且x取整数)∵-2<0,1≤x≤9,∴当x=4时,w最大=450(万元);去年10至12月时,销售该配件的利润w=p2(1000-50-30-y2)=(-0.1x+2.9)(1000-50-30-10x-630)=(-0.1x+2.9)(290-10x)=( x-29)2,(10≤x≤12,且x取整数),当10≤x≤12时,∵x<29,∴自变量x增大,函数值w减小,∴当x=10时,w最大=361(万元),∵450>361,∴去年4月销售该配件的利润最大,最大利润为450万元.(3)去年12月份销售量为:-0.1×12+0.9=1.7(万件),今年原材料的价格为:750+60=810(元),今年人力成本为:50×(1+20﹪)=60(元),由题意,得5×[1000(1+a﹪)-810-60-30]×1.7(1-0.1a﹪)=1700,设t= a﹪,整理,得10t2-99t+10=0,解得t=99940120,∵972=9409,962=9216,而9401更接近9409.∴9401=97.∴t1≈0.1或t2≈9.8,∴a1≈10或a2≈980.∵1.7(1-0.1a ﹪)≥1,∴a 2≈980舍去,∴a ≈10.答:a 的整数值为10.【思路分析】(1)用待定系数法求一次函数关系式;(2)分时间段求出销售该配件的利润w 关于的函数,再求出各自的最大值,最后通过比较求出去年12个月中利润的最大值;(3) 根据1至5月的总利润1700万元列一元二次方程,通过一元二次方程的解找出符合条件的答案.【方法规律】本题主要考查了用待定系数法求一次函数解析式、列代数式求二次函数的解析式,列一元二次方程求符合条件的解、二次函数的最值、合理估算等代数知识,采用了先局部后整体的思维策略解决问题,用到了待定系数法、方程思想、函数思想等数学思想方法,是一道综合性较强的题目.【易错点分析】不会分析分时间段列出二次函数的解析式,不会求分段函数的最值,不会根据题意列一元二次方程.【关键词】一次函数,二次函数及最值,一元二次方程 【难度】★★★★★ 【题型】常规题,易错题,难题,新题,综合题15. (2011湖北黄冈,23,12分)我市某镇的一种特产由于运输原因,长期只能在当地销售.当地政府对该特产的销售投资收益为:每投入x 万元,可获得利润()216041100P x =--+(万元).当地政府拟在“十二•五”规划中加快开发该特产的销售,其规划方案为:在规划前后对该项目每年最多可投入100万元的销售投资,在实施规划5年的前两年中,每年都从100万元中拨出50万元用于修建一条公路,两年修成,通车前该特产只能在当地销售;公路通车后的3年中,该特产既在本地销售,也在外地销售.在外地销售的投资收益为:每投入x 万元,可获利润()()299294101001601005Q x x =--+-+(万元) ⑴若不进行开发,求5年所获利润的最大值是多少?⑵若按规划实施,求5年所获利润(扣除修路后)的最大值是多少?⑶根据⑴、⑵,该方案是否具有实施价值?【答案】解:⑴当x=60时,P 最大且为41,故五年获利最大值是41×5=205万元. ⑵前两年:0≤x ≤50,此时因为P 随x 增大而增大,所以x=50时,P 值最大且为40万元,所以这两年获利最大为40×2=80万元.后三年:设每年获利为y ,设当地投资额为x,则外地投资额为100-x ,所以y=P +Q =()216041100x ⎡⎤--+⎢⎥⎣⎦+2992941601005x x ⎡⎤-++⎢⎥⎣⎦=260165x x -++=()2301065x --+,表明x=30时,y 最大且为1065,那么三年获利最大为1065×3=3495万元,故五年获利最大值为80+3495-50×2=3475万元.⑶有极大的实施价值.【思路分析】(1)根据题意把x = 60代入解析式就可以计算求出最大值;(2)根据二次函数的性质,利用其性质求解;(3)通过比较利润即可明晰何种方案的实施价值较大。

二次函数最大利润问题练习

二次函数最大利润问题练习

二次函数最大利润问题练习例1:某旅社共有120间客房,每间客房的日租金为50元,每天都客满。

旅社装修后要提高租金,经市场调查,如果一间客房的日租金每增加5元,则每天出租的客房数会减少6间。

不考虑其他因素,旅社将每间客房的日租金提高到多少元时,客房日租金的总收入最高?比装修前的日租金总收入增加多少元?变式1:某商场销售一批名牌衬衫,平均每天售出20件,每件盈利40元。

为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施。

经调查发现,如果每件衬衫每降价1元,商场平均每天多售出2件。

①若商场平均每天要盈利1200元,每件衬衫应降价多少元?②若每件衬衫降价x元时,商场平均每天盈利y元,写出y与x的函数关系式。

例2:某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台。

为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施。

调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台。

1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式。

2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?变式2:某商品的进价为每件40元,售价为每件50元,每个月可卖出210件。

如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元)。

设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元。

1)求y与x的函数关系式并直接写出自变量x的取值范围。

2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元。

例3:某食品零售店为仪器厂代销一种面包,未售出的面包可退回厂家。

经统计销售情况发现,当这种面包的单价定为7角时,每天卖出160个。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全班共同总结
利用白板填空总 结
结束寄语
鼓励即将中考的 学生
生命 中最 快乐 的 是拼 搏, 而非 成 功,生命中最痛苦 的是懒散, 而非失 败
共同努力
1
白板展示
六、导学案
二次函数实际应用题(利润最值问题)
一、旧知回顾
1. 二次函数 y=ax2+bx+c 的图象是一条
,它的对称轴是

.
( 1)当 a>0 时,抛物线开口 ,函数的增减性
五、教学设计
教学环节
环节目标
教学内容
学生活动
情景引入
引入本 节课 学习 目标
1、体会二次函数 模型。
2、熟练解决实际 问题
齐读学习目标
媒体作用及分析
课件展示学习目 标
旧知回顾
解决新知做铺垫
二次 函数 的图 像
性质
课前独立完成
展示题目,生给 答案,教师白板 书笔写
新知探索
解决利 润最 值的 应用题
利用 函数 增减 性 解决实际问题
函数有最
值,是

( 2)当 a<0 时,抛物线开口
,函数的增减性
函数有最
值,是

2. 二 次 函 数 y=-3(x+4) 2 -1 的 对 称 轴 是

。函数的增减性
当 x=
时,函数有最
值,是

3. 二 次 函 数 y=2x2-8x+9 的 对 称 轴 是

. 函数的增减性
当 x=
时,函数有最
值,是
三、教学重难点
1、教学重点:实际问题中的二次函数最值问题。 2、教学难点:自变量有范围限制的最值问题。
四、学习者分析 1、对于学生来说 二次函数是一大难点,学生对函数的性质掌握的比较好,但在应用方面出现
问题,部分学生不会结合图像性质去分析问题。 2、在一次函数实际应用的基础上去解决二次函数,使学生对二次函数求最值能有更深的了解。
,
设销售单价上调了 x 元,那么
每件商品的利润可表示为
,每周的销售量可表示为
,一
周的利润可表示为
要想获得 6090 元利润可列方


若设商品定价为 x 元那么每件商品的利润可表示为
,每周的销售
量可表示为
一周的利润可表示为
,要想获得
6090 元利润可列方程

问题 2. 已知某商品的进价为每件 40 元。现在的售价是每件 60 元,每星期可卖
会利用二次函数的性质求实际问题中的
通过实例的学习,培养学生尝试解决实际问题,逐步提高分析问题、解决问题的能力,培养学生
的数学的意识。
(三)、情感态度与价值观目标:
1、使学生经历克服困难的活动,在数学学习活动中获得成功的体验,建立学好数学的信心;
2、通过对解决问题过程的反思, 获得解决问题的经验和获得新的思想知识的方法, 从而体会熟悉 活动中多动脑筋、独立思考、合作交流的重要性。
问题 4. 已知某商品的进价为每件 40 元。现在的售价是每件 60 元,每星期可卖
出 300 件。市场调查反映:如调整价格,每涨价一元,每星期要少卖出 10 件,每 降价一元每星期可多卖出 20 件。如何定价才能使利润最大?
问题 5. 在上面的问题 4 题中 , 若商场规定试销期间获利不得低于 40%又不得高于
出 300 件。市场调查反映:如调整价格,每涨价 1 元每星期要少卖出 10 件,如何
2
定价才能使利润最大?
问题 3. 已知某商品的进价为每件 40 元。现在的售价是每件 60 元,每星期可卖出
300 件。市场调查反映: 如调整价格 ,每降价一元每星期可多卖出 20 件。如何定 价才能使利润最大?

二、问题探究
,顶点坐标


,顶点坐标 ,
,顶点坐标 ,
问题 1. 已知某商品的进价为每件 40 元,售价是每件 60 元,每星期可卖出 300
件。市场调查反映:如果调整价格每涨价 1 元每星期要少卖出 10 件。要想每周获
得 6090 元的利润,该商品定价应为多少元?
分析: 没调价之前商场一周的利润为
60%,则销售单价定为多少时商场可获得最大利润,最大利润是多少?
三、小结
最值问题一般的步骤 : 1、根据题意列出 取值范围。 2 、在自变量的取值范围内运用
四、布置作业
多媒体展示
的解析式并根据自变量的实际意义确定
3
一、基本信息 学校名称 课名
学科(版本)
教学设计表
桓仁县满族自治县西江初级中学 二次函数实际应用题(利润最 值问题)
数学(北师大版)
教师姓名 年级
蓝晓林
九年下册
二、 教学目标
(一)、知识与技能ຫໍສະໝຸດ 标:1、会通过配方或公式求出二次函数的最大、最小值;
2、在实际应用中体会二次函数作为一种数学模型的作用, 最大或最小值; (二)、过程与方法目标:
先 独立 完成 后小 组合作, 个别学生 爬板
利用倒计时使学 生具有紧迫感, 展台展示学生答 案
课堂小结
提炼方法
解决 二次 函数 应 用 题 的 方 法 是 什 生小结后师补充 么?
白板书写,重点 批注
达标小测
巩固方法
类型题
先 组内 讨论 后总
结答案
展示题目
全课总结
总结新知
对整 节课 进行 归 纳总结
相关文档
最新文档