毕业设计--12V5A开关电源设计

合集下载

开关电源的设计毕业论文

开关电源的设计毕业论文

开关电源的设计毕业论文开关电源是一种高效率、小体积、轻质化的电源,随着现代电子设备的发展,应用越来越广泛。

开关电源的设计是电子工程专业毕业设计中的一个热门方向,本文将介绍开关电源的基本工作原理及设计方法,并以一个实际开关电源的设计为例,进行详细说明。

一、开关电源的基本工作原理开关电源的基本工作原理是将交流电源转换为直流电源,其核心部分是开关管。

开关管工作时,会在电路中产生一个高频矩形波形。

再经过滤波电路、输出稳压电路等处理后,最终输出所需要的稳定直流电源。

在开关电源中,开关管的切换是关键,它的导通和截止决定程序的整个运行。

开关管的导通与截止又是由控制器控制的,所以控制器设计是非常重要的。

二、开关电源的设计方法1.功率计算开关电源的功率计算是设计的第一步。

功率 = 电流×电压,在设计前应要明确设备所需的电流和电压值并通过功率计算公式计算得出所需的功率。

2.电路设计电路设计是开关电源设计中较为复杂的一步。

主要包括直流输入电路、开关管、反馈电路、滤波电容、输出稳压电路等部分。

这些部分需要合理的组合和设计,并应通过电路仿真进行验证。

3.控制器设计在控制器设计中,主要有PWM控制器和开环控制器。

PWM控制器通常采用电流反馈控制方式,能够减少在输出处的纹波电压,提高稳定性。

开环控制器的设计要更为复杂,但是更容易实现。

4.保护电路设计保护电路是开关电源中非常重要的一部分,保护电路通常包括电流限制保护、过压保护、过载保护,以及温度保护等。

这些保护电路能够提高开关电源的使用寿命,避免因电路故障引起的安全事故。

三、开关电源设计实例以12V60W的开关电源设计为实例。

1.功率计算P = U × I = 12V × 5A = 60W。

2.电路设计直流输入电路:直流输入电路主要包括整流桥、电容滤波器和保险丝等。

整流桥需要选择合适的电流、电压值,电容滤波器应该选择合适的容量,保险丝则是起到安全保障作用。

TL494开关电源毕业设计(12V5A)毕业设计1

TL494开关电源毕业设计(12V5A)毕业设计1

开关电源设计摘要随着电力电子技术的发展和新型功率元器件的不断出现,开关电源技术得到了飞速的发展,在计算机、通讯、电力、家用电器、航空航天等领域得到广泛应用,取得了显。

开关电源是利用现代电子技术,控制开关晶体管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制和场效应管构成。

开关电源和线性电源相比,二者的成本都随着输出功率的增加而增长,但二者增长速率各异。

开关电源比普通的线性电源效率高,开关电源的发展与应用在节约能源、节约资源及保护环境方面都具有重要的意义。

目前世界各国都有广泛的应用,特别是对大容量高频开关电源的研究和开发已成为当今电力电子学的主要研究领域,并派生了很多新的研究方向。

本文详细分析了高性能、大功率直流开关电源的工作原理,并提出了主电路和控制电路的详细设计方案。

在此基础上,完成了整个系统的硬件电路设计和软件程序的编制,并对电源装置的硬件和软件进行了调试和修改。

在分析原理的基础上,本文从三相桥式不控整流、全桥变换器、高频变压器、滤波电路等环节对该系统的主电路进行了阐述,同时探讨了该电源系统实现大功率的解决方案,即采用多个电源模块并联运行。

在电压调节环节上,详细分析了基于TL494电源管理芯片。

本文研制的直流开关电源具有输出电压可调、输出电流大、纹波小等特点。

关键词:开关电源,TL494,高频变压器,PWM控制Switching power supply designAbstractWith the development of power electronic technology and new type power components appear continuously, switching power supply technology obtained the rapid development, the computer, communications, power, household appliances, aerospace and other fields are widely used, and achieved significant results. Switching power supply with high efficiency, small volume, light weight and other significant characteristics.Switching power supply is the use of modern electronic technology, the control switch transistor turn-on and turn-off time ratio, to maintain the stability of the output voltage of a power supply, switching power supply is usually consists of pulse width modulation and a field effect tube. Switch power supply and linear power supply, the two's cost as the output power increases, but the two growth rate of different. Switching power supply than ordinary linear power supply efficiency is high, the power switch in the development and application in saving energy, saving resource and protect environment has important significance. At present, all the countries in the world have a wide range of applications, particularly for large capacity high frequency switching power supply research and development have become the main research field of power electronics, and derive a lot of new research direction.This paper presents a detailed analysis of a high performance, high power DC power supply and working principle, and has proposed the main circuit and control circuit of the detailed design scheme. On this basis, the system hardware circuit design and software program, and the power supply device hardware and software debugging and modification. Based on the analysis of the principle, this article from the three-phase bridge uncontrolled rectifier, a full bridge converter, a high frequency transformer, filter circuit of the main circuit of the system are described, and discussed the power supply system of high power solutions, the use of multiple power supply modules operating in parallel. In the voltage regulating link, a detailed analysis of the power management chip based on TL494. This paper designed DC switching power supply with adjustable output voltage, output current, ripple is small wait for a characteristic.Keywords: Switching Power Supply, TL494, High-frequency Transformer, PWM control目录开关电源设计 (I)摘要 (I)第1章绪论 (3)第一章开关电源基础技术 (4)1.1 开关电源概述 (4)1.1.1 开关电源的概念及工作原理 (4)1.1.2 开关电源的特点 (5)1.2 开关电源的分类 (5)1.3 开关电源典型结构............................................................... 错误!未定义书签。

开关电源毕业设计

开关电源毕业设计

开关电源毕业设计开关电源毕业设计引言开关电源是现代电子设备中常见的一种电源供应方式。

它具有高效率、小体积、轻重量等优点,因此被广泛应用于各个领域。

作为一名电子工程专业的毕业生,我选择了开关电源作为我的毕业设计课题。

在这篇文章中,我将分享我在开关电源毕业设计过程中的学习和经验。

理论基础在开始设计之前,我首先深入研究了开关电源的理论基础。

开关电源的核心是开关器件,如MOSFET和二极管。

了解它们的工作原理和特性对于设计一个稳定和高效的开关电源至关重要。

此外,我还学习了开关电源的拓扑结构,如Buck、Boost和Buck-Boost等。

每种拓扑结构都有其适用的场景和特点,因此选择适合项目需求的拓扑结构也是一个重要的决策。

电路设计在理论基础的基础上,我开始进行电路设计。

首先,我绘制了整个开关电源的框图,明确了各个模块之间的关系和功能。

然后,我进行了详细的元器件选型和电路设计。

在选型过程中,我考虑了功率需求、效率要求、可靠性等因素。

在电路设计中,我注意到了一些关键问题,如输出滤波电容的选择、反馈控制电路的设计等。

通过仔细的设计和仿真,我确保了电路的稳定性和性能。

PCB设计完成电路设计后,我转向了PCB(Printed Circuit Board)设计。

PCB设计是将电路设计转化为实际的电路板的过程。

我使用专业的PCB设计软件,将电路布局在电路板上,并进行布线。

在布局过程中,我注意到了信号和功率之间的隔离,以及元器件之间的距离和位置。

在布线过程中,我遵循了最佳实践,如减少信号线的长度、避免信号线的交叉等。

通过精心的PCB设计,我确保了电路的可靠性和稳定性。

实验验证完成PCB设计后,我开始进行实验验证。

我首先搭建了实验平台,将开关电源连接到负载上,并通过示波器和多用表等仪器进行测量和分析。

我测试了开关电源的输出电压、输出电流、效率等参数,并与设计要求进行对比。

在实验过程中,我遇到了一些问题,如电磁干扰、温升等。

输出功率60W(12V-5A)的开关电源设计(原理图、PCB layout、元件清单、变压器设计全部给出)

输出功率60W(12V-5A)的开关电源设计(原理图、PCB layout、元件清单、变压器设计全部给出)

CR6850 12V/5A 反激式开关电源方案
Core & Bobbin
Winding W1 W2
Start Pin3 Pin10,11,12 Pin6 Pin2
Stop Pin2 Pin7,8,9 Pin4 Pin1
Wire Gauge(mm) 0.41*2 0.51*4 0.18*1 0.41*2
CR6850 12V/5A 反激式开关电源方案
R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 F1 J1 L1 LF1 N1 Q1 T1 U1 U2 U3 RES;CF;+/-5%,1/2W RES;SMD;1206;+/-5% RES;SMD;1206;+/-5% RES;MOF;+/-5%,2W RES;SMD;1206;+/-5% RES;SMD;1206;+/-5% RES;SMD;1206;+/-5% RES;SMD;0805;+/-5% RES;SMD;0805;+/-5% RES;SMD;0805;+/-5% RES;SMD;0805;+/-5% RES;SMD;0805;+/-5% RES;SMD;0805;+/-5%;Open RES;SMD;0805;+/-5% FUSE,T3AL/250V;4.5*14.5L;Glass POWER_ACIN Ф8*20; 5A FILTER;UU10.5 NTC;5D-9 MOSFET;7A;600V;TO220 TRANSFORMER;PQ26-20 SOT23-6/DIP8 DIP4 TO92
开关电源设计学习园地
2.2M 200K 200K 0.39Ω 18Ω 47Ω 47Ω 1K 3.3K 20K 10K 39K 1.5M 2K F3A/250V CON2 10uH 10mH 5D-9 7N60 PQ2620 CR6850 PC817B TL431

5~12V可调电源设计报告

5~12V可调电源设计报告

目录设计目的 (2)设计方案 (2)电路原理 (3)元器件参数选择 (4)PCB板图 (5)结论 (6)参考文献 (7)致谢 (8)一、设计目的电子电路要正常工作,电源必不可少,并且电源性能对电路、电子仪器和电子设备的使用寿命、使用性能等影响很大,尤其在带有感性负载的电路和设备中,对电源的性能要求更高。

在很多应用直流电机的场合中,要求为电机驱动电路提供1个其输出能从5 V开始连续可调(5~16 V)的稳压电源,并且要求电源有保护功能。

实际上就是要求设计一个具有足够调压范围和带负载能力的直流稳压电源电路。

该电路的设计关键在于稳压电路的设计,其要求是输出电压从05V开始连续可调;所选器件和电路必须达到在较宽范围内输出电压可调;输出电压应能够适应所带负载的启动性能。

此外,电路还必须简单可靠,能够输出足够大的流。

二、设计方案三、电路原理5~16V可调稳压电源电路以L296为核心器件组成。

220V交流电经变压器T降压、VD1-VD4桥式整流、C1滤波输出约21V直流电压,作为L296的输入电压。

R1、C3分别为振荡电阻与振荡电流,决定电路的开关频率。

C2为软启动电容,软启动时间约为100ms,起保护作用。

R3、C5构成误差放大器的频率补偿网络。

L是储能电感,C7、C8为输出滤波电容。

电阻RP与R4阻值的比决定了输出电压V0的大小,其关系为:V0=5*(RP/R4+1)V所以调整RP的阻值大小就可以使输出电压V0在5-16V间进行变化。

该电路具体技术指标为:输出电压在5~16V间随意可调;最大输出电流为4A;最小负载电流为100mA;当输出电流为1~4As时,负载电压调整率为10mV(V0=5.1V);当交流220±15%,输出电流为3A时,电压调整率为15mV(V0=5.1V),输出纹波电压小于20Mv。

电路原理图四、元器件参数选择五、PCB板图PCB板图六、结论电子设计实训实在电子学科中占有非常重要的地位,一方面它可以验证电子技术的基本理论,通过实训可以发现理论中存在的问题(近似性和局限性),从而促进电子技术理论的进一步发展。

张津华毕设:12V5A开关电源的原理与设计(新)

张津华毕设:12V5A开关电源的原理与设计(新)

中文摘要随着电力电子技术的发展和新型功率元器件的不断出现,开关电源技术得到了飞速的发展,在计算机、通讯、电力、家用电器、航空航天等领域得到广泛应用,取得了显著的成果。

本论文是通过用电源适配器芯片CR6850C设计并制作12V5A开关电源。

论文主要完成的内容有:(1)根据设计需要选择开关电源电路;(2)设计主电路,控制电路,功率因数校正电路,并确定相关器件参数;(3)基于CR6850C对开关电源的控制核心部分进行设计;(4)通过实验和计算对设计中的数据进行验证;(5)进行MATLAB仿真分析。

本论文对开关电源的滤波、整流、反馈电路等分别作了细致的研究工作,通过实验和计算,掌握了开关电源设计的核心技术,并对设计过程进行了详尽的阐述。

关键词:开关电源;CR6850C;电路AbstractWith the development of the electronic technology and the emerging of new power components, switching power supply has been widely used in computer, communications, electricity, home appliances and aerospace fields, achieving remarkable results.The present paper is through use power control chip design and production CR6850C 12V5A switch power supply.The main content of the papers are:(1)According to the design needs to choose switching power supply circuit;(2)Design main circuit, control circuit, the power factor correction circuit, and identify the device parameters;(3)Based on CR6850C control core of switch power part design;(4)Through experiment and computing to verify the data design;(5)On MATLAB simulation analysis;In the thesis, the switching power supply filtering, rectifier and the feedback circuit are studied in details. The main technology of designing switching power supply is obtained by experiments and calculations. The design process is specified also.Key words:Switch power source; CR6850C;目录中文摘要 (I)Abstract (II)1 绪论 (1)1.1 开关电源的概念和分类 (1)1.1.1 开关电源的概念 (1)1.1.2 开关电源的分类 (3)1.2 开关电源设计中存在的问题与未来发展 (4)1.2.1 开关电源中存在的问题 (4)1.2.2 开关电源的发展趋势 (5)1.3 开关电源设计中的开关电源术语 (5)2 开关电源设计的设计基础 (7)2.1 开关电源的主电路设计 (7)2.1.1 主电路设计 (7)2.2 控制电路设计 (9)2.3 功率因数校正电路设计 (10)2.3.1 有源功率因数校正峰值 (10)2.4 其它软开关技术应用及发展概况 (11)3 开关电源的设计基础 (13)3.1 12V5A开关电源适配器芯片CR6850C (13)3.1.1芯片工作原理 (13)3.1.2 芯片应用 (18)3.2 开关电源电路分析 (28)4 开关电源仿真设计 (29)4.1 开关电源仿真分析 (29)4.1.1仿真分析波形图 (29)结论 (31)参考文献 (32)致谢 (33)1 绪论1.1 开关电源的概念和分类1.1.1 开关电源的概念开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM )控制IC 和MOSFET 构成。

12V,5A直流稳压电源电路图电源电路

12V,5A直流稳压电源电路图电源电路

12V,5A直流稳压电源电路图电源电路
12V,5A直流稳压电源电路图
12V,5A直流稳压电源电路图
本文介绍不仅可用于仪表电路,也可用于视频或功率小于50W的音频放大器电源,如下图所示
工作原理:该电源电路简单,它用变压器T把市电220V降压为30V,该低压经D1~D4整流,再用C1、C2的大容量电解电容器4700μF滤波,结果在A点可获得纹波很低的直流(DC)电压。

电路的稳压部分是一种串联的稳压器,其中三端稳压器IC1(LM7805)的输出供给稳压器输出管(大功率三极管T)基极的基准参考电压。

IC1的公共端又外加稳压管ZD1和LED(红色)作偏置电压,结果稳压器的输出直流电压可达+12.2V。

当电路故障引起输出电压超过15V时,因R1上的压降使晶闸管单向可控硅SCR触发导通,此时电路中的熔丝F熔断,稳压电源无输出而得到保护。

元件选择和电路扩展应用:变压器B的次级电压为30V,电流
为5A,其余元器件选取均由图中标注。

该稳压器均可以改变IC1公共端的偏置电压,使稳压器的输出电压在一定范围内变化。

此时变压器T的输出电压和ZD2的稳压值及R1值也应作相应调整。

该电源可装在印制板上,再用小盒组装成方便的具有稳压输出的适配器电源,其中LED可装在小盒的面板上作电源指示。

毕业设计任务书(开关电源)

毕业设计任务书(开关电源)
4.开关电源的效率:≥80%
五、分阶段指导性进度计划:
1.第1、2周:搜集资料,熟悉毕业设计的任务,完成开题报告。
2.第3、4周:掌握反激式开关电源的原理。
3.第5、6周:掌握UC3844的原理。
4.第7、8周:掌握高频开关变压器的原理及制作方法。
5.第9-12周:设计开关电源,绘制原理图,元器件选型。
本课题是设计多路输出单端反激式开关稳压电源。主电路采用多路输出单端反激变换器结构,采用控制芯片UC3844实现电压电流双闭环控制,系统工作频率在50kHZ,输出+/-5V/0.5A(共4路),+/-12V/1A,,24V/1A共7路隔离的电压。
三、主要设计内容:
1.多路输出高频开关变压器设计;
2.UC3844外围电路设计;
6.第13周:科技论文翻译。
7.第14、15周:毕业论文写作。
8.第16、17周:修改和装订论文,准备答辩。
六、主要参考文献资料:
1.张占松,蔡宣三.开关电源的原理与设计[M],北京:电子工业出版社,2004.
2.周志敏,周纪海,纪爱华.开关电源实用电路[M],北京:中国电力出版社,2006.
3.黄继昌.电源专用集成电路及其应用[M],北京:人民邮电出版社,2006.
主电路采用多路输出单端反激变换器主电路采用多路输出单端反激变换器主电路采用多路输出单端反激变换器结构采用控制芯片结构采用控制芯片结构采用控制芯片uc3844uc3844uc3844实现电压电流双闭环控制系统工作频率在实现电压电流双闭环控制系统工作频率在实现电压电流双闭环控制系统工作频率在50khz50khz50khz输出输出输出5v05a5v05a5v05a共12v1a12v1a12v1a24v1a24v1a24v1a路隔离的电压
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

毕业综合实践课题名称: 12V/5A开关电源设计作者:学号: 09034224系别:电气电子工程系专业:电子工程信息技术指导老师:专业技术职务教授毕业综合实践开题报告姓名:学号: 09034224 专业:电子信息工程技术课题名称: 12V/5A开关电源设计指导教师:2011 年 12 月 19 日目录1 诸论 (1)1.1 开关电源的基本概念 (1)1.2 开关电源的发展 (1)1.2.1 开关电源的发展史 (2)2 电路的比较方案 (3)2.1 方案一、反激式变换器 (3)2.2 方案二、半桥变换器 (3)2.3 方案三、正激式变换器 (4)3 各部分电路工作原理 (6)3.1 单相桥式整流电路 (6)3.1.2 参数计算 (7)3.2 功率变换电路 (8)3.2.1 MOS管工作原理 (8)3.3.1肖特基二极管 (12)3.4 高频变压器的设计 (13)3.4.1 变压器的设计 (13)3.4.2 控制电路工作原理 (16)3.5 L431的功能 (16)3.6 短路保护电路 (18)3.6.1 输入保护器件 (18)3.6.2输入瞬间电压保护 (18)4、电路的总结构 (20)结论 (22)致谢 (23)参考文献 (24)附录 (25)附录一 (25)附录二 (26)1 诸论电是工业的动力,是人类生活的源泉。

电源是生产电的装置,表示电源特性的参数有功率、电压、电流、频率等;在同一参数要求下,又有重量、体积、效率和可靠性等指标。

我们用的电,一般都需经过转换才能适合使用的需要,例如交流转换成直流,高电压变成低电压,大功率变换为小功率等。

按照电子理论,所谓AC/DC就是交流转化为直流;AC/AC称为交流变交流,即为改变频率;DC/AC称为逆变;DC/DC为直流变交流后再变为直流。

为了达到转换的目的,电源变换的方法是多样的。

自20世纪60年代,人们研发出了二极管、三极管半导体器件后,就用半导体器件进行转换。

所以,凡是用半导体功率器件作开关,将一种电源形态转换成另一种形态的电路,叫做开关变换电路。

在转换时,以自动控制稳压输出并有各种保护环节的电路,称为开关电源(Switching Power Supply)。

1.1 开关电源的基本概念开关电源是通过电路控制开关管进行高速的导通与截止。

利用开关功率器件并通过功率变换技术而制成的直流稳压电源。

它具有体积小、重量轻、效率高、对电网电压及频率的变化适应性强、输出电压稳定、有利于计算机信息保护等优点,因而广泛应用于以电子计算机为主导的各种终端设备、通信设备,是当今电子信息产业飞速发展不可缺少的一种电源。

开关电源又被称为高效能节能电源,内部电路工作在高频开关状态,转化为高频交流电的原因是高频交流在变压器变压电路中的效率要比50Hz高很多,自身消耗的能量很低,电源效率可达80%左右,比普通线性稳压电源提高一倍。

目前生产的无工频变压器式中,开关电源采用脉冲宽调制器PWM或脉冲频率调制器PFM1.2 开关电源的发展随着大规模和超大规模集成电路的快速发展,。

特别是微处理器和半导体存储器的开发利用,孕育了电子系统的新一代产品。

显然,那种体积大而笨重的使用工频变压器的线性调节稳压电源已经过时。

取而代之的是小型化、重量轻、效率高的隔离式开关电源。

隔离式开关电源的核心是一种高频电源变换电路。

它使交流电源高效率地产生一路或多路经调整的稳定直流电压 ,开关电源在计算机、通信、航空航天、仪器仪表及家用电器等方面的广泛应用, 人们对其需求量日益增长, 并且对电源的效率、体积、重量及可靠性等方面提出了更高的要求。

开关电源以其效率高、体积小、重量轻等优势在很多方面逐步取代了效率低、又笨又重的线性电源。

电力电子技术的发展,特别是大功率器件IGBT和MOSFET的迅速发展,将开关电源的工作频率提高到相当高的水平,使其具有高稳定性和高性价比等特性。

在转换时,以自动控制稳压输出并有各种保护环节的电路,称为开关电源(Switching Power Supply)。

1.2.1 开关电源的发展史自20世纪60年代,人们研发出了二极管、三极管半导体器件后,就用半导体器件进行转换。

所以,凡是用半导体功率器件作开关,将一种电源形态转换成另一种形态的电路,叫做开关变换电路。

在70年代,随着电子技术的不断发展,集成化的开关电源就已被广泛地应用于电子计算机、彩色电视机、卫星通信设备、程控交换机、精密仪表等电子设备。

这是由于开关电源能够满足现代电子设备对多种电压和电流的需求。

随着半导体技术的高度发展,高反压快速开关晶体管使无工频变压器的开关电源迅速实用化。

而半导体集成电路技术的迅速发展又为开关电源控制电路的集成化奠定了基础,适应各类开关电源控制要求的集成开关稳压器应运而生,其功能不断完善,集成化水平也不断提高,外接元件越来越少,使得开关电源的设计、生产和调整工作日益简化,成本也不断下降。

目前己形成了各类功能完善的集成开关稳压器系列。

近年来高反压MOS大功率管的迅速发展,又将开关电源的工作频率从20kHz提高到150-200kHz,其结果是使整个开关电源的体积更小,重量更轻,效率更高。

开关电源的性能价格比达到了很高的水平,使它在与线性电源的竞争中具有先导之势。

当然开关电源能被工业所接受,首先是它在体积、重量和效率上的优势。

在70年代后期,功率在100w以上的开关电源是有竞争力的。

到1980年,功率在50w以上就具有竞争力了。

随着开关电源性能的改善,到80年代后期,电子设备的消耗功率在20w以上,就要考虑使用开关电源了。

过去,开关电源在小功率范围内成本较高,但进入90年代后,其成本下降非常显著,当然这包括了功率元件,控制元件和磁性元件成本的大幅度下降。

此外,能源成本的提高也是促进开关电源发展的因素之一。

2 电路的比较方案2.1 方案一、反激式变换器反激式变换器开关电源工作原理比较简单,输出电压控制范围比较大,因此,在一般电器设备中应用广泛。

所谓反激式变换器开关电源,是指当变换器的初级线圈被直流电压激励时,变换器的次级线圈没有向负载提供功率输出,而仅在变换器初级线圈的激励电压被关断后,才向负载提供功率输出,这种变换器开关电源称为反激式开关电源。

图2-1反激式变换器工作原理图Ui是开关电源的输入电压,T是高频变压器,K是控制开关,C是储能滤波电容,R是负载电阻。

图2-1(b)是反激式变换器开关电源的电压输出波形。

2.2 方案二、半桥变换器为了减小开关三极管的电压承受电压,可以采用半桥式变换器,它是开关电源比较好的拓扑结构。

电容C1、C2与开关晶体管VT1、VT2组成变换器,如图2-2所示。

桥的对角线接高频变压器TR的初级绕组。

如果C1、C2容量、耐压均相等,在某一只开关晶体管导通时,绕组上的电压只有电源电压V in的一半。

在稳定的条件下,VT1导通,C1上的电压1/2 V in加在变压器的初级线圈上。

由于初级绕组和漏感的作用,电流继续流入初级绕组黑点标示端。

如果变压器初级绕组漏感储存的电能足够大,二极管VD6导通,钳位电压进一步变负。

在VD6导通的过程中,反激能量对C2进行充电。

连结点A的电压在阻尼电阻的作用下,以振荡形式最后回到中间值。

如果这时VT2的基极有触发脉冲,则VT2导通,初级绕组黑点标示端电压变负,Ip电流加上磁化电流流经初级绕组和VT2,然后重复前面的过程。

不同的是Ip变换了方向。

二极管VD5对三极管VT1的导通钳位,反激能量再对电容C1进行充电。

图2-2半桥式变换器工作原理图2.3 方案三、正激式变换器正激式变换器开关电源输出电压的瞬态控制特性和输出电压负载特性,相对来说比较好,因此,工作比较稳定,输出电压不容易产生抖动,在一些对输出电压参数要求比较高的场合,经常使用。

图 2-3正激式变换器工作原理图正激式变换器开关电源工作原理:所谓正激式变换器开关电源,是指当变压器的初级线圈正在被直流电压激励时,变压器的次级线圈正好有功率输出。

图2-3是正激式变换器开关电源的简单工作原理图,图2-3中Ui是开关电源的输入电压,T是高频变压器,K是控制开关,L是储能滤波电感,C是储能滤波电容,D2是续流二极管,D3是削反峰二极管,R是负载电阻。

需要特别注意的是高频变压器初、次级线圈的同名端。

如果把高频变压器初线圈或次级线圈的同名端弄反,图2-3就不再是正激式变换器开关电源了。

3 各部分电路工作原理3.1 单相桥式整流电路单相桥式整流电路可分为单相桥式全控整流电路和单相桥式半控整流电路,它们所连接的负载性质不同就会有不同的特点。

下面分析两种单相桥式整流电路在带电感性负载的工作情况。

单相桥式半控整流电路的优点是:线路简单、调整方便。

弱点是:输出电压脉动冲大,负载电流脉冲大电阻性负载时,且整流变压器二次绕组中存在直流分量,使铁心磁化,变压器不能充分利用。

而单相桥式全控整流电路具有输出电流脉动小,功率因数高,变压器二次电流为两个等大反向的半波,没有直流磁化问题,变压器利用率高的优点。

单相桥式全控整流电路其输出平均电压是半波整流电路2倍,在相同的负载下流过晶闸管的平均电流减小一半;且功率因数提高了一半。

单相桥式半波相控整流电路因其性能较差,实际中很少采用,在中小功率场合采用更多的是单相桥式全控整流电路。

根据以上的比较分析因此选择的方案为单相桥式全控整流电路,负载为阻感性负载在生产实践中,除了电阻性负载外,最常见的负载还有电感性负载,如电动机的励磁绕组,整流电路中串入的滤波电抗器等。

为了便于分析和计算,在电路图中将电阻和电感分开表示。

当整流电路带电感性负载时,整流工作的物理过程和电压、电流波形都与带电阻性负载时不同。

因为电感对电流的变化有阻碍作用,即电感元件中的电流不能突变,当电流变化时电感要产生感应电动势而阻碍其变化,所以,电路电流的变化总是滞后于电压的变化。

电路波形图中:(b) 电源电压;(c) 触发脉冲;(d) 输出电压;(e) 输出电流;(f) 晶闸管V1 , V4上的电流;(g) 晶闸管V -2 , V -3上的电流;(h) 变压器副边电流;(i) 晶闸管V1 , V4上的电压。

图3-1 单相全控桥式整流电路电感性负载及其波形 3.1.2 参数计算负载电流连续时,整流电压平均值可按下式计算:输出电流波形因电感很大,平波效果很好而呈一条水平线。

两组晶闸管轮流导电,一个周期中各导电180°, 且与α无关, 变压器二次绕组中电流i2的波形是对称的正、负方波。

负载电流的平均值Id 和有效值I 相等,其波形系数为1。

在这种情况下: 当α=0°时,Ud=0.9U2;当α=90°时,Ud=0,其移相范围为90°。

晶闸管承受的最大正、反向电压都是。

相关文档
最新文档