牛顿插值多项式

合集下载

6.2 牛顿插值多项式

6.2 牛顿插值多项式
一阶均差 二阶均差 三阶均差 n阶均差 阶均差
x1 f [ x1 ] f [ x0 , x1 ]
x2 f [ x2 ] f [ x1 , x2 ] f [ x0 , x1 , x2 ]
x3 f [ x 3 ]
… …… x f [ xn ]
n
f [ x2 , x3 ]
f [ x1 , x2 , x3 ]
N n ( x ) = a0 + a1 ( x − x0 ) + a2 ( x − x0 )( x − x1 ) + L + an ( x − x0 )( x − x1 )L ( x − xn−1 )
ak ( k = 0,1,L , n) 为待定系数 形如上式的插值 待定系数.
多项式称为牛顿 插值多项式. 多项式称为牛顿(Newton)插值多项式 牛顿 插值多项式 由插值条件 N n ( x j ) = f ( x j ) ( j = 0,1,L , n),
证毕. 证毕.
的离散数据如下表: 例 1 已知 f ( x ) = shx 的离散数据如下表:
xi
0.00
0.20 0.20134
0.30 0.30452
0.50 0.52110
f ( xi ) 0.00000
用 Newton插值多项式 计算 f (0.23) 的近似值并 插值多项式, 插值多项式 估计误差. 估计误差
解 均差计算的结果如下表
xi
0.00 0.20 0.30 0.50
f [ xi ]
0.00000 0.20134 0.30452 0.52110
一阶均差
二阶均差
三阶均差
1.0067 1.0318 1.0829
0.08367 0.17033

牛顿插值法原理及应用

牛顿插值法原理及应用

牛顿插值法插值法是利用函数f (x)在某区间中若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f (x)的近似值。

如果这特定函数是多项式,就称它为插值多项式。

当插值节点增减时全部插值基函数均要随之变化,这在实际计算中很不方便。

为了克服这一缺点,提出了牛顿插值。

牛顿插值通过求各阶差商,递推得到的一个公式:f(x)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+...f[x0,...xn](x-x0 )...(x-xn-1)+Rn(x)。

插值函数插值函数的概念及相关性质[1]定义:设连续函数y-f(x) 在区间[a,b]上有定义,已知在n+1个互异的点x0,x1,…xn上取值分别为y0,y1,…yn (设a≤ x1≤x2……≤xn≤b)。

若在函数类中存在以简单函数P(x) ,使得P(xi)=yi,则称P(x) 为f(x)的插值函数.称x1,x2,…xn 为插值节点,称[a,b]为插值区间。

定理:n次代数插值问题的解存在且唯一。

牛顿插值法C程序程序框图#include<stdio.h>void main(){float x[11],y[11][11],xx,temp,newton;int i,j,n;printf("Newton插值:\n请输入要运算的值:x=");scanf("%f",&xx);printf("请输入插值的次数(n<11):n=");scanf("%d",&n);printf("请输入%d组值:\n",n+1);for(i=0;i<n+1;i++){ printf("x%d=",i);scanf("%f",&x[i]);printf("y%d=",i);scanf("%f",&y[0][i]);}for(i=1;i<n+1;i++)for(j=i;j<n+1;j++){ if(i>1)y[i][j]=(y[i-1][j]-y[i-1][j-1])/(x[j]-x[j-i]);elsey[i][j]=(y[i-1][j]-y[i-1][j-1])/(x[j]-x[j-1]);printf("%f\n",y[i][i]);}temp=1;newton=y[0][0];for(i=1;i<n+1;i++){ temp=temp*(xx-x[i-1]);newton=newton+y[i][i]*temp;}printf("求得的结果为:N(%.4f)=%9f\n",xx,newton);牛顿插值法Matlab程序function f = Newton(x,y,x0)syms t;if(length(x) == length(y))n = length(x);c(1:n) = 0.0;elsedisp(&apos;x和y的维数不相等!&apos;);return;endf = y(1);y1 = 0;l = 1;for(i=1:n-1)for(j=i+1:n)y1(j) = (y(j)-y(i))/(x(j)-x(i));endc(i) = y1(i+1);l = l*(t-x(i));f = f + c(i)*l;simplify(f);y = y1;if(i==n-1)if(nargin == 3)f = subs(f,&apos;t&apos;,x0);elsef = collect(f); %将插值多项式展开f = vpa(f, 6);endend牛顿插值法摘要:值法利用函数f (x)在某区间中若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f (x)的近似值。

牛顿(newton)插值法

牛顿(newton)插值法

牛顿(newton)插值法牛顿插值法是一种数值分析中的插值方法,它用于找到一个多项式函数,该函数会经过给定的一系列数据点。

该方法最初由英国数学家艾萨克·牛顿(Isaac Newton)发明并称为插值多项式,它也被称作差分插值法。

插值是数学和工程学中的一项重要任务,它是用于在给定数据点之间构建连续函数的一种数值方法。

插值方法通常涉及过渡从观察结果派生出抽象结果的过程,从而使得预测可能的结果取得更加准确。

下面介绍牛顿插值法的基本原理。

插值基础插值基础是插值方法中的一个重要概念。

在这里,我们将对牛顿插值法中用到的插值基础进行简要介绍。

一个插值基础是指一个已知数据点的集合,通常是一个 x 坐标和对应的 y 坐标。

每个插值基础一般定义为一个数据点的函数,该函数包含了给定点的所有信息并将这些信息用于构建连续函数。

在牛顿插值法中,我们使用差分来定义插值基础。

差分是指两个相邻数据点之间 y 坐标的差值。

具体来说,若给定以下节点:x0, y0x1, y1x2, y2...xn, yn我们则通过以下的 "+" 符号所示的不断进行差分的方式来构建一个插值基础:y0y1-y0…yn-yn-1 yn-yn-1 yn-yn-2 ... yn-y0上述图表所展示的差分的值即为定义插值基础的差商(divided difference)。

牛顿插值公式基于上述插值基础和差商,我们现在可以使用牛顿插值公式来实现插值。

具体来说,牛顿插值公式可以表示为:f(x) = y0 + d1*f[x0,x1] + d2*f[x0,x1,x2] + ... + dn*f[x0,x1,...,xn]其中 f(x) 是插值函数,x0, x1, ..., xn 是给定的节点,y0, y1, ..., yn 是对应的 y 值,f[x0,x1] 是差商 f(x0,...,x1) 的值,d1, d2, ..., dn 也是差商。

请注意,插值函数的次数最高为 n - 1,这意味着插值函数与插值基础的次数相同。

拉格朗日插值多项式和牛顿插值多项式

拉格朗日插值多项式和牛顿插值多项式

拉格朗日插值多项式和牛顿插值多项式下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!拉格朗日插值多项式和牛顿插值多项式在数值分析领域中,插值是一种常见的数值计算方法,用于在一组给定的数据点之间估计未知函数的值。

几种常用的插值方法

几种常用的插值方法

几种常用的插值方法常用的插值方法包括线性插值、多项式插值、样条插值和径向基函数插值等,下面将依次介绍这些方法。

1.线性插值:线性插值是最简单的插值方法之一,它假设函数在两个已知点之间的变化是线性的。

对于给定的两个点(x0,y0)和(x1,y1),线性插值公式为:y=y0+(x-x0)*(y1-y0)/(x1-x0)其中,y是需要插值的点对应的函数值,x是插值点的横坐标。

2.多项式插值:多项式插值方法通过在给定的一组点上构建一个多项式函数来进行插值。

常用的多项式插值方法包括拉格朗日插值和牛顿插值。

- 拉格朗日插值通过构建一个n次多项式来插值n+1个给定的点。

具体来说,对于给定的n+1个点(x0, y0), (x1, y1), ..., (xn, yn),拉格朗日插值公式为:y = Σ(yk * lk(x))其中,lk(x)是拉格朗日基函数,计算公式为:lk(x) = Π((x - xj) / (xi - xj)),(j ≠ i)- 牛顿插值通过构建一个n次插值多项式来插值n+1个给定的点。

具体来说,对于给定的n+1个点(x0, y0), (x1, y1), ..., (xn, yn),牛顿插值公式为:y = Σ(Π(x - xj) / Π(xi - xj) * finDiff(yj))其中,finDiff(yj)是每个节点的差商,计算公式为:finDiff(yj) = (ΣΠ(xj - xi) * yj) / ΣΠ(xi - xj),(i ≠ j) 3.样条插值:样条插值方法通过使用分段函数来逼近给定的一组点。

常用的样条插值方法有线性样条插值和三次样条插值。

-线性样条插值在每两个相邻点之间使用线性函数进行插值,保证了插值函数的一阶导数是连续的。

-三次样条插值在每两个相邻点之间使用三次多项式进行插值,保证了插值函数的一阶和二阶导数都是连续的。

三次样条插值具有良好的平滑性和精度。

4.径向基函数插值:径向基函数插值是一种基于局部函数的插值方法,它假设函数值仅取决于与插值点的距离。

4.2 牛顿插值公式

4.2 牛顿插值公式

§2 差商、牛顿插值多项式在计算过程中,若需要再增加插值节点并求出新的插值函数,则Lagrange 插值公式所有的基函数都要重新计算,造成计算量的很大浪费。

而以下介绍的牛顿插值公式可以克服这一缺陷,可在原有插值多项式的基础上灵活的增加插值节点。

一、 差商及其性质: 1、相关定义设给出函数)(x f 在点0x ,1x ,… ,n x ,…上的函数值 ,则有:称],[10x x f 1010()()f x f x x x -=-为函数)(x f 在0x 、1x 点的一阶差商。

一阶差商的差商],,[210x x x f 121020],[],[x x x x f x x f --= 称为函数)(x f 在0x ,1x 和2x 点的二阶差商。

1-n 阶差商的差商],,,[10n x x x f 112020],,,[],,,[------=n n n n n n x x x x x f x x x f称为函数)(x f 在n x x x ,,,10 点的n 阶差商。

见插商表4-12、性质:性质1 :差商],,,[10n x x x f 可表示为函数值的线性组合,即 ∑==ni i i n x f a x x x f 010)(],,,[ ,其中:∏≠=-=nij j j ii x xa ,0)(/1。

该性质表明:差商与节点的排列次序无关,即:],,,[10n x x x f =],,,[01n x x x f =…=],,,[01x x x f n这就是差商的对称性。

性质 2101010[,,][,,][,,,]n n n n f x x f x x f x x x x x --=-01110[,,,][,,,]n n n f x x x f x x x x -=11100[,,][,,,]n n n f x x f x x x x x --=-10110[,,][,,,]n n n f x x f x x x x x --=-性质 3 设)(x f 在所含节点n x x x ,,,10 的区间],[b a 上有n 阶导数,则在该区间内至少有一点],[b a ∈ξ,使得:!/)(],,,[)(10n f x x x f n n ξ= 由该性质可知,若)(x f 为n 次多项式,则其n 阶差商为一常数。

差分形式的牛顿插值公式

差分形式的牛顿插值公式

差分形式的牛顿插值公式一、牛顿插值公式的引入在数值计算和插值问题中,牛顿插值公式是一种常用的插值方法。

它通过已知的数据点,构造一个函数,使得这个函数通过这些数据点,并且在其他位置也有较好的逼近效果。

牛顿插值公式有两种形式,一种是差商形式,另一种是拉格朗日形式。

本文主要介绍差商形式的牛顿插值公式。

差分形式的牛顿插值公式是通过对已知数据点进行差分运算,得到一组差商系数,然后利用这些差商系数构造插值多项式。

具体来说,设有n+1个数据点(x0, y0),(x1, y1),...(xn, yn),其中xi和yi分别表示第i个数据点的横坐标和纵坐标。

差商形式的牛顿插值多项式可以表示为:P(x) = y0 + (x-x0)Δy0 + (x-x0)(x-x1)Δ^2y0 + ... + (x-x0)(x-x1)...(x-xn)Δ^n y0其中Δy0表示一阶差商,Δ^2y0表示二阶差商,以此类推。

差商的计算可以通过递推公式得到,具体计算方法如下:Δy0 = y1 - y0Δ^2y0 = Δy1 - Δy0 = y2 - 2y1 + y0Δ^3y0 = Δ^2y1 - Δ^2y0 = y3 - 3y2 + 3y1 - y0...通过递推计算可以得到所有的差商系数,进而构造出插值多项式。

三、差分形式的牛顿插值公式的应用差分形式的牛顿插值公式在实际问题中有广泛的应用。

下面以两个具体的例子来说明其应用:1. 数据的插值逼近假设我们有一组离散的数据点,现在需要根据这些数据点来估计其他位置的数据。

差分形式的牛顿插值公式可以通过构造插值多项式来实现这个目标。

我们可以利用已知的数据点,计算出差分系数,并将其代入插值多项式中,从而得到我们所需位置的数据估计值。

2. 数据的平滑处理在一些实际问题中,我们可能会遇到数据中存在噪声或异常值的情况。

差分形式的牛顿插值公式可以通过对数据进行插值逼近,从而平滑处理这些噪声或异常值。

我们可以利用已知的数据点,构造插值多项式,并利用该多项式来估计数据中存在噪声或异常值的位置,从而得到平滑后的数据。

牛顿插值多项式

牛顿插值多项式

牛顿插值多项式是一种通过已知数据点来拟合函数的插值方法。

它以英国数学家牛顿的名字命名,是一种常用的插值方法之一。

设给定数据点的集合为(x0, y0), (x1, y1), ... , (xn, yn),并且数据点的x坐标不相同。

牛顿插值多项式通过不断增加插值点来逐步构建插值多项式,具体来说,可以按照以下步骤进行:
将数据点按照x坐标的大小排列,从小到大依次编号为0, 1, ..., n。

定义差商f[xi, xj]为:
f[xi, xj] = (f[xi+1, xj] - f[xi, xj-1]) / (xi+j - xi)
其中,f[xi, xi] = yi,f[xi, xi+1] = (yi+1 - yi) / (xi+1 - xi)。

利用递推公式构建插值多项式:
P(x) = f[x0] + f[x0, x1] * (x-x0) + f[x0, x1, x2] * (x-x0) * (x-x1) + ... + f[x0, x1, ..., xn] * (x-x0) * (x-x1) * ... * (x-xn-1)
其中,f[xi]表示插值节点x0, x1, ..., xi所构成的多项式的最高次项系数。

牛顿插值多项式的优点在于,新增一个数据点只需要重新计算一个差商,而不需要重新计算整个多项式,因此计算效率较高。

同时,它也可以通过递归方式来计算,对于复杂的数据集,计算效率也比较高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Sichuan Agricultural University
数学系
DEPARTMENT OF MATHEMATICS
Newton型多项式插值
承袭性: Nn1(x) Nn (x) qn1(x) Pn1
{x0 , x1 , xn1}
{x0 , x1 , xn}
且 Nn (xi ) Nn1(xi ) f (xi ) , qn1(x) an1(x x0 ) (x xn )
同样 Nn (x) Nn1(x) qn (x)
qn (x) an (x x0 ) (x xn1)
i 0,1,L n
为实数
Sichuan Agricultural University
数学系
DEPARTMENT OF MATHEMATICS
Nn (x) a0 a1(x x0 ) an (x x0 ) (x xn1)
f
(xn )
Sichuan Agricultural University
数学系
DEPARTMENT OF MATHEMATICS
这样:
a0 f (x0 )
a1
f (x1) f (x0 ) x1 x0
a2
x2
1
x1
f
(x2 ) x2
f (x0 ) x0
a1
a3
x3
1 x2
f
x
x0
)
L
(x xn )
另一方面

{xi
}n i0
Newton插值为N
n
(
x)
则有
{xi
}n i0
U{a}为Nn1(t)
Nn
(t)
f [x0,L
, xn, a](t x0)L
(t xn )
Nn1(a) f (a)
误差
f (a) Nn (a) f [x0,L , xn, a](a x0 )L (a xn )
f [ x0 , , xn , a]
f n1 ( )
(n 1)!
性质3
Sichuan Agricultural University
数学系
DEPARTMENT OF MATHEMATICS
差商性质总结
f [x0 , , xn ] f [xi0 , , xin ]
f
[ x0 ,
,
xn ]
n i0
f [x1,
, xk ] f [x0 , xk x0
, xk1]
称为k阶差商
Sichuan Agricultural University
由归纳:
a0 f (x0 )
数学系
DEPARTMENT OF MATHEMATICS
a1
f (x1) f (x0 ) x1 x0
f [x0 , x1]
, xn ]
n i0
( xi
x0 )
( xi
f (xi ) xi 1 ) (xi
xi 1 )
( xi
xn )
Sichuan Agricultural University
数学系
DEPARTMENT OF MATHEMATICS
同样
Nn (x)
的误差为 Rn (x)
f n1( )
(n 1)!
(
此处用到差商的一个性质: (用归纳法易证)
对称性:
f [x0 , , xk ] f [xi0 , , xik ]
定义关键:找不同的元素相减作分母
i0 , , ik是0, , k的任意排列
Sichuan Agricultural University
数学系
DEPARTMENT OF MATHEMATICS
(xi
x0 )
(xi
f (xi ) xi1)( xi
xi1)
(xi
xn )
f [x0 ,L
, xn1]
f n1( )
(n 1)!
推论:若f
(x)
Pn (x),
f
[ x0 ,
,
xk
]
a0n,,kk
n n
Sichuan Agricultural University
数学系
DEPARTMENT OF MATHEMATICS
1、先构造差商表Newton插值构造
x0 , f (x0 )
x1, f (x1) f [x0 , x1] x2 , f (x2 ) f [x2 , x1] f [x2 , x1, xn1, xn ] f [xn , xn1, xn2 ]
f [xn , , x0 ]
(x3 ) x3
f (x0 ) x0
a1
x1
1 x0
a2
Sichuan Agricultural University
数学系
DEPARTMENT OF MATHEMATICS
定义:差商
f [x0 , x1]
f (x1) f (x0 ) x1 x0
称为1阶差商
f [x0,
, xk ]
而且有:
Nn (x0 ) a0 f (x0)
Nn (x1) a0 a1(x1 x0) f (x1)
Nn (x2 ) a0 a1(x2 x0 ) a2 (x2 x0 )(x2 x1) f (x2 )
Nn (xn )
a0
a1(xn
x0)
an (xn
x0 )
(xn
xn 1 )
%Newton插值法
function y=Newton(x1,y1,x);
m=length(x);
n=length(x1);
for i=2:n
for j=n:-1:i
y1(j)=(y1(j)-y1(j-
1))/(x1(j)-x1(j-i+1));
Sichuan Agricultural University
数学系
DEPARTMENT OF MATHEMATICS
2、利用差商表的最外一行,构造插值多项式 Nn (x) f (x0 ) f [x0 , x1]( x x0 ) f [x0 , , xn ]( x x0 ) (x xn1)
例子
2点Newton型插值
N1(x)
f (x0 )
f
( x1 ) x1
f (x0 x0
)
(x
x0
)
Sichuan Agricultural University
数学系
DEPARTMENT OF MATHEMATICS
一些性质
Nn (x) Ln (x) xn 的系数一样
性质2
f [x0,
a2
x2
1
x1
f
(x2 ) x2
f (x0 ) x0
a1
x2
1 x1
f [x2, x0 ]
f [x1, x0 ]
f [x2, x1, x0 ]
an f [x0 , , xn ]
Sichuan Agricultural University
数学系
DEPARTMENT OF MATHEMATICS
相关文档
最新文档