1-2岩石的力学性质-岩石强度讲解

合集下载

岩石的力学性质指标

岩石的力学性质指标

岩石的力学性质
(强度性质)
模块六岩石的工程地质性质
1.物理意义及定义式
岩石的单轴抗压强度:岩石在单轴压缩荷载作用下达到破坏前所能承受的最大压应力称为岩石的单轴抗压强度。

=
式中:
n Rc为抗压强度,MPa;
n P
为试件破坏时的荷载,MN;n A为试样断面面积,m²。

2.影响岩石抗压强度的因素
n矿物强度和胶结物强度;
n岩石空隙中的水;
n岩石的风化程度;
n“形状效应”和“尺寸效应”
n加荷速率
1.物理意义及定义式
破坏时所能承受的最大拉应力,
称为岩石的抗拉强度。

=
点荷载法
间接试验拉伸破坏试验1.物理意义及定义式
直接试验
劈裂法
三、岩石的抗剪强度岩石的抗剪强度:
凝聚力C 内摩擦角φ岩石的抗剪强度指标:
岩石的剪切试验:n 是指岩石抵抗剪切破坏的最大能力。

抗剪断试验摩擦试验抗切试验
课程小结
n首先认识了岩石的抗拉强度、抗压强度和抗剪强度三类强
度指标。

n了解到岩石的破坏是由于沿某方向上的应力超过对应的强
度而发生的。

n单轴抗压强度R c、抗拉强度R t、抗剪强度指标(凝聚力C和
内摩擦角φ)的物理意义、测定方法和影响因素。

回忆一下
岩石抗拉强度的室内测试,常采用哪种测试方法呢?
THANKYOU
谢谢观看。

工程地质学-第二章 岩石的工程地质性质-2-岩石的力学性质

工程地质学-第二章 岩石的工程地质性质-2-岩石的力学性质
试件两端不平度0.5mm;尺寸误差±0.3mm; 两端面垂直于轴线±0.25o
3.影响单轴抗压强度的主要因素
(1)承压板端部的摩擦力及其刚度(加垫块的依据) (2)试件的形状和尺寸
形状:圆形试件不易产生应力集中,好加工 尺寸:大于矿物颗粒的10倍; φ50的依据 高径比:研究表明;h/d≥(2-3)较合理 (3)加载速度 加载速度越大,表现强度越高(见图2-5) 我国规定加载速度为0.5 -1.0MPa/s (4)环境 含水量:含水量越大强度越低;岩石越软越明 显,对泥岩、粘土等软弱岩体,干燥强度是饱和强度的2 -3倍。 温度度:180℃以下部明显:大于180℃,湿度 越高强度越小。
三、岩石的抗拉强度
1. 定义:岩石试件在受到轴向拉应力后其试件发生破坏时 的单位面积上所受的拉力。
2. 直接拉伸法
抗拉强度
Rt P / A
关键技术
①试件和夹具之间的连接
②加力P与试件同心
四、岩石的抗剪强度
1. 定义
指一定的应力条件下(主要指压应力),所能抵抗
的最大剪应力常用 表示
2. 类型:
a.抗剪断试验
3、水楔作用:当两个矿物颗粒靠得很近,有水分子补 充到矿物表面时,矿物颗粒利用其表面吸引力将水分子 拉到自己周围,在颗粒接触处由于吸引力作用使水分子 向两个矿物颗粒之间的缝隙内挤入,这种现象称为水楔 作用。
根据破坏时的应力类型,岩石的破坏可有拉破坏、剪 破坏和流动破坏三种基本类型。由于受力状态和破坏形式 的不同,岩石的强度又可分为单轴抗压强度、单轴抗拉强 度、抗剪强度和三轴压缩强度等。
一、岩石的变形性质
1.岩石在单轴压缩应力作用下的变形特性 1)普通试验机下 应力-应变曲线形状与 岩性有关。 (1)典型的岩石应力、应 变曲线特征为: Ⅰ.压密阶段 Ⅱ.弹性变形至微破裂稳 定发展阶段 Ⅲ.非稳定破裂发展阶段 (或称累进性破裂阶段) Ⅳ.破坏后阶段

岩土工程师综合辅导:岩石的强度

岩土工程师综合辅导:岩石的强度

岩⽯的强度
岩⽯的强度是岩⽯抵抗外⼒破坏的能⼒,也以“帕斯卡”为单位,⽤符号Pa表⽰。

岩⽯受⼒作⽤破坏,表现为压碎、拉断和剪切等,故有抗压强度、抗拉强度和抗剪强度等。

(1)抗压强度。

抗压强度是岩⽯在单向压⼒作⽤下抵抗压碎破坏的能⼒,是岩⽯最基本最常⽤的⼒学指标。

在数值上等于岩⽯受压达到破坏时的极限应⼒。

抗压强度主要与岩⽯的结构、构造、风化程度和含⽔情况等有关,也受岩⽯的矿物成分和⽣成条件的影响。

所以,岩⽯的抗压强度相差很⼤,胶结不良的砾岩和软弱页岩⼩于20MPa,坚硬岩浆岩⼤于250MPa.
(2)抗拉强度。

抗拉强度是岩⽯抵抗拉伸破坏的能⼒,在数值上等于岩⽯单向拉伸破坏时的张应⼒。

岩⽯的抗拉强度远⼩于抗压强度,故当岩层受到挤压形成褶皱时,常在弯曲变形较⼤的部位受拉破坏,产⽣张性裂隙。

(3)抗剪强度。

抗剪强度是指岩⽯抵抗剪切破坏的能⼒,在数值上等于岩⽯受剪破坏时的极限剪应⼒。

在⼀定压应⼒下岩⽯剪断时,剪破⾯上的剪应⼒,称为抗剪断强度,其值⼀般都⽐较⾼。

抗剪强度是沿岩⽯裂隙或软弱⾯等发⽣剪切滑动时的指标,其强度远远低于抗剪断强度。

三项强度中,岩⽯的抗压强度,抗剪强度居中,抗拉强度最⼩。

抗剪强度约为抗压强度的10%~40%,抗拉强度仅是抗压强度的2%~16%。

岩⽯越坚硬,其值相差越⼤,软弱岩⽯的差别较⼩。

岩⽯的抗压强度和抗剪强度,是评价岩⽯(岩体)稳定性的主要指标,是对岩⽯(岩体)的稳定性进⾏定量分析的依据之⼀。

岩石的基本物理力学性质

岩石的基本物理力学性质

岩石的基本物理力学性质岩石的基本物理力学性质是岩体最基本、最重要的性质之一,也是岩体力学中研究最早、最完善的力学性质。

岩石密度:天然密度、饱和密度、质量指标密度、重力密度岩石颗粒密度孔隙性孔隙比、孔隙率含水率、吸水率水理指标渗透系数抗风化指标软化系数、耐崩解性指数、膨胀率抗冻性抗冻性系数单轴抗压强度单轴抗拉强度抗剪强度三向压缩强度岩石的基本物理力学性质◆岩石的变形特性◆岩石的强度理论试验方法参照标准:《工程岩体试验方法标准》(GB/T 50266-99)。

第二章岩石的基本物理力学性质第一节岩石的基本物理性质第二节岩石的强度特性第三节岩石的变形特性第四节岩石的强度理论回顾----岩石的基本构成岩石是自然界中各种矿物的集合体,是天然地质作用的产物,一般而言,大部分新鲜岩石质地均坚硬致密,空隙小而少,抗水性强,透水性弱,力学强度高。

岩石是构成岩体的基本组成单元。

相对于岩体而言,岩石可看作是连续的、均质的、各向同性的介质。

岩石的基本构成:由组成岩石的物质成分和结构两大方面来决定的。

回顾----岩石的基本构成一、岩石的物质成分●岩石是自然界中各种矿物的集合体。

●岩石中主要的造岩矿物有:正长石、斜长石、石英、黑云母、角闪石、辉石、方解石、白云石、高岭石等。

●岩石中的矿物成分会影响岩石的抗风化能力、物理性质和强度特性。

●岩石中矿物成分的相对稳定性对岩石抗风化能力有显著的影响,各矿物的相对稳定性主要与化学成分、结晶特征及形成条件有关。

回顾----岩石的基本构成二、岩石的结构是指岩石中矿物(及岩屑)颗粒相互之间的关系,包括颗粒的大小、性状、排列、结构连结特点及岩石中的微结构面(即内部缺陷)。

其中,以结构连结和岩石中的微结构面对岩石工程性质影响最大。

回顾----岩石的基本构成●岩石结构连结结晶连结和胶结连结。

结晶连结:岩石中矿物颗粒通过结晶相互嵌合在一起,如岩浆岩、大部分变质岩及部分沉积岩的结构连结。

这种连结结晶颗粒之间紧密接触,故岩石强度一般较大,但随结构的不同而有一定的差异。

岩石力学第三章:岩石的力学特性及强度准则

岩石力学第三章:岩石的力学特性及强度准则

常 见 岩 石 的 软 化 系 数
岩 石 名 称
花 岗 岩 闪 长 岩 辉 绿 岩 流 纹 岩
软化系数
0.72~0.97 0.60~0.80 0.33~0.90 0.75~0.95
岩石名称
泥 岩
软化系数
0.40~0.60 0.44~0.54 0.70~0.94 0.75~0.97
泥 灰 岩 石 灰 岩 片 麻岩
岩石名称
抗压强度 (MPa)
100~250
抗拉强 度 (MPa)
7~25
岩石名称
抗压强度 (MPa)
5~100
抗拉强度 (MPa)
2~10
常 见 岩 石 的 抗 压 及 抗 拉 强 度
花岗岩
页 岩
流纹岩
160~300
12~30
粘土岩
2~15
0.3~1
闪长岩
120~280
12~30
石灰岩
40~250
7~20
安山岩
140~300
10~20
白云岩
80~250
15~25
辉长岩
160~300
12~35
板 岩
60~200
7~20
辉绿岩
150~350
15~35
片 岩
10~100
1~10
玄武岩 砾岩 砂 岩
150~300 10~150 20~250
10~30 2~15 4~25
片麻岩 石英岩 大理岩
50~200 150~350 100~250
(二)岩石的水理性质
5.可溶性:是指岩石被水溶解的性能。它与岩石 的矿物成分、水中CO2 含量及水的温度等因素有 关。 6.膨胀性:岩石吸水后体积增大引起岩石结构破 坏的性能称膨胀性。

岩石力学第2章岩石的基本物理力学性质PPT课件

岩石力学第2章岩石的基本物理力学性质PPT课件
格里菲斯强度理论
格里菲斯强度理论认为岩石的强度是由其内部微裂纹或弱面的能量释放率决定的。当这些 微裂纹或弱面受到外力作用时,它们会扩展并释放能量,当能量释放率达到一定值时,岩 石就会发生破裂。
岩石的破坏准则
最大应力准则
该准则认为当岩石受到的最大应力达到其单轴抗压强度时, 岩石就会发生破裂。该准则适用于脆性破坏和延性破坏。
表示岩石抵抗弹性变形的能力, 是衡量材料刚度的指标。
泊松比
表示岩石在单向受拉或受压时, 横向变形与纵向变形之比。
抗拉强度和抗压强度
抗拉强度
岩石在单向拉伸时所能承受的最大拉 应力。
抗压强度
岩石在单向压缩时所能承受的最大压 应力。
抗剪强度和摩擦角
抗剪强度
岩石在剪切力作用下所能承受的最大剪应力。
摩擦角
表示岩石在剪切力作用下,剪切面上的摩擦力与垂直剪切力之间的角度。
流变性质
蠕变
岩石在持续应力作用下发生的缓慢变形。
松弛
岩石在持续应变作用下,应力随时间逐渐减小的现象。
04
岩石的变形特性
弹性变形
02
01
03
弹性模量
表示岩石抵抗弹性变形的能力,是衡量岩石刚度的指 标。
泊松比
描述岩石横向变形的性质,与材料的弹性模量相关。
中区域形成并扩展导致的。
02
延性破坏
与脆性破坏不同,延性破坏是指岩石在受到外力作用时,会经历较大的
塑性变形,然后才发生破裂。这种破坏形式通常是由于岩石中的微裂纹
或弱面在应力作用下逐渐扩展和连接形成的。
03
疲劳破坏
疲劳破坏是指岩石在循环或反复加载过程中,由于应力水平的波动,导
致微裂纹的形成和扩展,最终导致岩石破裂。这种破坏形式通常发生在

岩石力学知识点总结

岩石力学知识点总结

岩石力学知识点总结一、岩石的力学性质岩石的力学性质是指岩石在外力作用下的响应和变形规律,包括抗压强度、抗拉强度、抗剪强度、弹性模量等。

这些性质对于工程设计和地质灾害的防治非常重要。

岩石的力学性质受到多种因素的影响,包括岩石的成分、结构、孔隙度、水分含量等。

1. 抗压强度抗压强度是指岩石在受到垂直方向外力作用下的抵抗能力。

岩石的抗压强度可以通过实验或者间接方法来进行测定,通常以MPa为单位。

抗压强度受到岩石成分和密度的影响,通常晶体颗粒越大、结晶度越高的岩石其抗压强度越高。

2. 抗拉强度抗拉强度是指岩石在受到拉伸力作用下的抵抗能力。

通常岩石的抗拉强度远远低于其抗压强度,因为岩石在自然界中很少受到拉力的作用。

抗拉强度常常通过实验来进行测定,其数值对于岩石的岩石工程设计和地质灾害防治具有重要意义。

3. 抗剪强度抗剪强度是指岩石在受到切割或者剪切力作用下的抵抗能力。

岩石的抗剪强度与其结构和组成有关,一般来说,岩石中存在着一定的位移面和剪切面,这些面的摩擦和滑移对于岩石的抗剪强度产生了重要的影响。

4. 弹性模量弹性模量是指岩石在受到外力作用下的弹性变形能力。

弹性模量也叫做“模量”,其数值越高,说明岩石在受到外力作用下的变形越小。

弹性模量对于岩石的岩石工程设计和地质灾害防治具有重要的意义。

二、岩石的变形和破坏规律岩石在受到外力作用下会发生变形和破坏,其变形和破坏规律对于地质工程的设计和地质灾害的防治具有重要的意义。

岩石的变形和破坏规律受到多种因素的影响,包括岩石的力学性质、结构、孔隙度、水分含量等。

1. 岩石的变形规律岩石在受到外力作用下会发生变形,其变形规律通常表现为弹性变形、塑性变形和破坏。

弹性变形是指岩石在受到外力作用后能够恢复原状的变形,塑性变形是指岩石在受到外力作用后不能够恢复原状的变形,破坏是指岩石在受到外力作用后达到极限状态,无法继续承受力的作用。

2. 岩石的破坏规律岩石在受到外力作用下会发生破坏,其破坏规律通常表现为压缩破坏、拉伸破坏和剪切破坏。

岩体力学第二章岩石的基本物理力学性质PPT课件

岩体力学第二章岩石的基本物理力学性质PPT课件

岩石的强度和破坏
强度
岩石抵抗外力破坏的能力, 通常分为抗压、抗拉和抗 剪强度。
破裂准则
描述岩石在不同应力状态 下从弹性到破坏的过渡规 律。
破裂模式
岩石破坏时的形态和方式, 如脆性、延性、剪切等。
04
岩石的物理力学性质与岩体力学应用
岩石的物理力学性质在岩体工程设计中的应用
岩石的物理性质在岩体工程设计中具有重要影响, 如密度、孔隙率、含水率等参数,决定了岩体的承 载能力和稳定性。
岩石的物理力学性质在岩体工程治理中的应用
在岩体工程治理中,需要根据岩石的 物理力学性质制定相应的治理方案。
在治理过程中,还需要根据岩石的变形和 破坏模式,采取相应的监测和预警措施, 以确保工程治理的有效性和安全性。
如对于软弱岩体,可以采用加固、注浆等措 施提高其承载能力和稳定性;对于破碎岩体 ,可以采用锚固、支撑等措施防止其崩塌和 滑移。
弹性波速
表示岩石中弹性波传播速度, 与岩石的密度和弹性模量等有 关。
岩石的塑性和流变
01
02
03
塑性
当应力超过岩石的屈服点 时,岩石会发生塑性变形, 不再完全恢复到原始状态。
流变
在长期应力作用下,岩石 的变形不仅与当前应力状 态有关,还与应力历史有 关。
蠕变
在恒定应力作用下,岩石 变形随时间逐渐增加的现 象。
岩体力学第二章岩石的基本物 理力学性质ppt课件

CONTENCT

• 引言 • 岩石的物理性质 • 岩石的力学性质 • 岩石的物理力学性质与岩体力学应
用 • 结论
01
引言
岩石的基本物理力学性质在岩体力学中的重要性
岩石的基本物理力学性质是岩体力学研究的基础,对于理解岩体 的变形、破坏和稳定性至关重要。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。




σc=P/A


4)实验方法 a.试件标准
立方体50×50×50mm或 70×70×70mm 圆柱体,但使用最广泛的是圆柱体。圆柱体直径D一 般不小于50mm。 L/D=2.5~3.0(国际岩石力学委员 会ISRM建议的 尺寸) 要求:两端不平度0.5mm;尺寸误差±0.3mm;两 端面垂直于轴线误差±0.25度。 加载速率:0.5~0.8Pa/s
1.4 岩石的力学性质
岩石的强度:岩石抵抗外力作用的能力,岩石破坏时能够 承受的最大应力。 a.单向抗压强度 b.单向抗拉强度 c.剪切强度 d.三轴抗压强度 岩石的变形:岩石在外力作用下发生形态(形状、体积) 变化。 a.单向压缩变形 b.反复加载变形 c.三轴压缩变形 d.剪切变形
岩石强度与外力有关 a.外力性质:动载荷、静载荷 b.外力方式:拉伸、压缩、剪切 C.应力状态:单向、双向、三向 固有性质:凡是不受试件的形状、尺寸、 采集地、采集人等影响而保持不变的特 征
2.7~5.4
20.6~29.9
15.6~23.3
灰岩类

石灰岩
52.9~157.8
4.9~49
7.7~13.8
2~4.9
9.8~30.4
1.08~16.2
1.2岩石单轴抗拉强度


1)定义:岩石在单轴拉伸荷载作用下达到破 坏时所能承受的最大拉应力称为岩石的单轴抗 拉强度(Tensile strength) ,。 试件在拉伸荷载作用下的破坏通常是沿其横截 面的断裂破坏,岩石的拉伸破坏试验分直接试 验和间接试验两类。

2)四种典型的非限制性剪切强度试验:a.单 面剪切试验, b.冲击剪切试验, c.双面剪切试 验,d.扭转剪切试验,分别见图。

3)非限制性剪切强度记为So计算公式:
(a)单面剪切试验 So=Fc/A (b)冲击剪切试验 So=Fc/2πra (c)双面剪切试验 So=Fc/2A (d)扭转剪切试验 So=16M c /πD3
单向抗拉强度 5.5~17.6 6~14 5.4~11.6 1.3~2.4 2.8~9.7 4~11.76
抗剪强度 17.4~53.4 13.3~36.5 12.4~30.4 6.86~11.5 7~28.8 6.6~26.4
砂质页岩
页岩类 页 岩
39.2~90.2
18.6~39.2
3.9~11.8
2.7~5.4
20.6~29.9
15.6~23.3
灰岩类

石灰岩
52.9~157.8
4.9~49
7.7~13.8
2~4.9
9.8~30.4
1.08~16.2
1.3抗剪切强度



1)定义:岩石在剪切荷载作用下达到破坏前所能承受 的最大剪应力称为岩石的抗剪切强度(Shear strength)。 剪切强度试验分为非限制性剪切强度试验 (Unconfined shear strength test)和限制性剪切强 度试验(Confined shear strength test)二类。 非限制性剪切试验在剪切面上只有剪应力存在,没有 正应力存在;限制性剪切试验在剪切面上除了存在剪 应力外,还存在正应力。
单向抗拉强度 5.5~17.6 6~14 5.4~11.6 1.3~2.4 2.8~9.7 4~11.76
抗剪强度 17.4~53.4 13.3~36.5 12.4~30.4 6.86~11.5 7~28.8 6.6~26.4
砂质页岩
页岩类 页 岩
39.2~90.2
18.6~39.2
件示意图

计算公式:破坏时的最大 轴向拉伸荷载(Pt)除以试件 的横截面积(A)。即:

σt=Pt/A

2)直接拉伸试验加载和试件示意图-(续)


3)间接拉伸试验加载和试件示意图
巴西试验法(Brazilian test),俗称劈裂试验法。 a.试件:为一岩石圆盘,加载方式如图所示。实际上 荷载是沿着一条弧线加上去的,但孤高不能超过圆盘 直径的1/20。


b.应力分布:圆盘在压应力的作用下,沿圆盘直径y—y的应力分 布和x—x方向均为压应力。而离开边缘后,沿y—y方向仍为压应 力,但应力值比边缘处显著减少。并趋于均匀化;x—x方向变成 拉应力。并在沿y—y的很长一段距离上呈均匀分布状态。 c.破坏原因:从图可以看出,虽然拉应力的值比压应力值低很多, 但由于岩石的抗拉强度很低,所以试件还是由于x方向的拉应力而 导致试件沿直径的劈裂破坏。破坏是从直径中心开始,然后向两 端发展,反映了岩石的抗拉强度比抗压强度要低得多的事实。


d. 端部效应及其消除方法
端部效应:


消除方法:
①润滑试件端部(如垫云母片;涂黄油在端部) ②加长试件

b.非标准试件的对试验结果的影响及其修正
岩石种类 细砂岩 中砂岩 砂岩类 粗砂岩 粉砂岩 砂砾岩 砾岩类 砾 岩
单向抗压强度 103.9~143 85.7~133.3 56.8~123.5 36.3~54.9 6.9~121.5 80.4~94



c.压缩实验设备示意图(500t压力机)
3)4种破坏形式: 1.X状共轭斜面剪切破坏,是最常见的破坏形式。 2.单斜面剪切破坏,这种破坏也是剪切破坏。 3.塑性流动变形,线应变≥10%。 4.拉伸破坏,在轴向压应力作用下,在横向将产生 拉应力。这是泊松效应的结果。这种类型的破坏就 是横向拉应力超过岩石抗拉极限所引起的。

d.计算公式:



σt=σx=-2P/πdt σy=(1/r1+1/r2-1/d)2P/πt
圆盘中心处:


σt=σx=-2P/πdt σy=6P/πdt
岩石种类 细砂岩 中砂岩 砂岩类 粗砂岩 粉砂岩 砂砾岩 砾岩类 砾 岩
单向抗压强度 103.9~143 85.7~133.3 56.8~123.5 36.3~54.9 6.9~121.5 80.4~94


1.1 岩石单轴抗压强度
1)定义:岩石在单轴压缩荷载作用下达到破坏前所 能承受的最大压应力称为岩石的单轴抗压强度 (Uniaxial compressive strength),或称为非限制性抗 压强度(unconfined compressive strength)。如图所 示。 2)计算公式:
相关文档
最新文档