镜像法与电轴法(静电场)复习过程

合集下载

4镜像法和电轴法

4镜像法和电轴法


考虑如图b,在导体平面下方h处放点电荷-q,
并撤去导体,整个空间充满介质的情况
14
q
P

h


qr
P r’ 单一介质!
h
h
-q
(图b)
(图a)
结论:
P
q 4 r

q 4 r
1. 图a中电介质中的电场分布可用图b计算; 2. -q 为镜像电荷,它代替了分布在导电平板上的负值 感应电荷的作用; 3. 用镜像法要注意有效范围: 4. 镜像电荷必须放在有效范围之外。
b
=0
n n x Dn sin y (x,y) = Bn sh b b n 1

n 1
5
1.5.1直角坐标系中的分离变量法
例一、长直金属槽如图.三边接地,另一边电位为V0,求槽内电位分布. 解: ▽
2
b |(y=0,0<x<a)= 0 =V0 =0 |(x=a,0<y<b) = V0 x =0 n n 0 a x Dn sin y (x,y) = Bn sh b b n 1 na ny 由边界条件4 : Bn Dn sh b sin b V0 n 1 b b na ny my my 数学处理: Bn Dn sh sin sin dy V0 sin dy 0 0 b b b b n 1
BnDn sh (na/b ) =

|(x=0,0<y<b) =0 |(y=b,0<x<a)= 0
2 2 2 =0 2 x y
金属槽内
y
=0
4V0/ n 0
n为奇数
n为偶数
6

电动力学二四(镜象法)

电动力学二四(镜象法)

25
物理结果讨论: 物理结果讨论:
Q(Q0 − Q′) QQ′ 4πε0F = + 2 2 a (a − b) QQ Q R 2a − R 0 = 2 − 3 2 a a a −R
2
(
3 0
(
2
2 0 2 2 0
)
)
过渡到点 电荷相互 作用模型
R0 →0
吸引力, 吸引力, 趋于消失
26
QQ Q R 2a − R 0 4πε0F = 2 − 3 2 a a a −R
2
(
3 0
(
2
2 0 2 2 0
)
)
吸引力起主要作用 数值大于第一项) (数值大于第一项) 即使Q 即使Q和Q0同号 只要Q ,只要Q距球面足 够近, 够近,就受到导体 的吸引力。 的吸引力。
a→ R0
原因: 原因:虽然整个导 体的电荷与Q 体的电荷与Q同号 但在靠近Q ,但在靠近Q的球 面部分出现异号电 荷。从而相互吸引 起主要作用。 起主要作用。
可以看出,引入象电荷取代感应电荷, 可以看出,引入象电荷取代感应电荷,的确是 一种求解泊松方程的简洁方法。 一种求解泊松方程的简洁方法。
13
真空中有一半径为R 例2 真空中有一半径为R0的接 地导体球,距球心为a 地导体球,距球心为a(a>R0) 处有一点电荷Q,求空间各点的电 处有一点电荷Q 势(如图)。 如图)。
8

电荷: 电荷:一个点电荷 界面: 界面:接地无穷大导体 区域:上半空间(下半空间电势为零) 区域:上半空间(下半空间电势为零)
已知界面电势为零, 已知界面电势为零,满足唯一性定理 的要求,可以确定电势。 的要求,可以确定电势。
9

4镜像法和电轴法

4镜像法和电轴法
r ( x + b) + y = = K2 2 ( x b)2 + y2 r+
2 2 2
+τ x
K2 +1 2 2bK 2 2 ) (x 2 b) + y = ( 2 K 1 K 1
则等位线为若干圆,设圆心到原点的距离为d,圆半径为R 则等位线为若干圆,设圆心到原点的距离为 ,圆半径为
K2 + 1 d= 2 b K 1
电轴法:将圆柱导体撤去,代之以两带电细线(等效电轴 电轴法:将圆柱导体撤去,代之以两带电细线 等效电轴 。 两带电细线 等效电轴) 注意确定等效电轴的位置。 等效电轴的位置 注意确定等效电轴的位置。
设圆柱导体的半径为a,两圆心距离为 ,两等效电轴的距离为2b 设圆柱导体的半径为 ,两圆心距离为2h,两等效电轴的距离为
a
-τ 0 P’ 2b U0 D
x
9
不同半径)外部的电场 四、两长直平行带电圆柱导体(不同半径 外部的电场: 两长直平行带电圆柱导体 不同半径 外部的电场:
电轴法:将圆柱导体撤去,代之以两带电细线(等效电轴 电轴法:将圆柱导体撤去,代之以两带电细线 等效电轴 。 两带电细线 等效电轴) 注意确定等效电轴的位置。 注意确定等效电轴的位置。 等效电轴的位置
导体内部 的电场? 的电场?
a2+b2 =h2
y -τ a -τ
r_ r+
若取y轴电位为 , 若取 轴电位为0, 轴电位为 则圆柱导体外任一点 的电位为 的电位为: 则圆柱导体外任一点P的电位为
P(x, y) + +τ τ x
r τ ln P = 2πε r+
0 2b
2h
8
例一、两长直平行带电圆柱导体的电压为 尺寸如图, 例一、两长直平行带电圆柱导体的电压为U0,尺寸如图,求导体 及导体外任意点P的电位 的电位。 轴向单位长度电荷量τ及导体外任意点 的电位。 解:用电轴法

电动力学--镜像法复习过程

电动力学--镜像法复习过程

0 (R R 0)
1
(Ra/R0)2R022Racos
12
Q [
1
R 0 /a
]
40 R 2 a 2 2 R a c o s R 2 R 0 4 /a 2 2 R R 0 2 c o s/a
(3)讨论:
P
① 球面感应电荷分布
Rr r
0
R
Q
a2R02
RR0 4R0(a2R022R0acos)3/2
15
(5)若导体球不接地,且带上自由电荷 Q 0
若导体球不接地,且带上自由电荷 ,Q 0导体上总电荷为 ,Q此0
时要保持导体为等势体, 也Q 应0 均匀分布在球面上。
2
Q Q0 40R 40R
(6)导体球不接地而带自由电荷Q 0时 Q所受到的作用力
可以看作 Q 与Q 及位于球心处的等效电荷Q0 Q 的作用力之和
设电量为 Q ,位置为(0,0,a )
1[
Q
Q ]
40 x 2 y 2 (z a )2 x 2 y 2 (z a )2
3
1[
Q
Q ]
40 x 2 y 2 (z a )2 x 2 y 2 (z a )2
由边界条件确定 Q 、a 和
0 z0
Q Q ]
x2y2a2
x2y2a2
Q/
P
r
r
(4)若导体不接地
若导体不接地,可视为Q 分布在导体面上。不接地导体已为
等势体,加上Q 还要使导体为等势体,Q 必须均匀分布在球面上。
这时导体球上总电量 QQ0 (因为均匀分布球面上可使导体
产生的电势等效于在球心的点电荷产生的电势)
1
Q
40R
等效电荷一般是点电荷组或一个带电体系, 而不一定就是一个点电荷。

电磁场理论第10讲-镜像法与电轴法

电磁场理论第10讲-镜像法与电轴法

电轴法
∇2ϕ = 0 导线以外的空间
ϕ surface A = constant

D ⋅ dS = −τ
S
ϕ
surface
B=
constant

D ⋅ dS = −τ
S
长直平行圆柱导体传输线
两两根根细细导导线线产产生生的的电电场场
∫ ϕ1 =
Q ρ1
τ 2πε
0
ρ

=

τ 2πε 0
ln
ρ1
+
平面导体上电荷的场 平面导体的镜像
平面导体上电荷的场边值问题


=
0
ϕ = 0

D ⋅ dS
s
=
q
除点电荷之外区域 平面导体和无穷远 S为包围点电荷面积
上半区域场边值问题


=
0
除 点电荷之外的区域
ϕ
=
q 4πε 0 r

q 4πε 0 r
= 0 平面导体和无穷远

D ⋅ dS
s
=
q
S为包围点电荷面积
b = h2 − a2
圆柱导线间电场和电位
E
P
=
τ 2πε 0
(1 ρ1
eρ1

1 ρ2
eρ2 )
ϕ p
=
τ 2πε 0
ln
ρ2 ρ1
(以y轴为电位为参考点)
已知两根不同半径,相互平行,轴线距离为d 的带 电长直圆柱导体。试决定电轴位置。
解:
b 2 b 2
= =
h12 h22
− −
a12
a

电磁场 镜像法与电轴法(完美解析)

电磁场 镜像法与电轴法(完美解析)


r

球面
0
设镜像电荷 q '如图,球面电位
q q' p 0 4 π 0 r1 4 π 0 r2
r1 d 2 R 2 2 Rd cos
2
图1.7.3 点电荷对接地导体球的镜像
r2 b 2 R 2 2 Rb cos
2
返 回
上 页
下 页
第 一 章
qh p=Dn 0 E 2 π(h 2 x 2 ) 3 / 2
地面上感应电荷的总量为 qh S p dS 0 2π(h2 x 2 )3/ 2 2πxdx
q
图1.7.2 地面电荷分布
返 回 上 页 下 页
第 一 章
静 电 场
2. 球面导体的镜像 点电荷位于接地导体球外的边值问题 (除q点外的空间) 2 0
q q' q' ' sin sin sin 2 2 2 4πr 4πr 4πr
2 2 1 2 q 解得 q ' q 和 q' ' 1 2 返 回 1 2
上 页
下 页
第 一 章
静 电 场
思考
1 中的电场由 q 与 q’ 共同产生,q’
等效替代极化电荷的影响。
球面电位
q = 4 π 0 d
图1.7.7 点电荷位于不接地导体 球附近的场图
返 回
上 页
下 页
第 一 章
静 电 场
3. 不同介质分界面的镜像
图1.7.9 点电荷对无限大介质分界面的镜像
根据惟一性定理
E1t E2 t
D1n D2n
q q' q' ' cos cos cos 2 2 2 4π1r 4π1r 4π 2 r

镜像法电轴法电容部分电容静电能量与力副本.pptx

镜像法电轴法电容部分电容静电能量与力副本.pptx

上页 下页
P
1
2
20
ln
2 1
C
以 y 轴为参考电位
P
20
ln
2 1
20
ln
( x b)2 y2 ( x b)2 y2
令:P 常 数,等位线方程
( x b)2 y2 K 2 ( x b)2 y2
( x K 2 1b)2 y2 ( 2bK )2
K2 1
K2 1
第26页/共83页
2 0
思路
边值问题
S U0
导体球外(除q点)空间:
S
D dS
Q
D dS q
S
S U0
+Q
Q
4R
Q 4πεRU0 Q q
第13页/共83页
上页 下页
讨论 4.点电荷q 在不带电的金属球壳内的镜像。
思路
边值问题
导体球内(除q点)空间:
2 0
C
S
S D dS q
q
-q
q S 4R
3. 部分(分布)电容(Distributed Capacitance)
对于多导体系统,每两个导体上的电压受到所有导体上 电荷的影响,这时系统中导体电荷与导体电压的关系不能 仅用一个电容来表示而需引入部分电容的概念。
三导体静电独立系统
第42页/共83页
上页 下页
讨论前提
多导体系统
电位系数
静电独立系统 线性系统
q
41r 2
cos
q'
41r 2
cosBiblioteka q''42r 2
cos
q
4r 2
sin
q'

镜像法与电轴法

镜像法与电轴法

电工基础教研室金钊
21
二、电轴法
2. 电轴法 例4. 自由空间,相同半径的平行导体圆柱的情况。
导体圆柱外部
y
0
2
导体圆柱表面
R0

o
R0
0 l n dl
x
圆柱面 C
2016/10/29 电工基础教研室金钊
d
d
22
二、电轴法
2. 电轴法 例4. 自由空间,相同半径的平行导体圆柱的情况。
a b h
2 2
2
y
R0
b
d
R0
b
o
b
d
R0
x
R b d
2 0 2
2016/10/29
2
d
电工基础教研室金钊
23
二、电轴法
2. 电轴法 例5. 自由空间,不同半径的平行导体圆柱的情况。
a b h
2 2
2
y
R b h
2 1 2 2 2 2
2 1 2 2
P( x, y, z)
I 0 除点 (0,0, d ) 外 I r a 0
2
I r 0
球内(r <a):
a o
q
(0,0, d )
z
II 0
2
II r a 0
II r 0
2016/10/29 电工基础教研室金钊 6
一、镜像法
例2. 自由空间,接地导体球与点电荷。
r1 x 2 y 2 ( z d )2 r2 x y ( z d )
2 2 2
P( x, y, z)
1 12
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(ln b
ln
1 )
2
b 2
d 2 0
2π 0
(ln
b
ln
2 )
P
1 2
2π 0
ln
2 1
2π 0
ln
(x b)2 y2 (x b)2 y2
若 p
2 0
ln( 2 1
)
2 0
ln(K )
常数

( (
x x
b) b)
2 2
y2 y2
K2
等位线方程为:
(x K 2 1b)2 y2 ( 2bK )2
E
2 2 r
er
2 2 r
(x r
ex
y
h r
ey )
160 162 800
(x r2
ex
yh r2
ey )
x
yh
810 ( x2 ( y h)2 ex x2 ( y h)2 ey )
电轴法工程背景
两根等量异号线电荷的电场
以原点o为参考点,则
1
b 1
d 2 0
2π 0
cos
q
4 r2
sin
q'
4 r2
sin
q ''
4 r2
sin
q' q'
1 2 1 2
' 2 2 1 2
q q
1中的电场是由q与q’共同产生,其有效区在上
半空间,q’是等效替代极化电荷的影响。
2中的电场是q”由决定,其有效区在下半空间,
q”是等效替代自由电荷与极化电荷的作用。
q'' q q' q 1 2 q 22 q 2 1 2 1
r
0
球外空间(除q点外)
0
导球面 0
设置-q’放置在球内(无效区),使 其等效球壳上的感应电荷,对照两 种情况下的边值问题,关键问题是 确定等效电荷的量值大小和位置。
p 0
点电荷对接地球的镜像
p
q
4π 0r1
q'
4π 0r2
0
r1 d 2 R2 2Rd cos r2 b2 R2 2Rb cos
镜像法与电轴法
镜像法基本思路
首先把原来具有边界的场域空间 看成是一个无限大的均匀空间,然后 用虚设的电荷分布等效替代媒质分界 面上复杂电荷分布,虚设电荷的个数、 大小与位置使场的解答满足唯一性定 理。虚设电荷一般位于镜像位置,故 称镜像法。
接地导体平面上电荷的场边值问题
2 0 点电荷之外区域
0
平面导体和无穷远
接地导体平面上电荷的场
上半区域场边值问题
点电荷的镜像
2 0
点电荷之外区域
q
4 0 r
q
4 0 r
0
导体平面 和无穷远
注意: 1、有效区域:用镜像求得的解答只对上半空 间才是正确的,因为它符合唯一性定理的要求。 2、镜像法特点:将计算场域不均匀空间转化 为均匀空间,降低了问题求解难度。
求图示1与2
区域的电场强 度,确定镜像 电荷的个数、 大小与位置。
例3-1 离河面高度为h处,有一输电线经过,导 线单位长度的电荷量为τ,且导线半径远小于h。 设河水的介电常数为80ε0,求水中的电场强度。
解:由于导线半径远小于h,所以可将导线表面电荷视
为集中到几何轴线上的线电荷,镜像电荷为:
22 160 1 2 81
两根输电线表面的电位为:
当h>>a,b
1
≈h时:
2
2 0
ln
b (h a) b (h a)
1
2 0
ln
2h a
2 01
ln 2h
,p
1
ln 2h
ln
2 1
a
a
已知两根不同半径,相互平行,轴线距离为d 的带 电长直圆柱导体,试决定电轴位置。
b2 b2
h12 h22
a12 a22
d h1 h2
K 2 1
K 2 1
圆心坐标(h,0) h K 2 1 b K 2 1
圆半径 a
2bK K2 1
a、h、b三者之间的关系满足
a2 b2 ( 2bK )2 b2 ( K 2 1b)2 h2
K2 1
K2 1
=0
负电位区域
正电位区域
等位线与电力线分布图
电轴法基本思路
若在任一等位面上放一无厚度的金属圆柱壳, 是否会影响电场分布?感应电荷是否均匀分布?若 在金属圆柱管内填充金属,重答上问。
求空气中点电荷q在地面引起的感应电荷分布情况
解: 设点电荷q离地面高度为h,则
E E E (方向指向地面)
E
2
q 4π 0 r 2
cos ey
qh 2π0 (h2
x2 )3/2
ey
p
D
0Ey
qh 2π(h2 x2 )3/2
整个地面上感应电荷的总量为
地面引起的感应电荷的分布
pdS S
q (1 R R )
4π0 r dr1 dr2
q1 R
R
E 4π0 ( r 2 er dr12 er1 dr22 er2 )
点电荷位于不接地 导体球附近的场图
介质分界面的镜像
21 0 22 0
E1t E2t D1n D2n
q
41r 2
cos
q'
41r 2
cos
q ''
4 2r 2
[q2 (b2 R2 ) q'2 (d 2 R2 )] 2R(q'2 d q2b) cos 0
q2 (b2 R2 ) q'2 (d 2 R2 ) 0 q'2 d q2b 0
b
R2
d
q'
bq Rq dd
计算不接地金属球附近放置点电荷时的电场分布
2 0 r 0
除 q 点外 球外空间
qh
2πxdx
0 2π(h2 x2 )3/2
qh
(h
2
1 x2 )1/ 2
0
q
设有一点电荷q置于相互直角的两个接地的半无限大 导电平板附近,试求解这一电场。
夹角为α=π/3的两相联无限大导电平面的镜象
导体球面镜像:设在点电荷附近有一接地导体球, 求导体球外空间的电位及电场分布。
2
球面s 常数 0
p
r2
r
+q'
r1
q
R
o b-q'
d
点电荷对不接地金属球的镜像
感应电荷分布及球对称性, 在球内有两个等效电荷。 正负镜像电荷绝对值相等; 正镜像电荷只能位于球心。
p
r2
r
+q'
r1
q
R o b-q'
d
任一点电位及电场强度为:
1 (q q q) 4π 0 r 2d
a22
h2
d2
a22 2d
a12
b
(d
2
a12 2d
a22
)2
a12
试确定图示偏心电缆的电轴位置
hh1222
a12 a22
b2 b2
h2 h1 d
置于电轴上的等效线电荷,来代替圆柱 导体面上分布电荷,从而求得电场的方法, 称为电轴法。
两根平行的带等值异号电荷的等半径输电线的电场
解:采用电轴法
建立坐标系,确定电轴位置
b h2 a2
圆柱导线间电场和电位
E
P
2π 0
(1
1
e1
1
2
e2
)
p
2π 0
ln
2 1
两根平行的带等值异号电荷的等半径输电线的电场
相关文档
最新文档