ICEM与Fluent仿真卡门涡街问题

合集下载

fluent中的一些基本问题

fluent中的一些基本问题

fluent中的一些基本问题fluent中的一些基本问题2022年-04-22 16:34:03| 分类:CFD | 标签:|字号大中小订阅使用gambit时可能遇到的问题问题1:如果体网格做好后,感觉质量不好,然后将体网格删除,在其面上重新作网格,结果发现网格都脱离面,不再附体了,比其先前的网格质量更差了.原因:删除体网格时,也许连同较低层次的网格都删除了.上面的脱离面可能是需要的体的面.解决方法:重新生成了面,在重新划分网格问题2:在gambit下做一虚的曲面的网格,结果面上的网格线脱离曲面,由此产生的体网格出现负体积.原因:估计是曲面扭曲太严重造成的解决方法:可以试试分区域划分体网格,先将曲面分成几个小面,生成各自的面网,再划体网格。

问题3:当好网格文件的时候,并检查了网格质量满足要求,但输出*.msh时报错误.原因:应该不是网格数量和尺寸.可能是在定义边界条件或continuum type时出了问题.解决方法:先把边界条件删除重新导出看行不行.其二如果有两个几何信息重合在一起, 也可能出现上述情况,将几何信息合并掉.问题4:当把两个面(其中一个实际是由若干小面组成,将若干小面定义为了group了)拼接在一起,也就是说两者之间有流体通过,两个面个属不同的体,网格导入到fluent时,使用interface时出现网格check的错误,将interface 的边界条件删除,就不会发生网格检查的错误.原因:interface后的两个体的交接面,fluent以将其作为内部流体处理(非重叠部分默认为wall,合并后网格会在某些地方发生畸变,导致合并失败.也可能准备合并的两个面几何位置有误差,应该准确的在同一几何位置(合并的面大小相等时),在合并之前要合理分块解决方法:为了避免网格发生畸变(可能一个面上的网格跑到另外的面上了),可以一面网格粗,一面网格细,或者通过将一个面的网格直接映射到另一面上的,两个面默认为interior.也可以将网格拼接一起.Map (产生规则的结构化网格)Submap(把一个非mappable面分成几个mappable面,从而在每个区域产生结构化网格)Pave (产生非结构化网格)Tri Primitive(把一个三边形面分成三个四边形部分,在每个部分生成结构化网格)Wedge Primitive(在楔形面的顶点产生三角形网格单元,从顶点往外生成发散性的网格)插值方式常称为离散格式。

卡门涡街数值模拟

卡门涡街数值模拟

二、边界条件
1.5m Wall
Velocity inlet
Wall 0.02m
Outflow
0.8m
Wall 0.3m u=0.17894m/s ν=1.7894×10-5m/s Re=Ud/ν=200
三、网格划分
四、求解设置
四、求解设置
四、求解设置
四、求解设置
四、求解设置
四、求解设置
卡门涡街的数值模拟
目录
1 卡门涡街简介 2 边界条件 3 网格划分 4 求解设置 5 结果分析
一、卡门涡街简介
卡门涡街是流体力学中重要的现象,在一定条件下的定常来流绕过某些物 体时,物体两侧会周期性地脱落出旋转方向相反、排列规则的双列线涡, 经过非线性作用后,形成卡门涡街。如水流过桥墩,风吹过高塔、烟囱、 电线等都会形成卡门涡街。
10
0.14
0.00
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Frequency
Lift coefficient
谢谢,请老师同学批评指正!
一、卡门涡街简介
原因:流体流经阻流体时,流体从阻流体两侧剥离,形成交替的涡流。 这种交替的涡流,使阻流体两侧流体的瞬间速度不同。流体速度不同, 阻流体两侧受到的瞬间压力也不同,因此使阻流体发生振动。
形成条件:卡门涡街形成的条件:对于在流体中的圆柱体雷诺数 (47<Re<105) 涡街频率:卡门涡街频率与流体速度和阻流体(旋涡发生体)宽度有如 下关系: f=SrV/d f=卡门涡街频率, Sr=斯特劳哈尔数, V=流体速度, d=阻流体迎面宽度 影响及应用:声响效应,引发共振,涡街流量计
四、求解设置

fluent常见问题解答(二)

fluent常见问题解答(二)

1流场数值计算的目的是什么?主要方法有哪些?其基本思路是什么?各自的适用范围是什么?这个问题的范畴好大啊。

简要的说一下个人的理解吧:流场数值求解的目的就是为了得到某个流动状态下的相关参数,这样可以节省实验经费,节约实验时间,并且可以模拟一些不可能做实验的流动状态。

主要方法有有限差分,有限元和有限体积法,好像最近还有无网格法和波尔兹曼法(格子法)。

基本思路都是将复杂的非线性差分/积分方程简化成简单的代数方程。

相对来说,有限差分法对网格的要求较高,而其他的方法就要灵活的多2 可压缩流动和不可压缩流动,在数值解法上各有何特点?为何不可压缩流动在求解时反而比可压缩流动有更多的困难?可压缩Euler及Navier-Stokes方程数值解描述无粘流动的基本方程组是Euler方程组,描述粘性流动的基本方程组是Navier-Stokes方程组。

用数值方法通过求解Euler方程和Navier-Stokes方程模拟流场是计算流体动力学的重要内容之一。

由于飞行器设计实际问题中的绝大多数流态都具有较高的雷诺数,这些流动粘性区域很小,由对流作用主控,因此针对Euler方程发展的计算方法,在大多数情况下对Navier-Stokes方程也是有效的,只需针对粘性项用中心差分离散。

用数值方法求解无粘Euler方程组的历史可追溯到20世纪50年代,具有代表性的方法是1952年Courant等人以及1954年Lax和Friedrichs提出的一阶方法。

从那时开始,人们发展了大量的差分格式。

Lax和Wendroff的开创性工作是非定常Euler(可压缩Navier-Stokes)方程组数值求解方法发展的里程碑。

二阶精度Lax-Wendroff格式应用于非线性方程组派生出了一类格式,其共同特点是格式空间对称,即在空间上对一维问题是三点中心格式,在时间上是显式格式,并且该类格式是从时间空间混合离散中导出的。

该类格式中最流行的是MacCormack格式。

学习FLUENT简单、常见问题汇总

学习FLUENT简单、常见问题汇总

查看负体积的位置In:[>x先initialize,激活adapt菜单下的一些选项,要用到的是iso-value,然后在grid下选cell volume,然后compute,会得到网格的体积范围,然后在iso min下填入最小负值,最大值填0,然后用mark,就可以得到一个iso的面,在旁边的manage菜单下的register会出现一个iso的面,用下面的display加上display grid命令,就可以很清楚的看到负体积在计算域的位置。

kMFl6r©流体中文网论坛-- 流体力学及相关领域学术问题交流论坛。

X[以下内容由ch06 在2008年12月24日05:05pm 时添加] NU4#SY©流体中文网论坛-- 流体力学及相关领域学术问题交流论坛。

lv%"u找到位置就好修改了V4学习FLUENT简单问题解答,常见问题汇总1 现在用FLUENT的UDF来加入模块,但是用compiled udf时,共享库老是连不上?解决办法:1〉你的计算机必须安装C语言编译器。

2〉请你按照以下结构构建文件夹和存放文件:libudf/src/*.c (*.c为你的源程序);libudf/ntx86/2d(二维为2d,三维为3d)/makefile(由makefile_nt.udf改过来的)libudf/ntx86/2d(二维为2d,三维为3d)/user_nt.udf(对文件中的SOURCE,VERSION,P ARALLEL_NODE进行相应地编辑)3〉通过命令提示符进入文件夹libudf/ntx86/2d/中,运行C语言命令nmake,如果C预言编译器按装正确和你的源程序无错误,那么此时会编译出Fluent需要的库文件(*.lib)这时再启动Fluent就不会出错了。

2 在使用UDF中用编译连接,按照帮助文件中给出的步骤去做了,结果在连接中报错“系统找不到指定文件”。

udf 文件可能不在工作目录中,应该把它拷到工作目录下,或者输入它的全部路径.3 这个1e-3或者1e-4的收敛标准是相对而言的。

卡门涡街的Comsol仿真实验报告

卡门涡街的Comsol仿真实验报告

课程名称:大学物理实验(二)实验名称:卡门涡街的Comsol仿真图3.1卡门涡街仿真图四、实验内容及步骤:4.1建模本实验的的建模与仿真可分为八步:1.模型向导2.参数定义3.几何建模4.材料设置5.层流设置6.划分网格7.研究求解8.结果分析操作步骤:1.模型向导1)打开COMSOL软件,在新建窗口中单击模型向导;2)在模型向导窗口中,单击二维;3)在选择物理场树中双击流体流动单相流层流;4)单击添加,然后单击下方的研究;5)在选择研究中选择一般研究瞬态;6)单击底部的完成;2.参数定义1)在左侧模型开发器窗口的全局定义节点下,单击参数1;2)在参数的设置窗口中,定位到参数栏;3)在表中输入以下设置:图4.1 设置示范图4)在左侧主屏幕工具栏中单击f(x)函数,选择全局阶跃;5)在阶跃的设置窗口中,定位到参数栏;6)在位置文本框中输入0.1;3.几何建模1)在上方的几何工具栏中单击矩形;图4.2 建模完成后图材料设置在模型开发器窗口的组件(comp1)节点下,右键单击材料并选择空材料;在材料的设置窗口中,定位到材料属性明细栏;图4.3 设置示范图图层流设置在模型开发器窗口的组件1(comp1)节点下,右键单击层流(spf)并选择入口;在入口的设置窗口中,边界选择栏里选择边界1(单击右侧图形窗口里矩形的左边界即可)在入口的设置窗口中,定位到速度栏,在U0文本框中输入图4.4 划分网格后的图形在模型开发器窗口的研究节点下,单击步骤1: 瞬态;图6.3升力系数随时间的变化由图5.1可知,升力系数的大小在前0.5s几乎为0,0.5s到3.5s升力系数大幅不断变大然后减小,同时升力系数的峰值和谷值的绝对值都在变大,而且峰值和谷值的绝对值近似相等,3.5s到5.0s力系数的峰值和谷值的绝对值缓慢增大,直到5.0s时都取到最大约0.89,此后5.0s到7.0s升力系数在峰值和谷值的绝对值的最大值之间波动。

作出曳力系数随时间变化图图6.4 曳力系数随时间的变化由图5.2可知,曳力系数在0.5s前就从0急剧变大至约3.1,随后在0.5s到3.5s缓慢且小幅减小再增大至约3.17,在3.5s到7.0s时,曳力系数仅在3.17之间微小波动。

ICEM-Mesh-Fluent周期性边界条件问题

ICEM-Mesh-Fluent周期性边界条件问题

周期性网格生成的作用是让两个对应面的节点相对应,可以互相关联;并且要保证两个对应面的命名不能一样,否则会导入Fluent 出错;下面介绍在ICEM-Fluent/Mesh-Fluent 中的处理方法:ICEM 相关的案例都是得到完整的模型,为了简化计算用的单一零件的周期性问题可以用同样的方法一试,目的是为了获得周期性对应面的网格共节点。

1y 一、平移周期①创建parts 及定义平动周期性②初始化block,雕塑块,并关联,设置节点③生成周期性块并生成网格(正确——周期块的同时,几何也被周期性,并且parts中的如inlet 能控制所有模型的inle t)④生成周期性块并生成网格(转化为非结构化网格)二、旋转周期①创建parts(非常重要,尤其是要创建side侧面,此面为周期面)ICEM周期性边界条件问题2019年11月15日19:05西米 2019.11.15①创建parts(非常重要,尤其是要创建side侧面,此面为周期面)②定义旋转周期性——轴上一点、轴、旋转的角度③初始化Block④设置块周期性顶点对应关系(两个顶点的对应一定如图都要从左到右或从右到左)⑤关联并设置节点⑥周期性旋转块⑦删掉side的parts(不删掉会形成wall 边界条件)或者在fluent 中设置为interior,生成并转化网格Mesh在CFD 计算中,周期边界应用非常广泛。

MESH 模块作为ANSYS W ORKBENCH中的御用网格生成模块,如何利用MESH 模块构建周期网格,就显得非常重要。

周期网格分为两类:旋转周期及平移周期。

在ANSYS MESH模块中,利用坐标系来区分这两类网格类型。

周期网格区域要求周期面上网格节点一一对应,在ANSYS MESH模块中,可以很方便的通过SYMMETRY 功能模块中的PERIODIC REGION 功能达到这一目标。

本例描述了如何在ANSYS MESH 模块中创建周期网格的步骤,在WORKBENCH中的项目结构如图1所示。

ICEM-CFD-常见问题

ICEM-CFD-常见问题

ICEM CFD 常见问题1用ICEM CFD 导入三维实体后,在Part部分出现part_1,创建边界如入口、出口、壁面后,进行网格划分,该part_1是删除好,还是留着好?对网格划分有影响吗?没用的一般要删除,不过在ICEM CFD 中,不删除,一般也没啥影响,只要把需要的边界,关心的部分都单独做成Part 即可。

2结构化网格和非结构化网格的优缺点是什么?非结构化网格的生成相对简单,四面体网格基本就是简单的填充,非结构化六面体网格的生成还是有些复杂的,但仍然比结构化的建立拓扑简单多。

比如Gambit的非结构化六面体网格是建立在从一个面到另外一个面扫描(Sweep)的基础上的。

Numeca公司的Hexpress 的非结构化六面体网格是用一种吸附的方法,反正你还是要花点功夫。

另外要说的一点就是,结构化网格可以直接应用于各种非结构化网格的CFD软件,比如你在Gridgen里面生成了一个结构化网格,用Fluent读入就可以了。

Fluent是非结构化网格CFD软件,它会忽略那些结构化网格的结构信息(也就是B,I,J,K),当成简单的非结构网格读入,但非结构化六面体网格就不能用在结构化网格的CFD求解器了。

结构化网格仍然是CFD工程师的首选,非结构化六面体网格也还凑合,四面体网格我就不喜欢了(数量多,计算慢,后处理难看)。

简单说,如果非结构化即快又好,结构化网格早就被淘汰了。

结构化六面体:建立拓扑,再生成网格,所有生成结构化网格的软件(Gridgen/ICEM)都是一种拓扑概念(界面不一样罢了),都需要你去建立拓扑,也就是结构,然后软件好根据你的结构来建立网格或者砌砖头。

非结构化六面体:Gambit用扫描方法,Hexpress用吸附方法,按照步骤就行了。

非结构化四面体:简单,看两页教程,搞定,就是简单填充,没什么技术含量!其他非结构化网格(棱形等):学习软件,按照步骤,很容易。

不管用什么网格软件,我们最好有比较扎实的CAD(PROE、UG等)基础,熟练的CAD技术太重要了。

[转贴]网友的flluent问题汇总

[转贴]网友的flluent问题汇总

[转贴]网友的flluent问题汇总admin 发表于: 2007-7-10 16:56 来源: 水泵人PUMPREN-社区门户1 现在用FLUENT的UDF来加入模块,但是用compiled udf时,共享库老是连不上?解决办法:1〉你的计算机必须安装C语言编译器。

2〉请你按照以下结构构建文件夹和存放文件:libudf/src/*.c (*.c为你的源程序);libudf/ntx86/2d(二维为2d,三维为3d)/makefile(由makefile_nt.udf改过来的)libudf/ntx86/2d(二维为2d,三维为3d)/user_nt.udf (对文件中的SOURCE,VERSION,PARALLEL_NODE进行相应地编辑)3〉通过命令提示符进入文件夹libudf/ntx86/2d/中,运行C语言命令nmake,如果C预言编译器按装正确和你的源程序无错误,那么此时会编译出Fluent需要的库文件(*.lib)这时再启动Fluent就不会出错了。

2 在使用UDF中用编译连接,按照帮助文件中给出的步骤去做了,结果在连接中报错“系统找不到指定文件”。

udf 文件可能不在工作目录中,应该把它拷到工作目录下,或者输入它的全部路径.3 这个1e-3或者1e-4的收敛标准是相对而言的。

在FLUENT中残差是以开始5步的平均值为基准进行比较的。

如果你的初值取得好,你的迭代会很快收敛,但是你的残差却依然很高;但是当你改变初场到比较不同的值时,你的残差开始会很大,但随后却可以很快降低到很低的水平,让你看起来心情很好。

其实两种情况下流场是基本相同的。

由此来看,判断是否收敛并不是严格根据残差的走向而定的。

可以选定流场中具有特征意义的点,监测其速度,压力,温度等的变化情况。

如果变化很小,符合你的要求,即可认为是收敛了。

一般来说,压力的收敛相对比较慢一些的。

是否收敛不能简单看残差图,还有许多其他的重要标准,比如进出口流量差、压力系数波动等等尽管残差仍然维持在较高数值,但凭其他监测也可判断是否收敛。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

创建0,0,0的参考点P5.
以P5为参考点,定义其他各点。

由4个顶点生成大的面。

由内部封闭曲线来分割大面。

进一步分割内部的小面。

定义外部的大面名为SURout的part。

定义SURcir的part。

定义SURrig的part。

删除所有的点与曲线。

几何拓扑重构:在geometry->repair geometry中进行模型修补。

注意:因为之前删除了分割过程中产生的重合的点与线,会对网格的生成产生影响,因此需要在此重新生成点与线。

定义各个曲线的part。

定义网格全局参数。

定义壳网格全局参数。


定义各部件的网格参数。

在圆的周围生成边界层网格。

生成网格,图中绿色与红色处的网格非常密。

ST013.msh
在指定了求解器类型之后输出2D网格模型。

原书中漏掉了指定求解器的步骤。

将网格导入到Fluent之中。

单位缩放:原书中漏掉了这一步,单位发生了1000倍的错误。

定义流体域、边界条件等。

本实例采用层流模型,不考虑重力。

定义外壁为滑移壁面,与流体速度相同,避免了外壁边界层对圆柱绕流的影响。

定义stinter为interior,这样stinter:shadow会消失,表明两个surface在stinte r处是连续的,其余的stinter:002与stinter:003的道理是相同的。

迭代300步求解结果。

在CFD-POST中进行后处理,显示速度场动画并进行保存。

注意:保存动画有技巧,保存动画要单击工具栏中的Animation按钮,然后会出现下图的对话框:
在这个对话框中要勾选Save Movie,指定动画存储路径。

Fast与Slow之间的拖块是用来指定动画帧数的,黑色三角按钮是开始播放,蓝色方块按钮式停止播放。

需要注意的是,当点击开始播放后,就会开始计算每一个时间点上的画面,从头开始,直至结束,到所有时间步结束时还没按下蓝色方块按钮结束时,软件又会从头开始播放,一遍一遍不会休止,而且动画的保存是在这个过程中实现的,比如从开始播放到结束播放一共计算了4遍,则最后保存的动画也会重复4遍这个流体过程。

另外KeyFrame是指定时间点之间的动画用的选项。

ST013.avi ST013.tin ST013.msh
最后给出结果动画、几何模型与fluent文件。

设置为每4步保存一下case与data文件。

--
250s时卡门涡街发展情况。

--。

相关文档
最新文档