自动控制原理 典型系统分析
自动控制原理实验一 典型系统的时域响应和稳定性分析

实验一典型系统的时域响应和稳定性分析一、实验目的1.研究二阶系统的特征参量(ξ、ωn) 对过渡过程的影响。
2.研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。
3.熟悉Routh判据,用Routh判据对三阶系统进行稳定性分析。
二、实验设备PC机一台,TD-ACC+教学实验系统一套。
三、实验原理及内容1.典型的二阶系统稳定性分析(1) 结构框图:如图1-1所示。
图1-1(2)图1-2(3) 理论分析系统开环传递函数为:G(s)=K1T0⁄s(T1s+1)开环增益:K= K1T0⁄先算出临界阻尼、欠阻尼、过阻尼时电阻R的理论值,再将理论值应用于模拟电路中,观察二阶系统的动态性能及稳定性,应与理论分析基本吻合。
在此实验中由图1-2,可以确地1-1中的参数。
T0= 1s , T1= 0.1s ,K1= 200R , K= 200R系统闭环传递函数为:W(s)=5Ks2+5s+5K其中自然振荡角频率:?n ω= 10√10R;阻尼比:?ζ= √10R402.典型的三阶系统稳定性分析(1) 结构框图:如图1-3所示。
图1-3(2) 模拟电路图:如图1-4所示。
图1-4(3) 理论分析系统的开环传函为: G(s)H(s)=20K s 3+12s 2+20s系统的特征方程为:1()()0G s H s += : s 3+12s 2+20s+20K=0 (4) 实验内容实验前由Routh 判断得Routh 行列式为:S 3 1 20 S 2 12 20K S 1 20-5/3*K 0 S 0 20K为了保证系统稳定,第一列各值应为正数,因此可以确定系统稳定 K 值的范围 : 0<K <12 R >41.7k系统临界稳定K: K=12 R =41.7k 系统不稳定K 值的范围: K >12 R <41.7k四、实验步骤1)将信号源单元的“ST ”端插针与“S ”端插针用“短路块”短接。
自动控制原理及其实例

先进控制理论及其应用院系:班级:姓名:学号:前言20世纪70年代以来,随着计算机即使的广泛应用,自动控制技术有了很大的发展,先进过程控制(advanced process control,pac)应运而生。
先进过程控制也称先进控制。
它是具有比常规控制更好的控制效果的控制策略的系统,是提高过程控制质量、解决复杂赴欧成问题的理论和技术。
先进控制理论是建立在状态空间法基础上的一种控制理论,是自动控制理论的一个主要组成部分。
在先进控制理论中,对控制系统的分析和设计主要是通过对系统的状态变量的描述来进行的,基本的方法是时间域方法。
先进控制理论比经典控制理论所能处理的控制问题要广泛得多,包括线性系统和非线性系统,定常系统和时变系统,单变量系统和多变量系统。
先进控制理论的名称是在1960年以后开始出现的,用以区别当时已经相当成熟并在后来被称为经典控制理论的那些方法。
先进控制理论是在20世纪50年代中期迅速兴起的空间技术的推动下发展起来的。
空间技术的发展迫切要求建立新的控制原理,以解决诸如把宇宙火箭和人造卫星用最少燃料或最短时间准确地发射到预定轨道一类的控制问题。
这类控制问题十分复杂,采用经典控制理论难以解决。
1958年,苏联科学家Л.С.庞特里亚金提出了名为极大值原理的综合控制系统的新方法。
在这之前,美国学者R.贝尔曼于1954年创立了动态规划,并在1956年应用于控制过程。
他们的研究成果解决了空间技术中出现的复杂控制问题,并开拓了控制理论中最优控制理论这一新的领域。
1960~1961年,美国学者R.E.卡尔曼和R.S.布什建立了卡尔曼-布什滤波理论,因而有可能有效地考虑控制问题中所存在的随机噪声的影响,把控制理论的研究范围扩大,包括了更为复杂的控制问题。
几乎在同一时期内,贝尔曼、卡尔曼等人把状态空间法系统地引入控制理论中。
状态空间法对揭示和认识控制系统的许多重要特性具有关键的作用。
其中能控性和能观测性尤为重要,成为控制理论两个最基本的概念。
自动控制原理实验典型环节及其阶跃响应,二阶系统阶跃

实验一、典型环节及其阶跃响应实验目的1、学习构成典型环节的模拟电路,了解电路参数对环节特性的影响。
2、学习典型环节阶跃响应的测量方法,并学会由阶跃响应曲线计算典型环节的传递函数。
实验内容构成下述典型环节的模拟电路,并测量其阶跃响应。
比例环节的模拟电路及其传递函数示图2-1。
G(S)=-R2/R1惯性环节的模拟电路及其传递函数示图2-2。
G(S)=-K/TS+1 K=R2/R1 ,T=R2*C积分环节的模拟电路及其传递函数示图2-3。
G(S)=1/TS T=RC微分环节的模拟电路及其传递函数示图2-4。
G(S)=-RCS比例加微分环节的模拟电路及其传递函数示图2-5。
G(S)=-K(TS+1) K=R2/R1 T=R2C比例加积分环节的模拟电路及其传递函数示图2-6。
G(S)=K(1+1/TS) K=R2/R1,T=R2C软件使用1、打开实验课题菜单,选中实验课题。
2、在课题参数窗口中,填写相应AD,DA或其它参数。
3、选确认键执行实验操作,选取消键重新设置参数。
实验步骤1、连接被测量典型环节的模拟电路及D/A、A/D连接,检查无误后接通电源。
2、启动应用程序,设置T和N。
参考值:T=0.05秒,N=200。
3、观测计算机屏幕示出的响应曲线及数据记录波形及数据(由实验报告确定)。
实验报告1、画出惯性环节、积分环节、比例加微分环节的模拟电路图,用坐标纸画出所有记录的惯性环节、积分环节、比例加微分环节的响应曲线。
2、由阶跃响应曲线计算出惯性环节、积分环节的传递函数,并与由电路计算的结果相比较。
实验二二阶系统阶跃响应一、实验目的1、研究二阶系统的特征参数,阻尼比ζ和无阻尼自然频ωn 对系统动态性能的影响,定量分析ζ和ωn与最大超调量Mp和调节时间 ts 之间的关系。
2、进一步学习实验仪器的使用方法。
3、学会根据系统阶跃响应曲线确定传递函数。
二、实验原理及电路典型二阶系统的闭环传递函数为其中ζ和ωn对系统的动态品质有决定的影响。
自动控制原理-第3章

响应曲线如图3-2所示。图中
为输出的稳态值。
第三章 线性系统的时域分析 法
图 3-2 动态性能指标
第三章 线性系统的时域分析 法
动态性能指标通常有以下几种:
延迟时间td: 指响应曲线第一次达到稳态值的一半所需的时间
上升时间tr: 若阶跃响应不超过稳态值, 上升时间指响应曲线从 稳态值的10%上升到90%所需的时间; 对于有振荡的系统, 上升时 间定义为响应从零第一次上升到稳态值所需的时间。上升时间越 短, 响应速度越快。
可由下式确定: (3.8)
振荡次数N: 在0≤t≤ts内, 阶跃响应曲线穿越稳态值c(∞)次 一半称为振荡次数。
上述动态性能指标中, 常用的指标有tr、ts和σp。上升时间tr 价系统的响应速度; σp评价系统的运行平稳性或阻尼程度; ts是同
时反映响应速度和阻尼程度的综合性指标。 应当指出, 除简单的一 、二阶系统外, 要精确给出这些指标的解析表达式是很困难的。
中可以看出, 随着阻尼比ζ的减小, 阶跃响应的振荡程度加剧。 ζ =0时是等幅振荡, ζ≥1时是无振荡的单调上升曲线, 其中临界阻尼 对应的过渡过程时间最短。 在欠阻尼的状态下, 当0.4<ζ<0.8时过
渡过程时间比临界阻尼时更短, 而且振荡也不严重。 因此在 控制工程中, 除了那些不允许产生超调和振荡的情况外, 通常都希
第三章 线性系统的时域分析法 4. 脉冲函数 脉冲函数(见图3-1(d))的时域表达式为
(3.4)
式中,h称为脉冲宽度, 脉冲的面积为1。若对脉冲的宽度取趋于 零的极限, 则有
(3.5) 及
(3.6)
称此函数为理想脉冲函数, 又称δ函数(见图3-1(e))。
第三章 线性系统的时域分析 法
自动控制原理第三节2_高阶系统

例如:(s)
(s2
n2(s z) 2 ns n2 )(s
p)
如果: z 5以及 p 5
n
n
z p
则:
(s)
p(s2
z n 2 2 ns n2 )
n
j d jd
说明:假设输入为单位阶跃函数,则化简前后的稳态值如下
lim s 1 s (s2
s0
n2(s z) 2 ns n2 )(s
[例如]: p1,2 1 n1 jn1
1
2 1
jd
为某高阶系统
的主导极点,则单位阶跃响应近似为:
c(t) a0 et (1 cosdt 1 sin dt)
利用主导极点的概念可以对高阶系统的特性做近似的估计分析。 高阶系统近似简化原则: 在近似前后,确保输出稳态值不变;
在近似前后,瞬态过程基本相差不大。
阶系统的单位阶跃响应取决于闭环系统的零、极点分布。
[定性分析]:
对于闭环极点全部位于s左半平面的高阶系统(否则系统不 稳定),极点为实数(指数衰减项)和共轭复数(衰减正弦项) 的衰减快慢取决于极点离虚轴的距离。远,衰减的快;近,衰 减的慢。所以,近极点对瞬态响应影响大。
高阶系统分析,主导极点
系数 a j , l , l 取决于零、极点分布。有以下几种情况: 若极点远离原点,则系数小; 极点靠近一个零点,远离其他极点和零点,系数小; 极点远离零点,又接近原点或其他极点,系数大。
C(s)
(s)
1 s
(s2
n2 p3 2 ns n2 )(s
p3 )
1 s
1 s
s2
A1s A2
2 ns n2
s
A3 p3
式中:A1, A2 , A3 系)有关。
自动控制原理实验

2014-2015学年第二学期自动控制原理实验报告姓名:王丽学号:20122527班级:交控3班指导教师:周慧实验一:典型系统的瞬态响应和稳定性1. 比例环节的阶跃响应曲线图(1:1)比例环节的阶跃响应曲线图(1:2)2. 积分环节的阶跃响应曲线图(c=1uf)3. 比例积分环节的阶跃响应曲线图(c=1uf)比例积分环节的阶跃响应曲线图(c=2uf)4. 惯性环节的阶跃响应曲线图(c=1uf)惯性环节的阶跃响应曲线图(c=2uf)5. 比例微分环节的阶跃响应曲线图(r=100k)比例微分环节的阶跃响应曲线图(r=200k)6. 比例积分微分环节的阶跃响应曲线图(r=100k)比例积分微分环节的阶跃响应曲线图(r=200k)实验结论1. 积分环节的阶跃响应曲线图可以看出,积分环节有两个明显的特征:(1)输出信号是斜坡信号(2)积分常数越大,达到顶峰需要的时间就越长2. 比例积分环节就是把比例环节与积分环节并联,分别取得结果之后再叠加起来,所以从图像上看,施加了阶跃信号以后,输出信号先有一个乘了系数K的阶跃,之后则逐渐按斜坡形式增加,形式同比例和积分的加和是相同的,因而验证了这一假设。
3. 微分环节对于阶跃信号的响应,在理论上,由于阶跃信号在施加的一瞬间有跳变,造成其微分结果为无穷大,之后阶跃信号不再变化,微分为0,表现为输出信号开始衰减。
4. PID环节同时具备了比例、积分、微分三个环节的特性,输出图像其实也就是三个环节输出特性的叠加。
三个环节在整个系统中的工作实际上是相互独立的,这也与它们是并联关系的事实相符合。
5.惯性环节的传递函数输出函数:可以看到,当t→∞时,r(t)≈Ku(t),这与图中的曲线是匹配的。
实验心得通过本实验我对试验箱更加熟悉,会连接电路;更直观的看到电路的数学模型和电路的响应曲线图三者之间的关系,这让我能够将在此之前所学的知识联系到一起。
不管是什么电路,如果要研究它首先就是得到它的数学模型,然后再通过对数学模型的研究间接的来研究该电路。
自动控制原理(Ⅰ型二阶系统的典型分析与综合设计)课程设计

指导教师评定成绩:审定成绩:重庆邮电大学移通学院自动化系课程设计报告设计题目:Ⅰ型二阶系统的典型分析与综合设计学生姓名:专业:班级:学号:指导教师:设计时间:2010 年 12 月重庆邮电大学移通自动化系制重庆邮电大学移通学院《自动控制原理》课程设计(简明)任务书-供08级自动化专业、电气工程与自动化专业本科生用引言:《自动控制原理》课程设计是该课程的一个重要教学环节,它有别于毕业设计,更不同于课堂教学。
它主要是培养学生统筹运用自动控制原理课程中所学的理论知识,掌握反馈控制系统的基本理论和基本方法,对工程实际系统进行完整的全面的分析和综合。
一、设计题目:Ⅰ型二阶系统的典型分析与综合设计二、系统说明:该Ⅰ型系统物理模拟结构如下图:其中R0=100KΩ; C1=C2=10-5F;R2=1/2 R0R f为线性滑动电位器,可调范围为:10-1R0~ 104R0 ,设计过程中可忽略各种干扰,比如:运算放大器的零点漂移,环节间的负载效应,外界强力电力设备产生的电磁干扰等,均可忽略。
三、系统参量:系统输入信号:r(t);系统输出信号:y(t);四、设计指标:设定:输入为r(t)=a+bt(其中:a=5rad/secb=4rad/sec)在保证静态指标K v=5(e ss≤0.8)的前提下,要求动态期望指标:σp% ≤8.5% ;t s≤2sec五、基本要求:1. 建立系统数学模型——传递函数;2. 利用频率特性法分析和综合系统(学号为单号同学做);3. 利用根轨迹法分析和综合系统(学号位双号同学做);4. 完成系统综合前后的有源物理模拟(验证)实验;5. 完成系统综合前后的计算机仿真(验证)实验;六、设计缴验:1. 课程设计计算说明书一份;2. 原系统组成结构原理图一张(自绘);3. 系统分析,综合用BODE图(或根轨迹图)各一张;4. 系统综合前后的模拟图各一张(附实验结果图)各一张;5. 计算机仿真程序框图一张;6. 计算机仿真程序清单一份(附仿真实验结果图);7. 封面装帧成册;移通学院自动化系指导教师:汪纪峰2010-12-15目录引言 (2)一、系统概述 (7)1.1 设计目的 (7)1.2 系统的工作原理 (7)1.3 系统设计基本要求 (8)二、系统建模 (9)2.1 各环节建模 (9)2.1.1 比较器 (9)2.1.2 比例环节 (9)2.1.3 积分环节 (10)2.1.4 惯性环节 (11)2.1.5 反馈环节 (12)2.2 系统模型 (12)2.2.1 系统框图模型 (12)2.2.2 系统等价框图 (12)2.2.3 系统频域模型 (13)2.2.4 小结 (13)三、系统分析 (14)3.1 稳定性分析 (14)3.1.1 时域分析 (14)3.1.2 根轨迹映证 (14)3.1.2.1 绘制根轨迹 (15)3.2静态精度分析 (16)3.2.1Ⅰ型系统的典型分析 (16)3.2.1.1 跟踪能力 (16)3.2.1.2 ess计算 (16)3.2.2 根轨迹映证 (16)3.3 动态分析K 1 (17)3.3.1 作根轨迹 (18)3.3.2 指标分析 (19)四、系统综合 (20)4.1 校正方案的设计 (20)4.2 ts问题 (20)4.3τ的确定 (21)4.3.1 绘制校正后系统—τ参数根轨迹 (21)4.3.2 绘制τ参数根轨迹 (22)4.3.3 确定满足的σp%的ξ (24)4.3.4 做等ξ线 (24)4.4 确定τA (24)五、系统模拟 (25)5.1 原系统的物理模拟 (25)5.2校正后系统的物理模拟 (26)六、设计小结 (27)6.1心得体会 (27)6.2致谢 (28)七、参考文献 (29)《自动控制原理》课程设计第一章系统概述1.1设计目的主要是培养学生的统筹运用自动控制原理课程中所学的理论知识,掌握反馈控制系统的基本理论和方法,对工程实际系统进行完整全面分析和综合。
自动控制原理实验一

自动控制理论实验报告姓名罗晋学号201623010505班级电气F1606同组人实验一典型系统的阶跃响应分析一、实验目的1. 熟悉一阶系统、二阶系统的阶跃响应特性及模拟电路;2. 测量一阶系统、二阶系统的阶跃响应曲线,并了解参数变化对其动态特性的影响;3. 掌握系统动态性能的测试方法。
二、实验内容1. 设计并搭建一阶系统、二阶系统的模拟电路;2. 观测一阶系统的阶跃响应,并研究参数变化对其输出响应的影响;σ、3. 观测二阶系统的阻尼比0<ξ<1时的单位阶跃响应曲线;并求取系统的超调量%调节时间t s(Δ= ±0.05);并研究参数变化对其输出响应的影响。
三、实验结果(一)一阶系统阶跃响应研究1. 一阶系统模拟电路如图1-1所示,推导其传递函数G(s)=K/(Ts+1),其中R0=200K。
图1-1 一阶系统模拟电路2. 将阶跃信号发生器的输出端接至系统的输入端。
3. 若K=1、T=1s时,取:R1=100K,R2=100K,C=10uF(K= R2/ R1=1,T=R2C=100K×10uF=1)。
当T=1,光标为起点和终值:光标为起点和0.95的终值:传递函数为:(R2/R1)/(R2CS+1)4 若K=1、T=0.1s时,重复上述步骤(R1=100K,R2=100K,C=1uF(K= R2/ R1=1,T=R2C=100K×1uF=0.1))。
当T=0.1时,光标为起点和终值;光标为起点和0.95终值:6. 保存实验过程中的波形,记录相关的实验数据.,参数变化对系统动态特性的影响分析。
传递函数为:(R2/R1)/(R2CS+1), t=3T ,当T 减小需要达到稳定的时间也会减少,(二)二阶系统阶跃响应研究二阶系统模拟电路如图1-2所示,Rx 阻值可调范围为0~470K 。
图1-2 二阶系统模拟电路传递函数为1. n ω值一定(取10n ω=)时:1.1 当ξ=0.2时,各元件取值:C=1uF ,R=100K , R X =250K (实际操作时可用200k+51k=251k 代替),理论计算系统的%σ,t s (Δ= ±0.05),记录此时系统的阶跃响应曲线(阶跃信号的幅值自定),在曲线上求取系统的%σ,t s (Δ= ±0.05),并与理论值进行比较。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
222010322072023 付珣利自动化01班位置随动系统:
控制系统原理图
(作业一)
1.1系统方块图
1.2控制方案
若电网电压受到波动,ui↑则δu↑u↑n↑uo↑
所以δu↓u↓n↓从而使n达到稳定。
(作业二)
2.1由原理可知:
Θe (s )=Θi (s )—Θ0(s ) US (s )=K0Θe (s )
Us (s )=Raia(s)+LaSia+Eb (s ) M(s)=C m ia(s) JS 2θ0(S)+fs θ
(S)= M(s)-Mc (s) Eb(s)=Kb θ0(S)
2.2系统传递函数
)
()(0s s i θθ=
()
)
)((1))((1)(1))((3
2103
210f JS R S L S K C f JS R S L S C K K K K f
JS R S L S K C f JS R S L S C K K K K a a b
m a a m
a a b
m a a m
+++
++++++
++=
m b m a a m
C K K K K K C f JS R S L S C K K K K 32103210))((++++
2.3动态结构图
设定参数:f=20N,J=20K ·m ²,a R =20 Ω,La=1H,Ko=40,k1k2k3=100,Cm=1,Kb=0 (因为暂取Kb=0,测速反馈通道相当于没加进)
图.动态结构图
则开环传递函数为:G(s)=
)
105.0)(1(10
++s s s
闭环传递函数:Ψ(s )=10
)105.0)(1(10
+++s s s
2.4信号流图
(作业三)系统性能
3.1系统响应及动态性能指标 单位阶跃响应曲线:
由阶跃响应曲线可得知:系统是稳定的,但震荡次数较多。
由闭环主导极点
的概念,S1>>S2可将系统近似处理为:开环传递函数G(s)=
)
1(10+s s ,此时的相
对阻尼系数ζ=0.5,δ=1.34%,Wn=1,调节时间ts=3.5/ξWn=7s ,tp=π /21ξ-n w =3.625,tr=(π-β)/Wd=2.417. 近似处理后响应曲线如下:
分析:系统仍然稳定,震荡次数相对减小。
3.2两种常用方法校正 ①加入测速反馈(0.347s+1) 单位阶跃响应:
此时ζ=0.707为工程上的最佳参数,Wn 不变,ts 明显减小,δ%也明显减小,但是在斜坡输入响应下稳态误差变大,因为开环放大倍数变大。
②前向通道加入比例微分(0.414s+1) 响应曲线
此时ζ=0.707为工程上的最佳参数,Wn 不变,ts 明显减小,tp 也减小,δ%明显减小,稳态误差不变。
③比较:有曲线特性分析得到,引入测速反馈或前向通道加比例微分都将使ζ增大,超调减小,动态性能变好,同时不影响Wn ,且在适当时候还可取到最佳工作参数。
但测速会影响开环放大倍数K,从而影响稳定误差,此时可以同时调大比例系数避免。
前向通道加比例微分同样可提高系统性能,但对噪声抑制力变弱,由于加入零点,超调量变大,峰值时间减少,且随零点接近原点而影响加剧。
(作业四)绘制根轨迹
①开环传递函数G(s)=)
1(10 s s
num=[10]; den=[1 1 0]; rlocus(num,den)
由根轨迹可知此系统很是稳定。
②引入测速反馈后: num=[10];
den=[1 4.47 10];
rlocus(num,den)
③引入比例微分
num=[4.14 10];
den=[1 1 0];
rlocus(num,den)
(作业五)频域系统性能分析
①绘制Bode图
i原系统
ii引入测速反馈
iii引入比例微分
分析:观察bode图,可以发现有测速反馈的比原系统相角裕度r提高,比例微分r没变很大,r越高,谐振峰值Mr越小。
低频段中,加测速反馈的bode与纵轴交点大概30dB,而其它的均是60dB,说明k值受到影响并变小,所以稳定误差会加大。
中频段原系统斜率为-40dB,校正后由图中可以观察到变为-20dB,稳定性提高。
②绘制奈氏曲线
i原系统
ii引入测速反馈
iii引入比例微分
分析:由奈氏曲线极其数据可以看出,首先由奈氏稳定判据知三个系统均稳定,不过原系统不如引入测速或比例微分的稳定性强,再观察得到,随着w的增大,加比例微分的A(w)明显要比测速的增大的快,及响应较快,这是由比例微分中有附加零点而引起的。
(作业六)系统校正(PID法)
创建模拟系统,用PID校正。
PID参数选择:根据简易工程整定法,取P:kp=0.57k,I:0.5Tk,D:0.13Tk
创建Matlab中的模拟系统:
Subsystem.in1out1如右图:
PID参数设定:
校正后阶跃响应曲线:
Bode图:
奈氏曲线:
分析:
1.比起原响应曲线,校正后超调量受到一定控制,震荡次数明显减小,调节时间ts明显减小,系统仍然是稳定的。
2.观察bode图,可以发现,在低频段,校正后的系统与纵轴交点大概120dB几乎是原来的2倍,因而开环倍数必定增大,稳态误差必然降低。
中频段,原来斜率为-40,现在为-20,明显稳定性提高。
截止频率Wc比原来提高了,增加了系统的快速性,如图中红色注释,相角裕度r也明显增大,稳定裕度增大,谐振峰
值Mr随之也会减小,稳定性能与动态性能提高。
3.奈氏曲线前后相比较,可以发现,校正后系统更加平稳,而不是像原系统一样,在某一w处,A(w)突然突增,稳定度也越来越高。
(作业七)线性离散系统分析
在matlab中的模拟仿真:
分析:1.系统加入采样器使得上升时间略有提前,超调量增大,稳定度降低。
2.零阶保持器是上升时间加长,同时,超调量和震荡次数增加。
(作业八)非线性的系统
Matlab中的状态模型:(加饱和限幅的非线性因素)。