利用程序建立一个二叉树,并实现各种遍历算法
二叉树的遍历和应用

内蒙古科技大学本科生课程设计说明书题目:数据结构课程设计——二叉树的遍历和应用学生姓名:学号:专业:班级:指导教师:2013年5月29日内蒙古科技大学课程设计说明书内蒙古科技大学课程设计任务书I内蒙古科技大学课程设计说明书目录内蒙古科技大学课程设计任务书..............................................................错误!未定义书签。
目录 (II)第一章需求分析 (3)1.1课程设计目的 (3)1.2任务概述 (3)1.3课程设计内容 (3)第二章概要设计 (5)2.1设计思想 (5)2.2二叉树的遍历 (5)2.3运行界面设计 (6)第三章详细设计 (7)3.1二叉树的生成 (7)3.2二叉树的先序遍历 (7)3.3 二叉树的中序遍历 (8)3.4二叉树的后续遍历 (8)3.5主程序的设计 (8)第四章测试分析 (11)4.1二叉树的建立 (11)4.2二叉树的先序、中序、后序遍历 (11)第五章课程设计总结 (12)附录:程序代码 (13)致谢 ···········································································································错误!未定义书签。
实验报告二叉树

递归遍历右子树输出根结点数data}void postOrder1 (struct btnode *bt){概念栈,结点参数p,prebt入栈While(栈或p是不是为空){提取栈顶元素值if判定p是不是为空或是pre的根结点输出根结点数data栈顶元素出栈栈顶元素p赋给pre记录else if右结点非空将右结点压栈if左结点将左结点压栈}}void main(){struct btnode *root=NULL;root=createbt(root);preOrder(root); midOrder(root); postOrder(root);preOrder1(root); midOrder1(root); postOrder1(root);
数据结构实验五(二叉树的建立及遍历)题目和源程序

实验5:二叉树的建立及遍历(第十三周星期三7、8节)一、实验目的1.学会实现二叉树结点结构和对二叉树的基本操作。
2.掌握对二叉树每种操作的具体实现,学会利用递归方法编写对二叉树这种递归数据结构进行处理的算法。
二、实验要求1.认真阅读和掌握和本实验相关的教材内容。
2.编写完整程序完成下面的实验内容并上机运行。
3.整理并上交实验报告。
三、实验内容1.编写程序任意输入二叉树的结点个数和结点值,构造一棵二叉树,采用三种递归遍历算法(前序、中序、后序)对这棵二叉树进行遍历并计算出二叉树的高度。
2 .编写程序生成下面所示的二叉树,并采用中序遍历的非递归算法对此二叉树进行遍历。
四、思考与提高1.如何计算二叉链表存储的二叉树中度数为1的结点数?2.已知有—棵以二叉链表存储的二叉树,root指向根结点,p指向二叉树中任一结点,如何求从根结点到p所指结点之间的路径?/*----------------------------------------* 05-1_递归遍历二叉树.cpp -- 递归遍历二叉树的相关操作* 对递归遍历二叉树的每个基本操作都用单独的函数来实现* 水上飘2009年写----------------------------------------*/// ds05.cpp : Defines the entry point for the console application.//#include "stdafx.h"#include <iostream>typedef char ElemType;using namespace std;typedef struct BiTNode {ElemType data;//左右孩子指针BiTNode *lchild, *rchild;}BiTNode, *BiTree;//动态输入字符按先序创建二叉树void CreateBiTree(BiTree &T) {char ch;ch = cin.get();if(ch == ' ') {T = NULL;}else {if(ch == '\n') {cout << "输入未结束前不要输入回车,""要结束分支请输入空格!" << endl;}else {//生成根结点T = (BiTNode * )malloc(sizeof(BiTNode));if(!T)cout << "内存分配失败!" << endl;T->data = ch;//构造左子树CreateBiTree(T->lchild);//构造右子树CreateBiTree(T->rchild);}}}//输出e的值ElemType PrintElement(ElemType e) { cout << e << " ";return e;}//先序遍历void PreOrderTraverse(BiTree T) { if (T != NULL) {//打印结点的值PrintElement(T->data);//遍历左孩子PreOrderTraverse(T->lchild);//遍历右孩子PreOrderTraverse(T->rchild);}}//中序遍历void InOrderTraverse(BiTree T) {if (T != NULL) {//遍历左孩子InOrderTraverse(T->lchild);//打印结点的值PrintElement(T->data);//遍历右孩子InOrderTraverse(T->rchild);}}//后序遍历void PostOrderTraverse(BiTree T) { if (T != NULL) {//遍历左孩子PostOrderTraverse(T->lchild);//遍历右孩子PostOrderTraverse(T->rchild);//打印结点的值PrintElement(T->data);}}//按任一种遍历次序输出二叉树中的所有结点void TraverseBiTree(BiTree T, int mark) {if(mark == 1) {//先序遍历PreOrderTraverse(T);cout << endl;}else if(mark == 2) {//中序遍历InOrderTraverse(T);cout << endl;}else if(mark == 3) {//后序遍历PostOrderTraverse(T);cout << endl;}else cout << "选择遍历结束!" << endl;}//输入值并执行选择遍历函数void ChoiceMark(BiTree T) {int mark = 1;cout << "请输入,先序遍历为1,中序为2,后序为3,跳过此操作为0:";cin >> mark;if(mark > 0 && mark < 4) {TraverseBiTree(T, mark);ChoiceMark(T);}else cout << "此操作已跳过!" << endl;}//求二叉树的深度int BiTreeDepth(BiTNode *T) {if (T == NULL) {//对于空树,返回0并结束递归return 0;}else {//计算左子树的深度int dep1 = BiTreeDepth(T->lchild);//计算右子树的深度int dep2 = BiTreeDepth(T->rchild);//返回树的深度if(dep1 > dep2)return dep1 + 1;elsereturn dep2 + 1;}}int _tmain(int argc, _TCHAR* argv[]){BiTNode *bt;bt = NULL; //将树根指针置空cout << "输入规则:" << endl<< "要生成新结点,输入一个字符,""不要生成新结点的左孩子,输入一个空格,""左右孩子都不要,输入两个空格,""要结束,输入多个空格(越多越好),再回车!"<< endl << "按先序输入:";CreateBiTree(bt);cout << "树的深度为:" << BiTreeDepth(bt) << endl;ChoiceMark(bt);return 0;}/*----------------------------------------* 05-2_构造二叉树.cpp -- 构造二叉树的相关操作* 对构造二叉树的每个基本操作都用单独的函数来实现* 水上飘2009年写----------------------------------------*/// ds05-2.cpp : Defines the entry point for the console application.//#include "stdafx.h"#include <iostream>#define STACK_INIT_SIZE 100 //栈的存储空间初始分配量#define STACKINCREMENT 10 //存储空间分配增量typedef char ElemType; //元素类型using namespace std;typedef struct BiTNode {ElemType data; //结点值BiTNode *lchild, *rchild; //左右孩子指针}BiTNode, *BiTree;typedef struct {BiTree *base; //在栈构造之前和销毁之后,base的值为空BiTree *top; //栈顶指针int stacksize; //当前已分配的存储空间,以元素为单位}SqStack;//构造一个空栈void InitStack(SqStack &s) {s.base = (BiTree *)malloc(STACK_INIT_SIZE * sizeof(BiTree));if(!s.base)cout << "存储分配失败!" << endl;s.top = s.base;s.stacksize = STACK_INIT_SIZE;}//插入元素e为新的栈顶元素void Push(SqStack &s, BiTree e) {//栈满,追加存储空间if ((s.top - s.base) >= s.stacksize) {s.base = (BiTree *)malloc((STACK_INIT_SIZE+STACKINCREMENT) * sizeof(BiTree));if(!s.base)cout << "存储分配失败!" << endl;s.top = s.base + s.stacksize;s.stacksize += STACK_INIT_SIZE;}*s.top++ = e;}//若栈不空,则删除s的栈顶元素,并返回其值BiTree Pop(SqStack &s) {if(s.top == s.base)cout << "栈为空,无法删除栈顶元素!" << endl;s.top--;return *s.top;}//按先序输入字符创建二叉树void CreateBiTree(BiTree &T) {char ch;//接受输入的字符ch = cin.get();if(ch == ' ') {//分支结束T = NULL;} //if' 'endelse if(ch == '\n') {cout << "输入未结束前不要输入回车,""要结束分支请输入空格!(接着输入)" << endl;} //if'\n'endelse {//生成根结点T = (BiTNode * )malloc(sizeof(BiTree));if(!T)cout << "内存分配失败!" << endl;T->data = ch;//构造左子树CreateBiTree(T->lchild);//构造右子树CreateBiTree(T->rchild);} //Create end}//输出e的值,并返回ElemType PrintElement(ElemType e) {cout << e << " ";return e;}//中序遍历二叉树的非递归函数void InOrderTraverse(BiTree p, SqStack &S) {cout << "中序遍历结果:";while(S.top != S.base || p != NULL) {if(p != NULL) {Push(S,p);p = p->lchild;} //if NULL endelse {BiTree bi = Pop(S);if(!PrintElement(bi->data))cout << "输出其值未成功!" << endl;p = bi->rchild;} //else end} //while endcout << endl;}int _tmain(int argc, _TCHAR* argv[]){BiTNode *bt;SqStack S;InitStack(S);bt = NULL; //将树根指针置空cout << "老师要求的二叉树序列(‘空’表示空格):""12空空346空空空5空空,再回车!"<< endl << "请按先序输入一个二叉树序列(可另输入,但要为先序),""无左右孩子则分别输入空格。
实现二叉树的各种遍历算法实验报告

if(a[i]>kmax) kmax = a[i]; return kmax; } /** 求二叉树的节点个数 **/ int Nodes(BTNode *b) { if(b==NULL)
2.2:( 1 )实现二叉树的先序遍历 ( 2)实现二叉树的中序遍历 ( 3)实现二叉树的后序遍历
三 实验内容 :
3.1 树的抽象数据类型 : ADT Tree{
.专业 .整理 .
下载可编辑
数据对象 D: D 是具有相同特性的数据元素的集合 。 数据关系 R: 若 D 为空集 , 则称为空树 ;
若 D 仅含有一个数据元素 ,则 R 为空集 , 否则 R={H} , H 是如 下二元关系 :
if(b!=NULL) {
printf("%c",b->data); if(b->lchild!=NULL || b->rchild!=NULL) {
printf(" ("); DispBTNode(b->lchild); if(b->rchild != NULL)printf(" , "); DispBTNode(b->rchild); printf(" )"); } } } /** 深度 **/ int BTNodeDepth(BTNode *b)
下载可编辑
实现二叉树的各种遍历算法实验报告
一 实验题目 : 实现二叉树的各种遍历算法 二 实验要求 :
2.1:(1 ) 输出二叉树 b ( 2)输出 H 节点的左右孩子节点值 ( 3)输出二叉树 b 的深度 ( 4)输出二叉树 b 的宽度 ( 5)输出二叉树 b 的节点个数 ( 6)输出二叉树 b 的叶子节点个数 ( 7)释放二叉树 b
《数据结构》应用题参考习题

《数据结构》应用题参考习题数据结构是计算机科学中的一门基础课程,它主要研究数据的组织、存储和管理方式,以及不同数据结构对算法执行效率的影响。
在实际应用中,数据结构起到了至关重要的作用。
本文将介绍一些《数据结构》的应用题,并给出相应的参考习题。
一、栈的应用题1. 符号匹配问题问题描述:给定一个字符串,在其中包含了一些圆括号"()"、方括号"[]"和花括号"{}",判断字符中的括号是否匹配。
例题:判断字符串"{[()]()}"是否匹配。
解题思路:利用栈的先进后出特点,遍历字符串中的每个字符。
如果是左括号,则入栈;如果是右括号,则判断栈顶元素是否与之匹配。
参考习题:编写一个程序,实现括号匹配的功能,并输出匹配结果。
二、队列的应用题1. 循环队列的应用问题描述:设计一个循环队列,实现入队、出队等基本操作。
解题思路:利用数组实现循环队列,需要设置一个队头指针front和一个队尾指针rear。
入队操作时,将元素添加到rear位置;出队操作时,返回front位置元素,并将front后移。
参考习题:实现一个循环队列,并进行相关操作的测试。
三、链表的应用题1. 单链表反转问题描述:给定一个单链表,将其反转。
例题:将链表1->2->3->4->5反转为5->4->3->2->1。
解题思路:利用三个指针prev、cur和next,依次遍历链表,并修改指针指向实现链表的反转。
参考习题:编写一个程序,实现单链表反转,并输出反转后的链表。
四、树的应用题1. 二叉树的遍历问题描述:给定一个二叉树,实现它的前序遍历、中序遍历和后序遍历。
解题思路:分别使用递归和迭代的方式实现二叉树的前序遍历、中序遍历和后序遍历。
参考习题:编写一个程序,实现二叉树的前序遍历、中序遍历和后序遍历,并输出遍历结果。
五、图的应用题1. 图的最短路径问题描述:给定一个有向图,求两个顶点之间的最短路径。
实验六二叉树实验报告

实验四二叉树的操作班级:计算机1002班姓名:唐自鸿学号:201003010207 完成日期:2010.6.14 题目:对于给定的一二叉树,实现各种约定的遍历。
一、实验目的:(1)掌握二叉树的定义和存储表示,学会建立一棵特定二叉树的方法;(2)掌握二叉树的遍历算法(先序、中序、后序遍历算法)的思想,并学会遍历算法的递归实现和非递归实现。
二、实验内容:构造二叉树,再实现二叉树的先序、中序、后序遍历,最后统计二叉树的深度。
三、实验步骤:(一) 需求分析1. 二叉树的建立首先要建立一个二叉链表的结构体,包含根节点和左右子树。
因为树的每一个左右子树又是一颗二叉树,所以用递归的方法来建立其左右子树。
二叉树的遍历是一种把二叉树的每一个节点访问并输出的过程,遍历时根结点与左右孩子的输出顺序构成了不同的遍历方法,这个过程需要按照不同的遍历的方法,先输出根结点还是先输出左右孩子,可以用选择语句来实现。
2.程序的执行命令为:1)构造结点类型,然后创建二叉树。
2)根据提示,从键盘输入各个结点。
3)通过选择一种方式(先序、中序或者后序)遍历。
4)输出结果,结束。
(二)概要设计1.二叉树的二叉链表结点存储类型定义typedef struct Node{DataType data;struct Node *LChild;struct Node *RChild;}BitNode,*BitTree;2.建立如下图所示二叉树:void CreatBiTree(BitTree *bt)用扩展先序遍历序列创建二叉树,如果是当前树根置为空,否则申请一个新节点。
3.本程序包含四个模块1) 主程序模块:2)先序遍历模块3)中序遍历模块4)后序遍历模块4.模块调用关系:主程序模块(三)详细设计1.建立二叉树存储类型//==========构造二叉树=======void CreatBiTree(BitTree *bt)//用扩展先序遍历序列创建二叉树,如果是当前树根置为空,否则申请一个新节点//{char ch;ch=getchar();if(ch=='.')*bt=NULL;else{*bt=(BitTree)malloc(sizeof(BitNode));//申请一段关于该节点类型的存储空间(*bt)->data=ch; //生成根结点CreatBiTree(&((*bt)->LChild)); //构造左子树CreatBiTree(&((*bt)->RChild)); //构造右子树}}2. 编程实现以上二叉树的前序、中序和后序遍历操作,输出遍历序列1)先序遍历二叉树的递归算法如下:void PreOrder(BitTree root){if (root!=NULL){Visit(root ->data);PreOrder(root ->LChild); //递归调用核心PreOrder(root ->RChild);}}2)中序遍历二叉树的递归算法如下:void InOrder(BitTree root){if (root!=NULL){InOrder(root ->LChild);Visit(root ->data);InOrder(root ->RChild);}}3)后序遍历二叉树的递归算法如下:void PostOrder(BitTree root){if(root!=NULL){PostOrder(root ->LChild);PostOrder(root ->RChild);Visit(root ->data);}}4)计算二叉树的深度算法如下:int PostTreeDepth(BitTree bt) //求二叉树的深度{int hl,hr,max;if(bt!=NULL){hl=PostTreeDepth(bt->LChild); //求左子树的深度hr=PostTreeDepth(bt->RChild); //求右子树的深度max=hl>hr?hl:hr; //得到左、右子树深度较大者return(max+1); //返回树的深度}else return(0); //如果是空树,则返回0}四、调试分析及测试结果1. 进入演示程序后的显示主界面:请输入二叉树中的元素;先序、中序和后序遍历分别输出结果。
树和二叉树的实验报告

树和二叉树的实验报告树和二叉树的实验报告一、引言树和二叉树是计算机科学中常用的数据结构,它们在各种算法和应用中都有广泛的应用。
本实验旨在通过实际操作和观察,深入了解树和二叉树的特性和操作。
二、树的构建与遍历1. 树的概念和特性树是一种非线性的数据结构,由节点和边组成。
每个节点可以有零个或多个子节点,其中一个节点没有父节点的称为根节点。
树的特点包括层次结构、唯一根节点和无环等。
2. 树的构建在本实验中,我们使用Python语言构建了一棵树。
通过定义节点类和树类,我们可以方便地创建树的实例,并添加节点和连接节点之间的边。
3. 树的遍历树的遍历是指按照一定顺序访问树中的所有节点。
常见的遍历方式有前序遍历、中序遍历和后序遍历。
我们在实验中实现了这三种遍历方式,并观察了它们的输出结果。
三、二叉树的实现与应用1. 二叉树的概念和特性二叉树是一种特殊的树,每个节点最多有两个子节点,分别称为左子节点和右子节点。
二叉树的特点包括唯一根节点、每个节点最多有两个子节点和子节点的顺序等。
2. 二叉树的实现我们使用Python语言实现了二叉树的数据结构。
通过定义节点类和二叉树类,我们可以创建二叉树的实例,并实现插入节点、删除节点和查找节点等操作。
3. 二叉树的应用二叉树在实际应用中有很多用途。
例如,二叉搜索树可以用于实现快速查找和排序算法。
AVL树和红黑树等平衡二叉树可以用于高效地插入和删除操作。
我们在实验中实现了这些应用,并通过实际操作验证了它们的效果。
四、实验结果与讨论通过实验,我们成功构建了树和二叉树的数据结构,并实现了它们的基本操作。
通过观察和分析实验结果,我们发现树和二叉树在各种算法和应用中的重要性和灵活性。
树和二叉树的特性使得它们适用于解决各种问题,例如搜索、排序、图算法等。
同时,我们也发现了一些问题和挑战,例如树的平衡性和节点的插入和删除操作等。
这些问题需要进一步的研究和优化。
五、总结本实验通过实际操作和观察,深入了解了树和二叉树的特性和操作。
数据结构_二叉树的遍历_课程设计

8
if(bt!=NULL)/*二叉树 bt 非空*/ { inorder(bt->lchild);/*中序遍历 bt 的左子树*/ printf("%c",bt->data);/*访问结点 bt*/ inorder(bt->rchild);/*中序遍历 bt 的右子树*/ } } void postorder(bitree *bt)/*后序序遍历二叉树*/ { if(bt!=NULL) { postorder(bt->lchild); postorder(bt->rchild); printf("%c",bt->data); } }
3.2.2 二叉树的中序递归遍历算法
void inorder(bitree *bt)/*中序序遍历二叉树*/ { if(bt!=NULL)/*二叉树 bt 非空*/ { inorder(bt->lchild);/*中序遍历 bt 的左子树*/ printf("%c",bt->data);/*访问结点 bt*/ inorder(bt->rchild);/*中序遍历 bt 的右子树*/ } }
图 1 “菜单”界面
图2
创建二叉树
5
图 3 二叉树的先序遍历
图4
二叉树的中序输出
6
图 5 二叉树的后序输出
五:实验总结 虽然做的过程中出现很多错误。但是最后还是一一纠正了,并在其中发现了自 身的不足,补学补差。最后终于完成了。
六:源程序附录
#include<stdio.h> #include<stdlib.h> typedef char datatype; typedef struct node { datatype data;/*数据元素*/ struct node *lchild,*rchild;/*指向左,右孩子*/ }bitree; bitree *root;/*二叉树结点类型定义*/ bitree *creatbitree(bitree *root)/*创建二叉树*/ { char ch;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、问题需求分析
利用程序建立一个二叉树,并实现各种遍历算法。
二、算法选择
二叉树的建立
二叉树建立的方法有很多种,最常用的是采用递归的先根次序来建立,这次的实验就是采用此算法。
二叉树的遍历
二叉树的遍历有常用的三种方法,分别是:先根次序、中根次序、后根次序。
为了验证这几种遍历算法的区别,本次的实验将会实现所有的算法。
遍历的时候,把结点的信息打印出来,为了让结点的信息更容易区别,在每个结点前加上数字标识。
如:data[1]=A,data[2]=B.
实现的算法皆为递归算法。
三、分情况处理的实现
由于算法需要同时实现出来字符型数据和整形数据,这两种数据处理过程中,对输入和输出的处理会有所不同,为了实现这个功能,采用#ifdef和#else的代码选择方法。
代码示例:
#define CHAR
//为了增强程序的多功能,定义CHAR时,用字符的处理模式
//当CHAR没有被定义时,采用整数处理模式
#ifdef CHAR
//数据类型的定义
typedef char datatype;
#else
typedef int datatype; #endif。