数据结构二叉树的实现与三种遍历
数据结构+二叉树及遍历+PPT

课程13 课程
数据结构和算法
定义二叉树( 定义二叉树(续) 完整二叉树:
指有 n 个节点且深度为 d ,且其节点对应深度为k 的完整二叉 树中序号从0到n − 1 的节点。
0
A
0
A
0
A
1
B
4 5
2
C
6 3
1
B
4 5
2
C
3
1
B
4
2
C
5
3
D
E
F
G
D
E
F
D
E
G
满二叉树
完整二叉树
不完整二叉树
Ver. 1.0
root A
B
C
D
E
F
G
H
D
Ver. 1.0
H
B
E
A
F
C
I
I
课程13 课程
数据结构和算法
中序遍历( 中序遍历(续)
I的右子树为空。 因此,移动到节点G。
root A
B
C
D
E
F
G
H
D
Ver. 1.0
H
B
E
A
F
C
I
I
课程13 课程
数据结构和算法
中序遍历( 中序遍历(续) 访问节点 G。
root A
B
B
C
D
E
F
G
H
D
Ver. 1.0
H
课程13 课程
I
数据结构和算法
中序遍历( 中序遍历(续)
H的右子树为空。 因此,移动到节点 B。
root A
二叉树的遍历及常用算法

⼆叉树的遍历及常⽤算法⼆叉树的遍历及常⽤算法遍历的定义:按照某种次序访问⼆叉树上的所有结点,且每个节点仅被访问⼀次;遍历的重要性:当我们需要对⼀颗⼆叉树进⾏,插⼊,删除,查找等操作时,通常都需要先遍历⼆叉树,所有说:遍历是⼆叉树的基本操作;遍历思路:⼆叉树的数据结构是递归定义(每个节点都可能包含相同结构的⼦节点),所以遍历也可以使⽤递归,即结点不为空则继续递归调⽤每个节点都有三个域,数据与,左孩⼦指针和右孩⼦之指针,每次遍历只需要读取数据,递归左⼦树,递归右⼦树,这三个操作三种遍历次序:根据访问三个域的不同顺序,可以有多种不同的遍历次序,⽽通常对于⼦树的访问都按照从左往右的顺序;设:L为遍历左⼦树,D为访问根结点,R为遍历右⼦树,且L必须位于R的前⾯可以得出以下三种不同的遍历次序:先序遍历操作次序为DLR,⾸先访问根结点,其次遍历根的左⼦树,最后遍历根右⼦树,对每棵⼦树同样按这三步(先根、后左、再右)进⾏中序遍历操作次序为LDR,⾸先遍历根的左⼦树,其次访问根结点,最后遍历根右⼦树,对每棵⼦树同样按这三步(先左、后根、再右)进⾏后序遍历操作次序为LRD,⾸先遍历根的左⼦树,其次遍历根的右⼦树,最后访问根结点,对每棵⼦树同样按这三步(先左、后右、最后根)进⾏层次遍历层次遍历即按照从上到下从左到右的顺序依次遍历所有节点,实现层次遍历通常需要借助⼀个队列,将接下来要遍历的结点依次加⼊队列中;遍历的应⽤“遍历”是⼆叉树各种操作的基础,可以在遍历过程中对结点进⾏各种操作,如:对于⼀棵已知⼆叉树求⼆叉树中结点的个数求⼆叉树中叶⼦结点的个数;求⼆叉树中度为1的结点个数求⼆叉树中度为2的结点个数5求⼆叉树中⾮终端结点个数交换结点左右孩⼦判定结点所在层次等等...C语⾔实现:#include <stdio.h>//⼆叉链表数据结构定义typedef struct TNode {char data;struct TNode *lchild;struct TNode *rchild;} *BinTree, BinNode;//初始化//传⼊⼀个指针令指针指向NULLvoid initiate(BinTree *tree) {*tree = NULL;}//创建树void create(BinTree *BT) {printf("输⼊当前结点值: (0则创建空节点)\n");char data;scanf(" %c", &data);//连续输⼊整形和字符时.字符变量会接受到换⾏,所以加空格if (data == 48) {*BT = NULL;return;} else {//创建根结点//注意开辟的空间⼤⼩是结构体的⼤⼩⽽不是结构体指针⼤⼩,写错了不会⽴马产⽣问题,但是后续在其中存储数据时极有可能出现内存访问异常(飙泪....) *BT = malloc(sizeof(struct TNode));//数据域赋值(*BT)->data = data;printf("输⼊节点 %c 的左孩⼦ \n", data);create(&((*BT)->lchild));//递归创建左⼦树printf("输⼊节点 %c 的右孩⼦ \n", data);create(&((*BT)->rchild));//递归创建右⼦树}}//求双亲结点(⽗结点)BinNode *Parent(BinTree tree, char x) {if (tree == NULL)return NULL;else if ((tree->lchild != NULL && tree->lchild->data == x) || (tree->rchild != NULL && tree->rchild->data == x))return tree;else{BinNode *node1 = Parent(tree->lchild, x);BinNode *node2 = Parent(tree->rchild, x);return node1 != NULL ? node1 : node2;}}//先序遍历void PreOrder(BinTree tree) {if (tree) {//输出数据printf("%c ", tree->data);//不为空则按顺序继续递归判断该节点的两个⼦节点PreOrder(tree->lchild);PreOrder(tree->rchild);}}//中序void InOrder(BinTree tree) {if (tree) {InOrder(tree->lchild);printf("%c ", tree->data);InOrder(tree->rchild);}}//后序void PostOrder(BinTree tree) {if (tree) {PostOrder(tree->lchild);PostOrder(tree->rchild);printf("%c ", tree->data);}}//销毁结点递归free所有节点void DestroyTree(BinTree *tree) {if (*tree != NULL) {printf("free %c \n", (*tree)->data);if ((*tree)->lchild) {DestroyTree(&((*tree)->lchild));}if ((*tree)->rchild) {DestroyTree(&((*tree)->rchild));}free(*tree);*tree = NULL;}}// 查找元素为X的结点使⽤的是层次遍历BinNode *FindNode(BinTree tree, char x) {if (tree == NULL) {return NULL;}//队列BinNode *nodes[1000] = {};//队列头尾位置int front = 0, real = 0;//将根节点插⼊到队列尾nodes[real] = tree;real += 1;//若队列不为空则继续while (front != real) {//取出队列头结点输出数据BinNode *current = nodes[front];if (current->data == x) {return current;}front++;//若当前节点还有⼦(左/右)节点则将结点加⼊队列if (current->lchild != NULL) {nodes[real] = current->lchild;real++;}if (current->rchild != NULL) {nodes[real] = current->rchild;real++;}}return NULL;}//层次遍历// 查找元素为X的结点使⽤的是层次遍历void LevelOrder(BinTree tree) {if (tree == NULL) {return;}//队列BinNode *nodes[1000] = {};//队列头尾位置int front = 0, real = 0;//将根节点插⼊到队列尾nodes[real] = tree;real += 1;//若队列不为空则继续while (front != real) {//取出队列头结点输出数据BinNode *current = nodes[front];printf("%2c", current->data);front++;//若当前节点还有⼦(左/右)节点则将结点加⼊队列if (current->lchild != NULL) {nodes[real] = current->lchild;real++;}if (current->rchild != NULL) {nodes[real] = current->rchild;real++;}}}//查找x的左孩⼦BinNode *Lchild(BinTree tree, char x) {BinTree node = FindNode(tree, x);if (node != NULL) {return node->lchild;}return NULL;}//查找x的右孩⼦BinNode *Rchild(BinTree tree, char x) {BinTree node = FindNode(tree, x);if (node != NULL) {return node->rchild;}return NULL;}//求叶⼦结点数量int leafCount(BinTree *tree) {if (*tree == NULL)return 0;//若左右⼦树都为空则该节点为叶⼦,且后续不⽤接续递归了else if (!(*tree)->lchild && !(*tree)->rchild)return 1;else//若当前结点存在⼦树,则递归左右⼦树, 结果相加return leafCount(&((*tree)->lchild)) + leafCount(&((*tree)->rchild));}//求⾮叶⼦结点数量int NotLeafCount(BinTree *tree) {if (*tree == NULL)return 0;//若该结点左右⼦树均为空,则是叶⼦,且不⽤继续递归else if (!(*tree)->lchild && !(*tree)->rchild)return 0;else//若当前结点存在左右⼦树,则是⾮叶⼦结点(数量+1),在递归获取左右⼦树中的⾮叶⼦结点,结果相加 return NotLeafCount(&((*tree)->lchild)) + NotLeafCount(&((*tree)->rchild)) + 1;}//求树的⾼度(深度)int DepthCount(BinTree *tree) {if (*tree == NULL)return 0;else{//当前节点不为空则深度+1 在加上⼦树的⾼度,int lc = DepthCount(&((*tree)->lchild)) + 1;int rc = DepthCount(&((*tree)->rchild)) + 1;return lc > rc?lc:rc;// 取两⼦树深度的最⼤值 }}//删除左⼦树void RemoveLeft(BinNode *node){if (!node)return;if (node->lchild)DestroyTree(&(node->lchild));node->lchild = NULL;}//删除右⼦树void RemoveRight(BinNode *node){if (!node)return;if (node->rchild)DestroyTree(&(node->rchild));node->rchild = NULL;}int main() {BinTree tree;create(&tree);BinNode *node = Parent(tree, 'G');printf("G的⽗结点为%c\n",node->data);BinNode *node2 = Lchild(tree, 'D');printf("D的左孩⼦结点为%c\n",node2->data);BinNode *node3 = Rchild(tree, 'D');printf("D的右孩⼦结点为%c\n",node3->data);printf("先序遍历为:");PreOrder(tree);printf("\n");printf("中序遍历为:");InOrder(tree);printf("\n");printf("后序遍历为:");PostOrder(tree);printf("\n");printf("层次遍历为:");LevelOrder(tree);printf("\n");int a = leafCount(&tree);printf("叶⼦结点数为%d\n",a);int b = NotLeafCount(&tree);printf("⾮叶⼦结点数为%d\n",b);int c = DepthCount(&tree);printf("深度为%d\n",c);//查找F节点BinNode *node4 = FindNode(tree,'C');RemoveLeft(node4);printf("删除C的左孩⼦后遍历:");LevelOrder(tree);printf("\n");RemoveRight(node4);printf("删除C的右孩⼦后遍历:");LevelOrder(tree);printf("\n");//销毁树printf("销毁树 \n");DestroyTree(&tree);printf("销毁后后遍历:");LevelOrder(tree);printf("\n");printf("Hello, World!\n");return 0;}测试:测试数据为下列⼆叉树:运⾏程序复制粘贴下列内容:ABDGHECKFIJ特别感谢:iammomo。
数据结构实验五(二叉树的建立及遍历)题目和源程序

实验5:二叉树的建立及遍历(第十三周星期三7、8节)一、实验目的1.学会实现二叉树结点结构和对二叉树的基本操作。
2.掌握对二叉树每种操作的具体实现,学会利用递归方法编写对二叉树这种递归数据结构进行处理的算法。
二、实验要求1.认真阅读和掌握和本实验相关的教材内容。
2.编写完整程序完成下面的实验内容并上机运行。
3.整理并上交实验报告。
三、实验内容1.编写程序任意输入二叉树的结点个数和结点值,构造一棵二叉树,采用三种递归遍历算法(前序、中序、后序)对这棵二叉树进行遍历并计算出二叉树的高度。
2 .编写程序生成下面所示的二叉树,并采用中序遍历的非递归算法对此二叉树进行遍历。
四、思考与提高1.如何计算二叉链表存储的二叉树中度数为1的结点数?2.已知有—棵以二叉链表存储的二叉树,root指向根结点,p指向二叉树中任一结点,如何求从根结点到p所指结点之间的路径?/*----------------------------------------* 05-1_递归遍历二叉树.cpp -- 递归遍历二叉树的相关操作* 对递归遍历二叉树的每个基本操作都用单独的函数来实现* 水上飘2009年写----------------------------------------*/// ds05.cpp : Defines the entry point for the console application.//#include "stdafx.h"#include <iostream>typedef char ElemType;using namespace std;typedef struct BiTNode {ElemType data;//左右孩子指针BiTNode *lchild, *rchild;}BiTNode, *BiTree;//动态输入字符按先序创建二叉树void CreateBiTree(BiTree &T) {char ch;ch = cin.get();if(ch == ' ') {T = NULL;}else {if(ch == '\n') {cout << "输入未结束前不要输入回车,""要结束分支请输入空格!" << endl;}else {//生成根结点T = (BiTNode * )malloc(sizeof(BiTNode));if(!T)cout << "内存分配失败!" << endl;T->data = ch;//构造左子树CreateBiTree(T->lchild);//构造右子树CreateBiTree(T->rchild);}}}//输出e的值ElemType PrintElement(ElemType e) { cout << e << " ";return e;}//先序遍历void PreOrderTraverse(BiTree T) { if (T != NULL) {//打印结点的值PrintElement(T->data);//遍历左孩子PreOrderTraverse(T->lchild);//遍历右孩子PreOrderTraverse(T->rchild);}}//中序遍历void InOrderTraverse(BiTree T) {if (T != NULL) {//遍历左孩子InOrderTraverse(T->lchild);//打印结点的值PrintElement(T->data);//遍历右孩子InOrderTraverse(T->rchild);}}//后序遍历void PostOrderTraverse(BiTree T) { if (T != NULL) {//遍历左孩子PostOrderTraverse(T->lchild);//遍历右孩子PostOrderTraverse(T->rchild);//打印结点的值PrintElement(T->data);}}//按任一种遍历次序输出二叉树中的所有结点void TraverseBiTree(BiTree T, int mark) {if(mark == 1) {//先序遍历PreOrderTraverse(T);cout << endl;}else if(mark == 2) {//中序遍历InOrderTraverse(T);cout << endl;}else if(mark == 3) {//后序遍历PostOrderTraverse(T);cout << endl;}else cout << "选择遍历结束!" << endl;}//输入值并执行选择遍历函数void ChoiceMark(BiTree T) {int mark = 1;cout << "请输入,先序遍历为1,中序为2,后序为3,跳过此操作为0:";cin >> mark;if(mark > 0 && mark < 4) {TraverseBiTree(T, mark);ChoiceMark(T);}else cout << "此操作已跳过!" << endl;}//求二叉树的深度int BiTreeDepth(BiTNode *T) {if (T == NULL) {//对于空树,返回0并结束递归return 0;}else {//计算左子树的深度int dep1 = BiTreeDepth(T->lchild);//计算右子树的深度int dep2 = BiTreeDepth(T->rchild);//返回树的深度if(dep1 > dep2)return dep1 + 1;elsereturn dep2 + 1;}}int _tmain(int argc, _TCHAR* argv[]){BiTNode *bt;bt = NULL; //将树根指针置空cout << "输入规则:" << endl<< "要生成新结点,输入一个字符,""不要生成新结点的左孩子,输入一个空格,""左右孩子都不要,输入两个空格,""要结束,输入多个空格(越多越好),再回车!"<< endl << "按先序输入:";CreateBiTree(bt);cout << "树的深度为:" << BiTreeDepth(bt) << endl;ChoiceMark(bt);return 0;}/*----------------------------------------* 05-2_构造二叉树.cpp -- 构造二叉树的相关操作* 对构造二叉树的每个基本操作都用单独的函数来实现* 水上飘2009年写----------------------------------------*/// ds05-2.cpp : Defines the entry point for the console application.//#include "stdafx.h"#include <iostream>#define STACK_INIT_SIZE 100 //栈的存储空间初始分配量#define STACKINCREMENT 10 //存储空间分配增量typedef char ElemType; //元素类型using namespace std;typedef struct BiTNode {ElemType data; //结点值BiTNode *lchild, *rchild; //左右孩子指针}BiTNode, *BiTree;typedef struct {BiTree *base; //在栈构造之前和销毁之后,base的值为空BiTree *top; //栈顶指针int stacksize; //当前已分配的存储空间,以元素为单位}SqStack;//构造一个空栈void InitStack(SqStack &s) {s.base = (BiTree *)malloc(STACK_INIT_SIZE * sizeof(BiTree));if(!s.base)cout << "存储分配失败!" << endl;s.top = s.base;s.stacksize = STACK_INIT_SIZE;}//插入元素e为新的栈顶元素void Push(SqStack &s, BiTree e) {//栈满,追加存储空间if ((s.top - s.base) >= s.stacksize) {s.base = (BiTree *)malloc((STACK_INIT_SIZE+STACKINCREMENT) * sizeof(BiTree));if(!s.base)cout << "存储分配失败!" << endl;s.top = s.base + s.stacksize;s.stacksize += STACK_INIT_SIZE;}*s.top++ = e;}//若栈不空,则删除s的栈顶元素,并返回其值BiTree Pop(SqStack &s) {if(s.top == s.base)cout << "栈为空,无法删除栈顶元素!" << endl;s.top--;return *s.top;}//按先序输入字符创建二叉树void CreateBiTree(BiTree &T) {char ch;//接受输入的字符ch = cin.get();if(ch == ' ') {//分支结束T = NULL;} //if' 'endelse if(ch == '\n') {cout << "输入未结束前不要输入回车,""要结束分支请输入空格!(接着输入)" << endl;} //if'\n'endelse {//生成根结点T = (BiTNode * )malloc(sizeof(BiTree));if(!T)cout << "内存分配失败!" << endl;T->data = ch;//构造左子树CreateBiTree(T->lchild);//构造右子树CreateBiTree(T->rchild);} //Create end}//输出e的值,并返回ElemType PrintElement(ElemType e) {cout << e << " ";return e;}//中序遍历二叉树的非递归函数void InOrderTraverse(BiTree p, SqStack &S) {cout << "中序遍历结果:";while(S.top != S.base || p != NULL) {if(p != NULL) {Push(S,p);p = p->lchild;} //if NULL endelse {BiTree bi = Pop(S);if(!PrintElement(bi->data))cout << "输出其值未成功!" << endl;p = bi->rchild;} //else end} //while endcout << endl;}int _tmain(int argc, _TCHAR* argv[]){BiTNode *bt;SqStack S;InitStack(S);bt = NULL; //将树根指针置空cout << "老师要求的二叉树序列(‘空’表示空格):""12空空346空空空5空空,再回车!"<< endl << "请按先序输入一个二叉树序列(可另输入,但要为先序),""无左右孩子则分别输入空格。
二叉树,树,森林遍历之间的对应关系

二叉树,树,森林遍历之间的对应关系一、引言在计算机科学中,数据结构是非常重要的知识点之一。
而树这一数据结构,作为基础的数据结构之一,在软件开发中有着广泛的应用。
本文将重点探讨二叉树、树和森林遍历之间的对应关系,帮助读者更加全面地理解这些概念。
二、二叉树1. 二叉树的定义二叉树是一种特殊的树结构,每个节点最多有两个子节点,分别称为左子节点和右子节点。
二叉树可以为空,也可以是一棵空树。
2. 二叉树的遍历在二叉树中,有三种常见的遍历方式,分别是前序遍历、中序遍历和后序遍历。
在前序遍历中,节点的访问顺序是根节点、左子树、右子树;在中序遍历中,节点的访问顺序是左子树、根节点、右子树;在后序遍历中,节点的访问顺序是左子树、右子树、根节点。
3. 二叉树的应用二叉树在计算机科学领域有着广泛的应用,例如用于构建文件系统、在数据库中存储有序数据、实现算法中的搜索和排序等。
掌握二叉树的遍历方式对于理解这些应用场景非常重要。
三、树1. 树的定义树是一种抽象数据类型,由n(n>0)个节点组成一个具有层次关系的集合。
树的特点是每个节点都有零个或多个子节点,而这些子节点又构成了一颗子树。
树中最顶层的节点称为根节点。
2. 树的遍历树的遍历方式有先根遍历、后根遍历和层次遍历。
在先根遍历中,节点的访问顺序是根节点、子树1、子树2...;在后根遍历中,节点的访问顺序是子树1、子树2...,根节点;在层次遍历中,节点的访问顺序是从上到下、从左到右依次访问每个节点。
3. 树的应用树广泛用于分层数据的表示和操作,例如在计算机网络中的路由算法、在操作系统中的文件系统、在程序设计中的树形结构等。
树的遍历方式对于处理这些应用来说至关重要。
四、森林1. 森林的定义森林是n(n>=0)棵互不相交的树的集合。
每棵树都是一颗独立的树,不存在交集。
2. 森林的遍历森林的遍历方式是树的遍历方式的超集,对森林进行遍历就是对每棵树进行遍历的集合。
3. 森林的应用森林在实际编程中经常用于解决多个独立树结构的问题,例如在数据库中对多个表进行操作、在图像处理中对多个图形进行处理等。
二叉树遍历(前序、中序、后序、层次、广度优先、深度优先遍历)

⼆叉树遍历(前序、中序、后序、层次、⼴度优先、深度优先遍历)⽬录转载:⼆叉树概念⼆叉树是⼀种⾮常重要的数据结构,⾮常多其他数据结构都是基于⼆叉树的基础演变⽽来的。
对于⼆叉树,有深度遍历和⼴度遍历,深度遍历有前序、中序以及后序三种遍历⽅法,⼴度遍历即我们寻常所说的层次遍历。
由于树的定义本⾝就是递归定义,因此採⽤递归的⽅法去实现树的三种遍历不仅easy理解并且代码⾮常简洁,⽽对于⼴度遍历来说,须要其他数据结构的⽀撑。
⽐⽅堆了。
所以。
对于⼀段代码来说,可读性有时候要⽐代码本⾝的效率要重要的多。
四种基本的遍历思想前序遍历:根结点 ---> 左⼦树 ---> 右⼦树中序遍历:左⼦树---> 根结点 ---> 右⼦树后序遍历:左⼦树 ---> 右⼦树 ---> 根结点层次遍历:仅仅需按层次遍历就可以⽐如。
求以下⼆叉树的各种遍历前序遍历:1 2 4 5 7 8 3 6中序遍历:4 2 7 5 8 1 3 6后序遍历:4 7 8 5 2 6 3 1层次遍历:1 2 3 4 5 6 7 8⼀、前序遍历1)依据上⽂提到的遍历思路:根结点 ---> 左⼦树 ---> 右⼦树,⾮常easy写出递归版本号:public void preOrderTraverse1(TreeNode root) {if (root != null) {System.out.print(root.val+" ");preOrderTraverse1(root.left);preOrderTraverse1(root.right);}}2)如今讨论⾮递归的版本号:依据前序遍历的顺序,优先訪问根结点。
然后在訪问左⼦树和右⼦树。
所以。
对于随意结点node。
第⼀部分即直接訪问之,之后在推断左⼦树是否为空,不为空时即反复上⾯的步骤,直到其为空。
若为空。
则须要訪问右⼦树。
注意。
在訪问过左孩⼦之后。
二叉树遍历(前中后序遍历,三种方式)

⼆叉树遍历(前中后序遍历,三种⽅式)⽬录刷题中碰到⼆叉树的遍历,就查找了⼆叉树遍历的⼏种思路,在此做个总结。
对应的LeetCode题⽬如下:,,,接下来以前序遍历来说明三种解法的思想,后⾯中序和后续直接给出代码。
⾸先定义⼆叉树的数据结构如下://Definition for a binary tree node.struct TreeNode {int val;TreeNode *left;TreeNode *right;TreeNode(int x) : val(x), left(NULL), right(NULL) {}};前序遍历,顺序是“根-左-右”。
使⽤递归实现:递归的思想很简单就是我们每次访问根节点后就递归访问其左节点,左节点访问结束后再递归的访问右节点。
代码如下:class Solution {public:vector<int> preorderTraversal(TreeNode* root) {if(root == NULL) return {};vector<int> res;helper(root,res);return res;}void helper(TreeNode *root, vector<int> &res){res.push_back(root->val);if(root->left) helper(root->left, res);if(root->right) helper(root->right, res);}};使⽤辅助栈迭代实现:算法为:先把根节点push到辅助栈中,然后循环检测栈是否为空,若不空,则取出栈顶元素,保存值到vector中,之后由于需要想访问左⼦节点,所以我们在将根节点的⼦节点⼊栈时要先经右节点⼊栈,再将左节点⼊栈,这样出栈时就会先判断左⼦节点。
代码如下:class Solution {public:vector<int> preorderTraversal(TreeNode* root) {if(root == NULL) return {};vector<int> res;stack<TreeNode*> st;st.push(root);while(!st.empty()){//将根节点出栈放⼊结果集中TreeNode *t = st.top();st.pop();res.push_back(t->val);//先⼊栈右节点,后左节点if(t->right) st.push(t->right);if(t->left) st.push(t->left);}return res;}};Morris Traversal⽅法具体的详细解释可以参考如下链接:这种解法可以实现O(N)的时间复杂度和O(1)的空间复杂度。
前序后序中序详细讲解

前序后序中序详细讲解1.引言1.1 概述在数据结构与算法中,前序、中序和后序是遍历二叉树的三种基本方式之一。
它们是一种递归和迭代算法,用于按照特定的顺序访问二叉树的所有节点。
通过遍历二叉树,我们可以获取有关树的结构和节点之间关系的重要信息。
前序遍历是指先访问根节点,然后递归地访问左子树,最后递归地访问右子树。
中序遍历是指先递归地访问左子树,然后访问根节点,最后递归地访问右子树。
后序遍历是指先递归地访问左子树,然后递归地访问右子树,最后访问根节点。
它们的不同之处在于访问根节点的时机不同。
前序遍历可以帮助我们构建二叉树的镜像,查找特定节点,或者获取树的深度等信息。
中序遍历可以帮助我们按照节点的大小顺序输出树的节点,或者查找二叉搜索树中的某个节点。
后序遍历常用于删除二叉树或者释放二叉树的内存空间。
在实际应用中,前序、中序和后序遍历算法有着广泛的应用。
它们可以用于解决树相关的问题,例如在Web开发中,树结构的遍历算法可以用于生成网页导航栏或者搜索树结构中的某个节点。
在图像处理中,前序遍历可以用于图像压缩或者图像识别。
另外,前序和后序遍历算法还可以用于表达式求值和编译原理中的语法分析等领域。
综上所述,前序、中序和后序遍历算法是遍历二叉树的重要方式,它们在解决各种与树有关的问题中扮演着关键的角色。
通过深入理解和应用这些遍历算法,我们可以更好地理解和利用二叉树的结构特性,并且能够解决更加复杂的问题。
1.2文章结构文章结构是指文章中各个部分的布局和组织方式。
一个良好的文章结构可以使读者更好地理解和理解文章的内容。
本文将详细讲解前序、中序和后序三个部分的内容和应用。
首先,本文将在引言部分概述整篇文章的内容,并介绍文章的结构和目的。
接下来,正文部分将分为三个小节,分别对前序、中序和后序进行详细讲解。
在前序讲解部分,我们将定义和解释前序的意义,并介绍前序在实际应用中的场景。
通过详细的解释和实例,读者将能更好地理解前序的概念和用途。
树和二叉树的实验报告

树和二叉树的实验报告树和二叉树的实验报告一、引言树和二叉树是计算机科学中常用的数据结构,它们在各种算法和应用中都有广泛的应用。
本实验旨在通过实际操作和观察,深入了解树和二叉树的特性和操作。
二、树的构建与遍历1. 树的概念和特性树是一种非线性的数据结构,由节点和边组成。
每个节点可以有零个或多个子节点,其中一个节点没有父节点的称为根节点。
树的特点包括层次结构、唯一根节点和无环等。
2. 树的构建在本实验中,我们使用Python语言构建了一棵树。
通过定义节点类和树类,我们可以方便地创建树的实例,并添加节点和连接节点之间的边。
3. 树的遍历树的遍历是指按照一定顺序访问树中的所有节点。
常见的遍历方式有前序遍历、中序遍历和后序遍历。
我们在实验中实现了这三种遍历方式,并观察了它们的输出结果。
三、二叉树的实现与应用1. 二叉树的概念和特性二叉树是一种特殊的树,每个节点最多有两个子节点,分别称为左子节点和右子节点。
二叉树的特点包括唯一根节点、每个节点最多有两个子节点和子节点的顺序等。
2. 二叉树的实现我们使用Python语言实现了二叉树的数据结构。
通过定义节点类和二叉树类,我们可以创建二叉树的实例,并实现插入节点、删除节点和查找节点等操作。
3. 二叉树的应用二叉树在实际应用中有很多用途。
例如,二叉搜索树可以用于实现快速查找和排序算法。
AVL树和红黑树等平衡二叉树可以用于高效地插入和删除操作。
我们在实验中实现了这些应用,并通过实际操作验证了它们的效果。
四、实验结果与讨论通过实验,我们成功构建了树和二叉树的数据结构,并实现了它们的基本操作。
通过观察和分析实验结果,我们发现树和二叉树在各种算法和应用中的重要性和灵活性。
树和二叉树的特性使得它们适用于解决各种问题,例如搜索、排序、图算法等。
同时,我们也发现了一些问题和挑战,例如树的平衡性和节点的插入和删除操作等。
这些问题需要进一步的研究和优化。
五、总结本实验通过实际操作和观察,深入了解了树和二叉树的特性和操作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
// 实现二叉树的先序、中序和后序遍历
#define MAX 30 //二叉树中最多结点数
#define NULL 0
#include <stdlib.h>
#include <stdio.h>
typedef struct btnode //二叉树的结点类型
{
char data;
struct btnode *lchild,*rchild;
}bttree;
bttree *cre_tree(char *str,int i,int m) //将字符串中的第i个字符到第个m字符作为数据生成对应的满二叉树
{
bttree *p;
if(i>m) //无效结点
return NULL;
p=(bttree *)malloc(sizeof(bttree)); //生成新结点
p->data=str[i];
p->lchild=cre_tree(str,2*i+1,m); //创建左子树
p->rchild=cre_tree(str,2*i+2,m); //创建右子树
return p;
}
void lev_order(char s[],int n) //层次遍历,即输出字符数组的元素{
int i;
for(i=0;i<n;i++)
{
printf("%c",s[i]);
printf("->");
}
}
void preorder(bttree *t) //先序遍历二叉树
{
if(t!=NULL)
{
printf("%c",t->data);
if(t->lchild)
{
printf("->");
preorder(t->lchild);
}
if(t->rchild)
{
printf("->");
preorder(t->rchild);
}
}
}
void inorder(bttree *t) //中序遍历二叉树{ if(t!=NULL)
{
inorder(t->lchild);
printf("%c",t->data);
printf("->");
inorder(t->rchild);
}
}
void postorder(bttree *t) //后序遍历二叉树{ if(t!=NULL)
{
postorder(t->lchild);
postorder(t->rchild);
printf("%c",t->data);
printf("->");
}
}
main() //主函数
{
int i,n;
char str[MAX];
bttree *root; //指向根结点的指针
printf("please input a bttree node number:\n");
scanf("%d",&n);
getchar(); //输入数字
printf("please input a string which length is %d:",n); for(i=0;i<n;i++)
str[i]=getchar();
printf("\n\n");
root=cre_tree(str,0,n); //生成二叉树
printf("the tree is already created\n");
//printf("lev_order before swapping:");
//lev_order(root,n);
//printf("\n");
printf("lev_order before swapping:");
lev_order(str,n);
printf("\n");
printf("the result after preorder processing:"); //先序遍历结果preorder(root);
printf("\n");
printf("the result after inorder processing:"); //中序遍历结果
inorder(root);
printf("\n");
printf("the result after postorder processing:"); //后序遍历结果postorder(root);
printf("\n\n");
}。