数据结构二叉树综合实验报告

合集下载

数据结构树和二叉树实验报告

数据结构树和二叉树实验报告
实验题目
树和二叉树
小组合作

姓名
班级
学 号
一、实验目的
(1)掌握树的相关概念,包括树、结点的度、树的度、分支结点、叶子结点、儿子结点、双亲结点、树的深度、森林等定义。
(2)掌握二叉树的概念,包括二叉树、满二叉树和完全二叉树的定义。
(3)掌握哈夫曼树的定义、哈夫曼树的构造过程和哈夫曼编码产生方法。
二.实验环境
return 0;
}
假设二叉树采用二叉树链式存储结构,设计一个算法输出从根结点到每个叶子结点的路径之逆(因为树中路径是从根结点到其他结点的结点序列,就是求叶子结点及其双亲结点、该双亲结点的双亲结点,直到根结点的序列,或者说求叶子结点及其所有祖先结点的序列)。要求采用后根遍历非递归算法。
#include "stdafx.h"
AllPath1(b);
return 0;
}
设计一个算法将二叉树的顺序存储结构转换成二叉链式存储结构。
#include "stdafx.h"
#include "exam7-14.cpp"
int main(int argc, char* argv[])
{
int i,n=10;
BTNode *b;
SqBTree a;
#include "exam7-12.cpp"
int main(int argc, char* argv[])
{
BTNode *b;
CreateBTNode(b,"A(B(D(,G)),C(E,F))");
printf("b:");DispBTNode(b);printf("\n");

华科数据结构二叉树实验报告

华科数据结构二叉树实验报告

华科数据结构二叉树实验报告一、实验目的本实验旨在通过实践操作,加深对数据结构中二叉树的理解,掌握二叉树的基本操作和应用。

二、实验内容1. 实现二叉树的创建和初始化。

2. 实现二叉树的插入操作。

3. 实现二叉树的删除操作。

4. 实现二叉树的查找操作。

5. 实现二叉树的遍历操作:前序遍历、中序遍历、后序遍历。

6. 实现二叉树的层次遍历。

7. 实现二叉树的销毁操作。

8. 进行实验测试,并分析实验结果。

三、实验步骤1. 创建二叉树的数据结构,包括节点的定义和指针的初始化。

2. 实现二叉树的创建和初始化函数,根据给定的数据构建二叉树。

3. 实现二叉树的插入操作函数,将新节点插入到二叉树的合适位置。

4. 实现二叉树的删除操作函数,删除指定节点,并保持二叉树的结构完整。

5. 实现二叉树的查找操作函数,根据给定的值查找对应的节点。

6. 实现二叉树的遍历操作函数,包括前序遍历、中序遍历、后序遍历。

7. 实现二叉树的层次遍历函数,按照层次顺序遍历二叉树。

8. 实现二叉树的销毁操作函数,释放二叉树的内存空间。

9. 编写测试程序,对上述函数进行测试,并分析实验结果。

四、实验结果与分析经过测试,实验结果如下:1. 创建和初始化函数能够正确构建二叉树,并初始化节点的值和指针。

2. 插入操作函数能够将新节点插入到二叉树的合适位置,并保持二叉树的结构完整。

3. 删除操作函数能够正确删除指定节点,并保持二叉树的结构完整。

4. 查找操作函数能够根据给定的值找到对应的节点。

5. 遍历操作函数能够按照指定的顺序遍历二叉树,并输出节点的值。

6. 层次遍历函数能够按照层次顺序遍历二叉树,并输出节点的值。

7. 销毁操作函数能够释放二叉树的内存空间,防止内存泄漏。

根据实验结果分析,二叉树的基本操作和应用都能够正常实现,达到了预期的效果。

五、实验总结通过本次实验,我进一步加深了对数据结构中二叉树的理解,并掌握了二叉树的基本操作和应用。

通过实践操作,我更加熟悉了二叉树的创建、插入、删除、查找和遍历等操作,同时也学会了如何进行层次遍历和销毁二叉树。

数据结构实验报告 二叉树

数据结构实验报告 二叉树

数据结构实验报告二叉树数据结构实验报告:二叉树引言:数据结构是计算机科学中的重要基础,它为我们提供了存储和组织数据的方式。

二叉树作为一种常见的数据结构,广泛应用于各个领域。

本次实验旨在通过实践,深入理解二叉树的概念、性质和操作。

一、二叉树的定义与性质1.1 定义二叉树是一种特殊的树结构,每个节点最多有两个子节点,分别称为左子节点和右子节点。

二叉树可以为空树,也可以是由根节点和左右子树组成的非空树。

1.2 基本性质(1)每个节点最多有两个子节点;(2)左子树和右子树是有顺序的,不能颠倒;(3)二叉树的子树仍然是二叉树。

二、二叉树的遍历2.1 前序遍历前序遍历是指首先访问根节点,然后按照先左后右的顺序遍历左右子树。

在实际应用中,前序遍历常用于复制一颗二叉树或创建二叉树的副本。

2.2 中序遍历中序遍历是指按照先左后根再右的顺序遍历二叉树。

中序遍历的结果是一个有序序列,因此在二叉搜索树中特别有用。

2.3 后序遍历后序遍历是指按照先左后右再根的顺序遍历二叉树。

后序遍历常用于计算二叉树的表达式或释放二叉树的内存。

三、二叉树的实现与应用3.1 二叉树的存储结构二叉树的存储可以使用链式存储或顺序存储。

链式存储使用节点指针连接各个节点,而顺序存储则使用数组来表示二叉树。

3.2 二叉树的应用(1)二叉搜索树:二叉搜索树是一种特殊的二叉树,它的左子树上的节点都小于根节点,右子树上的节点都大于根节点。

二叉搜索树常用于实现查找、插入和删除等操作。

(2)堆:堆是一种特殊的二叉树,它满足堆序性质。

堆常用于实现优先队列,如操作系统中的进程调度。

(3)哈夫曼树:哈夫曼树是一种带权路径最短的二叉树,常用于数据压缩和编码。

四、实验结果与总结通过本次实验,我成功实现了二叉树的基本操作,包括创建二叉树、遍历二叉树和查找节点等。

在实践中,我进一步理解了二叉树的定义、性质和应用。

二叉树作为一种重要的数据结构,在计算机科学中有着广泛的应用,对于提高算法效率和解决实际问题具有重要意义。

数据结构实验报告二二叉树实验

数据结构实验报告二二叉树实验

实验报告课程名称:数据结构
第 1 页共4 页
五、实验总结(包括心得体会、问题回答及实验改进意见,可附页)
这次实验主要是建立二叉树,和二叉树的先序、中序、后续遍历算法。

通过这次实验,我巩固了二叉树这部分知识,从中体会理论知识的重要性。

在做实验之前,要充分的理解本次实验的理论依据,这样才能达到事半功倍的效果。

如果在没有真正理解实验原理之盲目的开始实验,只会浪费时间和精力。

例如进行二叉树的遍历的时候,要先理解各种遍历的特点。

先序遍历是先遍历根节点,再依次先序遍历左右子树。

中序遍历是先中序遍历左子树,再访问根节点,最后中序遍历右子树。

而后序遍历则是先依次后续遍历左右子树,再访问根节点。

掌握了这些,在实验中我们就可以融会贯通,举一反三。

其次要根据不光要懂得代码的原理,还要对题目有深刻的了解,要明白二叉树的画法,在纸上先进行自我演练,对照代码验证自己写的正确性。

第 3 页共4 页
第 4 页共4 页。

数据结构二叉树的实验报告

数据结构二叉树的实验报告

数据结构二叉树的实验报告数据结构二叉树的实验报告一、引言数据结构是计算机科学中非常重要的一个领域,它研究如何组织和存储数据以便高效地访问和操作。

二叉树是数据结构中常见且重要的一种,它具有良好的灵活性和高效性,被广泛应用于各种领域。

本实验旨在通过实际操作和观察,深入了解二叉树的特性和应用。

二、实验目的1. 理解二叉树的基本概念和特性;2. 掌握二叉树的创建、遍历和查找等基本操作;3. 通过实验验证二叉树的性能和效果。

三、实验过程1. 二叉树的创建在实验中,我们首先需要创建一个二叉树。

通过输入一系列数据,我们可以按照特定的规则构建一棵二叉树。

例如,可以按照从小到大或从大到小的顺序将数据插入到二叉树中,以保证树的有序性。

2. 二叉树的遍历二叉树的遍历是指按照一定的次序访问二叉树中的所有节点。

常见的遍历方式有前序遍历、中序遍历和后序遍历。

前序遍历是先访问根节点,然后再依次遍历左子树和右子树;中序遍历是先遍历左子树,然后访问根节点,最后再遍历右子树;后序遍历是先遍历左子树,然后遍历右子树,最后访问根节点。

3. 二叉树的查找二叉树的查找是指在二叉树中寻找指定的节点。

常见的查找方式有深度优先搜索和广度优先搜索。

深度优先搜索是从根节点开始,沿着左子树一直向下搜索,直到找到目标节点或者到达叶子节点;广度优先搜索是从根节点开始,逐层遍历二叉树,直到找到目标节点或者遍历完所有节点。

四、实验结果通过实验,我们可以观察到二叉树的特性和性能。

在创建二叉树时,如果按照有序的方式插入数据,可以得到一棵平衡二叉树,其查找效率较高。

而如果按照无序的方式插入数据,可能得到一棵不平衡的二叉树,其查找效率较低。

在遍历二叉树时,不同的遍历方式会得到不同的结果。

前序遍历可以用于复制一棵二叉树,中序遍历可以用于对二叉树进行排序,后序遍历可以用于释放二叉树的内存。

在查找二叉树时,深度优先搜索和广度优先搜索各有优劣。

深度优先搜索在空间复杂度上较低,但可能会陷入死循环;广度优先搜索在时间复杂度上较低,但需要较大的空间开销。

数据结构实验报告—二叉树

数据结构实验报告—二叉树

数据结构实验报告—二叉树数据结构实验报告—二叉树引言二叉树是一种常用的数据结构,它由节点和边构成,每个节点最多有两个子节点。

在本次实验中,我们将对二叉树的基本结构和基本操作进行实现和测试,并深入了解它的特性和应用。

实验目的1. 掌握二叉树的基本概念和特性2. 熟练掌握二叉树的基本操作,包括创建、遍历和查找等3. 了解二叉树在实际应用中的使用场景实验内容1. 二叉树的定义和存储结构:我们将首先学习二叉树的定义,并实现二叉树的存储结构,包括节点的定义和节点指针的表示方法。

2. 二叉树的创建和初始化:我们将实现二叉树的创建和初始化操作,以便后续操作和测试使用。

3. 二叉树的遍历:我们将实现二叉树的前序、中序和后序遍历算法,并测试其正确性和效率。

4. 二叉树的查找:我们将实现二叉树的查找操作,包括查找节点和查找最大值、最小值等。

5. 二叉树的应用:我们将探讨二叉树在实际应用中的使用场景,如哈夫曼编码、二叉搜索树等。

二叉树的定义和存储结构二叉树是一种特殊的树形结构,它的每个节点最多有两个子节点。

节点被表示为一个由数据和指向其左右子节点的指针组成的结构。

二叉树可以分为三类:满二叉树、完全二叉树和非完全二叉树。

二叉树可以用链式存储结构或顺序存储结构表示。

- 链式存储结构:采用节点定义和指针表示法,通过将节点起来形成一个树状结构来表示二叉树。

- 顺序存储结构:采用数组存储节点信息,通过计算节点在数组中的位置来进行访问和操作。

二叉树的创建和初始化二叉树的创建和初始化是二叉树操作中的基础部分。

我们可以通过手动输入或读取外部文件中的数据来创建二叉树。

对于链式存储结构,我们需要自定义节点和指针,并通过节点的方式来构建二叉树。

对于顺序存储结构,我们需要定义数组和索引,通过索引计算来定位节点的位置。

一般来说,初始化一个二叉树可以使用以下步骤:1. 创建树根节点,并赋初值。

2. 创建子节点,并到父节点。

3. 重复步骤2,直到创建完整个二叉树。

数据结构二叉树的实验报告

数据结构二叉树的实验报告

数据结构实验报告1. 实验目的和内容:掌握二叉树基本操作的实现方法2. 程序分析2.1存储结构链式存储2.程序流程2.3关键算法分析算法一:Create(BiNode<T>* &R,T data[],int i,int n)【1】算法功能:创建二叉树【2】算法基本思想:利用顺序存储结构为输入,采用先建立根结点,再建立左右孩子的方法来递归建立二叉链表的二叉树【3】算法空间时间复杂度分析:O(n)【4】代码逻辑:如果位置小于数组的长度则{ 创建根结点将数组的值赋给刚才创建的结点的数据域创建左子树,如果当前结点位置为i,则左孩子位置为2i创建右子树,如果当前结点位置为i,则右孩子位置为2i+1}否则R为空算法二:CopyTree(BiNode<T>*sR,BiNode<T>* &dR))【1】算法功能:复制构造函数【2】算法基本思想:按照先创建根结点,再递归创建左右子树的方法来实现。

【3】算法空间时间复杂度分析:O(n)【4】代码逻辑:如果源二叉树根结点不为空则{创建根结点调用函数自身,创建左子树调用函数自身,创建右子树}将该函数放在复制构造函数中调用,就可以实现复制构造函数算法三:PreOrder(BiNode<T>*R)【1】算法功能:二叉树的前序遍历【2】算法基本思想:这个代码用的是优化算法,提前让当前结点出栈。

【3】算法空间时间复杂度分析:O(n)【4】代码逻辑(伪代码)如果当前结点为非空,则{访问当前结点当前结点入栈将当前结点的左孩子作为当前结点}如果为空{则栈顶结点出栈则将该结点的右孩子作为当前结点}反复执行这两个过程,直到结点为空并且栈空算法四:InOrder(BiNode<T>*R)【1】算法功能:二叉树的中序遍历【2】算法基本思想:递归【3】算法空间时间复杂度分析:未知【4】代码逻辑:如果R为非空:则调用函数自身遍历左孩子访问该结点再调用自身访问该结点的右孩子算法五:LevelOrder(BiNode<T>*R)【1】算法功能:二叉树的层序遍历【2】算法基本思想:【3】算法空间时间复杂度分析:O(n)【4】代码逻辑(伪代码):如果队列不空{对头元素出队访问该元素若该结点的左孩子为非空,则左孩子入队;若该结点的右孩子为非空,则右孩子入队;}算法六:Count(BiNode<T>*R)【1】算法功能:计算结点的个数【2】算法基本思想:递归【3】算法空间时间复杂度分析:未知【4】代码逻辑:如果R不为空的话{调用函数自身计算左孩子的结点数调用函数自身计算右孩子的结点数}template<class T>int BiTree<T>::Count(BiNode<T>*R){if(R==NULL)return 0;else{int m=Count(R->lchild);int n=Count(R->rchild);return m+n+1;}}算法七:Release(BiNode<T>*R)【1】算法功能:释放动态内存【2】算法基本思想:左右子树全部释放完毕后再释放该结点【3】算法空间时间复杂度分析:未知【4】代码逻辑:调用函数自身,释放左子树调用函数自身,释放右子树释放根结点释放二叉树template<class T>void BiTree<T>::Release(BiNode<T>*R) {if(R!=NULL){Release(R->lchild);Release(R->rchild);delete R;}}template<class T>BiTree<T>::~BiTree(){Release(root);}int main(){BiTree<int> BTree(a,10);BiTree<int>Tree(BTree);BTree.PreOrder(BTree.root);cout<<endl;Tree.PreOrder(Tree.root);cout<<endl;BTree.InOrder(BTree.root);cout<<endl;Tree.InOrder(Tree.root);cout<<endl;BTree.PostOrder(BTree.root);cout<<endl;Tree.PostOrder(Tree.root);cout<<endl;BTree.LevelOrder(BTree.root);cout<<endl;Tree.LevelOrder(Tree.root);cout<<endl;int m=BTree.Count(BTree.root);cout<<m<<endl;return 0;}3.测试数据:int a[10]={1,2,3,4,5};1 2 4 5 31 2 4 5 34 25 1 34 5 2 3 11 2 3 4 554.总结:4.1:这次实验大多用了递归的算法,比较好理解。

数据结构二叉树实验报告总结

数据结构二叉树实验报告总结

数据结构二叉树实验报告总结一、实验目的本次实验的主要目的是通过对二叉树的学习和实践,掌握二叉树的基本概念、性质和遍历方式,加深对数据结构中树形结构的理解。

二、实验内容1. 二叉树的基本概念和性质在本次实验中,我们首先学习了二叉树的基本概念和性质。

其中,二叉树是由节点组成的有限集合,并且每个节点最多有两个子节点。

同时,我们还学习了二叉树的高度、深度、层数等概念。

2. 二叉树的遍历方式在了解了二叉树的基本概念和性质之后,我们开始学习如何遍历一个二叉树。

在本次实验中,我们主要学习了三种遍历方式:前序遍历、中序遍历和后序遍历。

其中,前序遍历指先访问节点自身再访问左右子节点;中序遍历指先访问左子节点再访问自身和右子节点;后序遍历指先访问左右子节点再访问自身。

3. 二叉搜索树除了以上内容之外,在本次实验中我们还学习了一种特殊的二叉树——二叉搜索树。

二叉搜索树是一种特殊的二叉树,它的每个节点都满足左子节点小于该节点,右子节点大于该节点的性质。

由于这个性质,二叉搜索树可以被用来进行快速查找、排序等操作。

三、实验过程1. 实现二叉树的遍历方式为了更好地理解和掌握二叉树的遍历方式,我们首先在编程环境中实现了前序遍历、中序遍历和后序遍历。

在代码编写过程中,我们需要考虑如何递归地访问每个节点,并且需要注意访问顺序。

2. 实现二叉搜索树为了更好地理解和掌握二叉搜索树的特性和操作,我们在编程环境中实现了一个简单的二叉搜索树。

在代码编写过程中,我们需要考虑如何插入新节点、删除指定节点以及查找目标节点等操作。

3. 实验结果分析通过对代码运行结果进行分析,我们可以清晰地看到每个遍历方式所得到的结果以及对应的顺序。

同时,在对二叉搜索树进行操作时,我们也可以看到不同操作所产生的不同结果。

四、实验总结通过本次实验,我们进一步加深了对二叉树的理解和掌握,学习了二叉树的遍历方式以及二叉搜索树的特性和操作。

同时,在编程实践中,我们也进一步熟悉了代码编写和调试的过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.求二叉树的结点个数,叶子结点个数,二叉树的高度,度为2的结点个数。
成绩评定表
类别
评分标准
分值
得分
合计
上机表现
积极出勤、遵守纪律
认真完成设计任务
30分
报告质量
操作规范、功能正确
填写完整、体现收获
70分
说明:
评阅教师:
日期:20年月日
实验内容
一.实验内容
1.实现二叉树的先序,中序与后序遍历的递归算法与非递归算法。
rTree->rTree=NULL;
rTree->data='0';
CreatTree(tree->rTree);
}
}
}
void PreTraverse(Tree*tree)//先序遍历递归
{
if(tree!=NULL)
{
cout<<tree->data<<" ";
if(tree->lTree!=NULL)
(2)二叉树的递归遍历:若二叉树为空,则空操作
先序遍历:
(a)访问根结点;
(b)先序遍历左子树;
(c)先序遍历右子树。
中序遍历:
(a)中序遍历左子树;
(b)访问根结点;
(c)中序遍历右子树
后序遍历:
(a)后序遍历左子树;
(b)后序遍历右子树;
(c)访问根结点。
2.求二叉树的结点个数,叶子结点个数,二叉树的高度,度为2的结点个数。
武汉工程大学
计算机科学与工程学院
《数据结构》实验报告[2]
专业班级
智能01
实验地点
机电大楼4楼419机房
学生学号
指导教师
学生姓名
实验时间
第12周~第14周星期2
实验项目
树性结构的综合使用
实验类别
操作性()验证性()设计性()综合性(√)其它()
实验目的及要求
1.实现二叉树的先序,中序与后序遍历的递归算法与非递归算法。
p=tree;
int top=0,tag=1,i=0,k=0;
while(p!=NULL || top)
{
i=1;
while(p!=NULL)
{
stack[++top]=p;
p=p->lTree;
}
if(top!=0)
p=stack[top]->rTree;
if(p==NULL)
{
cout<<stack[top--]->data<<" ";
}
else if(tree->rTree!=NULL)
{
PostTraverse(tree->rTree);
cout<<tree->data<<" ";
}
else
cout<<tree->data<<" ";
}
}
void LastOrderTraverse(Tree *tree)//后序遍历非递归
{
Tree *stack[Maxsize]={NULL},*p;
(4)二叉树的度为2的结点个数:计算有左右孩子的结点个数,即为度为2的结点个
实验内容
数。
三.编程过程中遇到的问题及解决办法
(1)后续遍历的非递归函数涉及到回溯的方法,开始设计的方案想的太过于简单,所以形成了死循环,总是在最后的节点处不停地循环,后改成回溯后,该问题得到解决。
(2)计算二叉树中度为2的结点个数中,返回循环的时候不论根结点有没有左右子树,但个人设计时,根总是会将自己默认为有左右子树,自行增加1.后在同学帮助下才看到自己的这个失误。
{
PreTraverse(tree->lTree);
PreTraverse(tree->rTree);
}
else if(tree->rTree!=NULL)
{
PreTraverse(tree->rTree);
}
else;
}
}
void PreOrderTraverse(Tree *tree)//先序遍历非递归
2.求二叉树的结点个数,叶子结点个数,二叉树的高度,度为2的结点个数。
二.程序的设计思想
1实现二叉树的先序,中序与后序遍历的递归算法与非递归算法。
先构造二叉树,根据先序遍历的思想,输入根后,再输入左子树,直至左子树为空则输入上一层右字树。
(1)二叉树的非递归遍历是用显示栈来存储二叉树的结点指针,先序遍历时,按二叉树前序遍历的顺序访问结点,并将结点的指针入栈,直到栈顶指针指向结点的左指针域为空时取出栈顶指针并删除栈顶指针,访问刚取出的指针指向的结点的右指针指向的结点并将其指针入栈,如此反复执行则为非递归操作。
cin>>i;
if(i==0);
else if(i==1)
{
Tree *rTree=(Tree*)malloc(sizeof(Tree));
tree->rTree=rTree;
rTree->lTree=NULL;
rTree->rTree=NULL;
rTree->data='0';
CreatTree(tree->rTree);
(1)求二叉树的叶子结点个数:先分别求得左右子树中个叶子结点的个数,再计算出两者之和即为二叉树的叶子结点数。
(2)二叉树的结点个数之和:先分别求得左子树右子树中结点之和,再计算两者之和即为所求。
(3)二叉树的高度:首先判断二叉树是否为空,若为空则此二叉树高度为0,。否则,就先分别求出左右子树的深度进行比较,取较大的树加一即为所求。
void InTraverse(Tree *tree);//中序遍历递归
void InOrderTraverse(Tree *tree);//中序遍历非递归
void PostTraverse(Tree *tree);//后序遍历递归
void LastOrderTraverse(Tree *tree);//后序遍历非递归
四.程序的闪光点(自我评价)
1.程序模块化,各个函数分开描述,方便观察
2.关键处有注释
3.建立二叉树时,用先序提示输入,比较人性化。
五.程序源代码(以文件为单位提供)
#include<iostream.h>
#include<malloc.h>
#define Maxsize 100
typedef struct TREE{
v=DepthTree(tree->rTree);
if (u>v)
return (u+1);
return (v+1);
}
int LeafsTree(Tree *tree)//子叶个数函数
{
int num1,num2;
if(tree==NULL)
return 0;
if(stack[top]!=NULL)
{
while(i)
{
if(stack[top]!=NULL)
{
if(stack[top]->rTree!=NULL)
{
if(stack[top]->rTree->data==stack[top+1]->data)
cout<<stack[top--]->data<<" ";
}
else if(tree->rTree!=NULL)
{
cout<<tree->data<<" ";
InTraverse(tree->rTree);
}
else
cout<<tree->data<<" ";
}
}
void InOrderTraverse(Tree *tree)//中序遍历非递归
{
Tree *D[80]={NULL};
top--;
tree = tree->rTree;
}
}
}
void InTraverse(Tree *tree)//中序遍历递归
{
if(tree!=NULL)
{
if(tree->lTree!=NULL)
{
InTraverse(tree->lTree);
cout<<tree->data<<" ";
InTraverse(tree->rTree);
cin>>n;
if(n==1)
{
Tree *lTree=(Tree*)malloc(sizeof(Tree));
tree->lTree=lTree;
lTree->lTree=NULL;
lTree->rTree=NULL;
lTree->data='0';
CreatTree(tree->lTree);
cout<<"节点"<<tree->data<<"是否有右子树(0:没有1:有):";
cout<<endl;
cout<<"中序遍历递归为:";
InTraverse(&tree);//中序遍历递归
cout<<"中序遍历非递归:";
相关文档
最新文档