数据结构二叉树实验报告
数据结构树和二叉树实验报告

树和二叉树
小组合作
否
姓名
班级
学 号
一、实验目的
(1)掌握树的相关概念,包括树、结点的度、树的度、分支结点、叶子结点、儿子结点、双亲结点、树的深度、森林等定义。
(2)掌握二叉树的概念,包括二叉树、满二叉树和完全二叉树的定义。
(3)掌握哈夫曼树的定义、哈夫曼树的构造过程和哈夫曼编码产生方法。
二.实验环境
return 0;
}
假设二叉树采用二叉树链式存储结构,设计一个算法输出从根结点到每个叶子结点的路径之逆(因为树中路径是从根结点到其他结点的结点序列,就是求叶子结点及其双亲结点、该双亲结点的双亲结点,直到根结点的序列,或者说求叶子结点及其所有祖先结点的序列)。要求采用后根遍历非递归算法。
#include "stdafx.h"
AllPath1(b);
return 0;
}
设计一个算法将二叉树的顺序存储结构转换成二叉链式存储结构。
#include "stdafx.h"
#include "exam7-14.cpp"
int main(int argc, char* argv[])
{
int i,n=10;
BTNode *b;
SqBTree a;
#include "exam7-12.cpp"
int main(int argc, char* argv[])
{
BTNode *b;
CreateBTNode(b,"A(B(D(,G)),C(E,F))");
printf("b:");DispBTNode(b);printf("\n");
数据结构二叉树遍历实验报告

数据结构二叉树遍历实验报告数据结构二叉树遍历实验报告一、引言本文档旨在详细介绍二叉树遍历的实验过程和结果。
二叉树是一种在计算机科学领域常用的数据结构,通过遍历二叉树可以获取树中的所有节点数据。
本实验将分别介绍前序遍历、中序遍历和后序遍历这三种常见的遍历方法。
二、实验目的本实验的目的是通过实际操作,加深对二叉树遍历方法的理解,并验证这些遍历方法的正确性和效率。
三、实验环境本实验使用的环境如下:●操作系统: Windows 10●开发工具: Visual Studio Code●编程语言: C++四、实验步骤1.创建二叉树数据结构1.1 定义二叉树节点的结构,包含数据和左右子节点指针。
1.2 创建一个二叉树类,包含插入节点、删除节点、查找节点等方法。
1.3 使用已有的数据集构建二叉树,确保树的结构合理。
2.前序遍历前序遍历是先访问根节点,然后递归地遍历左子树和右子树。
2.1 以递归方式实现前序遍历。
2.2 以迭代方式实现前序遍历。
3.中序遍历中序遍历是先遍历左子树,然后访问根节点,最后遍历右子树。
3.1 以递归方式实现中序遍历。
3.2 以迭代方式实现中序遍历。
4.后序遍历后序遍历是先遍历左子树,然后遍历右子树,最后访问根节点。
4.1 以递归方式实现后序遍历。
4.2 以迭代方式实现后序遍历。
五、实验结果1.前序遍历结果:[节点1数据] [节点2数据] [节点4数据] [节点5数据] [节点3数据]2.中序遍历结果:[节点4数据] [节点2数据] [节点5数据] [节点1数据] [节点3数据]3.后序遍历结果:[节点4数据] [节点5数据] [节点2数据] [节点3数据] [节点1数据]六、实验分析通过实验结果可以看出,不同的遍历顺序得到的节点顺序也不同。
前序遍历先访问根节点,中序遍历先遍历左子树,后序遍历先遍历右子树。
根据需要,可以选择合适的遍历方法来处理二叉树的节点数据。
七、结论本实验验证了前序遍历、中序遍历和后序遍历的正确性,并且对比了它们的不同。
数据结构实验报告 二叉树

数据结构实验报告二叉树数据结构实验报告:二叉树引言:数据结构是计算机科学中的重要基础,它为我们提供了存储和组织数据的方式。
二叉树作为一种常见的数据结构,广泛应用于各个领域。
本次实验旨在通过实践,深入理解二叉树的概念、性质和操作。
一、二叉树的定义与性质1.1 定义二叉树是一种特殊的树结构,每个节点最多有两个子节点,分别称为左子节点和右子节点。
二叉树可以为空树,也可以是由根节点和左右子树组成的非空树。
1.2 基本性质(1)每个节点最多有两个子节点;(2)左子树和右子树是有顺序的,不能颠倒;(3)二叉树的子树仍然是二叉树。
二、二叉树的遍历2.1 前序遍历前序遍历是指首先访问根节点,然后按照先左后右的顺序遍历左右子树。
在实际应用中,前序遍历常用于复制一颗二叉树或创建二叉树的副本。
2.2 中序遍历中序遍历是指按照先左后根再右的顺序遍历二叉树。
中序遍历的结果是一个有序序列,因此在二叉搜索树中特别有用。
2.3 后序遍历后序遍历是指按照先左后右再根的顺序遍历二叉树。
后序遍历常用于计算二叉树的表达式或释放二叉树的内存。
三、二叉树的实现与应用3.1 二叉树的存储结构二叉树的存储可以使用链式存储或顺序存储。
链式存储使用节点指针连接各个节点,而顺序存储则使用数组来表示二叉树。
3.2 二叉树的应用(1)二叉搜索树:二叉搜索树是一种特殊的二叉树,它的左子树上的节点都小于根节点,右子树上的节点都大于根节点。
二叉搜索树常用于实现查找、插入和删除等操作。
(2)堆:堆是一种特殊的二叉树,它满足堆序性质。
堆常用于实现优先队列,如操作系统中的进程调度。
(3)哈夫曼树:哈夫曼树是一种带权路径最短的二叉树,常用于数据压缩和编码。
四、实验结果与总结通过本次实验,我成功实现了二叉树的基本操作,包括创建二叉树、遍历二叉树和查找节点等。
在实践中,我进一步理解了二叉树的定义、性质和应用。
二叉树作为一种重要的数据结构,在计算机科学中有着广泛的应用,对于提高算法效率和解决实际问题具有重要意义。
数据结构实验报告二二叉树实验

实验报告课程名称:数据结构
第 1 页共4 页
五、实验总结(包括心得体会、问题回答及实验改进意见,可附页)
这次实验主要是建立二叉树,和二叉树的先序、中序、后续遍历算法。
通过这次实验,我巩固了二叉树这部分知识,从中体会理论知识的重要性。
在做实验之前,要充分的理解本次实验的理论依据,这样才能达到事半功倍的效果。
如果在没有真正理解实验原理之盲目的开始实验,只会浪费时间和精力。
例如进行二叉树的遍历的时候,要先理解各种遍历的特点。
先序遍历是先遍历根节点,再依次先序遍历左右子树。
中序遍历是先中序遍历左子树,再访问根节点,最后中序遍历右子树。
而后序遍历则是先依次后续遍历左右子树,再访问根节点。
掌握了这些,在实验中我们就可以融会贯通,举一反三。
其次要根据不光要懂得代码的原理,还要对题目有深刻的了解,要明白二叉树的画法,在纸上先进行自我演练,对照代码验证自己写的正确性。
第 3 页共4 页
第 4 页共4 页。
数据结构实验报告二叉树

数据结构实验报告二叉树《数据结构与算法》实验报告专业班级姓名学号实验项目实验三二叉树。
实验目的1、掌握用递归方法实现二叉树的遍历。
2、加深对二叉树的理解,逐步培养解决实际问题的编程能力。
题目:(1)编写二叉树的遍历操作函数。
①先序遍历,递归方法re_preOrder(TREE *tree)②中序遍历,递归方法re_midOrder(TREE *tree)③后序遍历,递归方法re_postOrder(TREE *tree)(2)调用上述函数实现先序、中序和后序遍历二叉树操作。
算法设计分析(一)数据结构的定义要求用c语言编写一个演示程序,首先建立一个二叉树,让用户输入一个二叉树,实现该二叉树的便利操作。
二叉树型存储结构定义为:typedef struct TNode{ char data;//字符型数据struct TNode *lchild,*rchild;//左右孩子指针}TNode,* Tree;(二)总体设计程序由主函数、二叉树建立函数、先序遍历函数、中序遍历函数、后序遍历函数五个函数组成。
其功能描述如下:(1)主函数:统筹调用各个函数以实现相应功能。
int main()(2)二叉树建立函数:根据用户意愿运用先序遍历建立一个二叉树。
int CreateBiTree(Tree &T)(3)先序遍历函数:将所建立的二叉树先序遍历输出。
void PreOrder(Tree T)(4)中序遍历函数:将所建立的二叉树中序遍历输出。
void InOrder(Tree T)(5)后序遍历函数:将所建立的二叉树后序遍历输出。
void PostOrder(Tree T)(三)各函数的详细设计:(1)建立一个二叉树,按先序次序输入二叉树中结点的值(一个字符),‘#’表示空树。
对T动态分配存储空间,生成根节点,构造左、右子树(2)编写先序遍历函数,依次访问根节点、左子结点、右子节点(3)编写中序遍历函数,依次访问左子结点、根节点、右子节点(4)编写后序遍历函数,依次访问左子结点、右子节点、根节点(5)编写主函数,调用各个函数,以实现二叉树遍历的基本操作。
数据结构实验报告—二叉树

数据结构实验报告—二叉树数据结构实验报告—二叉树引言二叉树是一种常用的数据结构,它由节点和边构成,每个节点最多有两个子节点。
在本次实验中,我们将对二叉树的基本结构和基本操作进行实现和测试,并深入了解它的特性和应用。
实验目的1. 掌握二叉树的基本概念和特性2. 熟练掌握二叉树的基本操作,包括创建、遍历和查找等3. 了解二叉树在实际应用中的使用场景实验内容1. 二叉树的定义和存储结构:我们将首先学习二叉树的定义,并实现二叉树的存储结构,包括节点的定义和节点指针的表示方法。
2. 二叉树的创建和初始化:我们将实现二叉树的创建和初始化操作,以便后续操作和测试使用。
3. 二叉树的遍历:我们将实现二叉树的前序、中序和后序遍历算法,并测试其正确性和效率。
4. 二叉树的查找:我们将实现二叉树的查找操作,包括查找节点和查找最大值、最小值等。
5. 二叉树的应用:我们将探讨二叉树在实际应用中的使用场景,如哈夫曼编码、二叉搜索树等。
二叉树的定义和存储结构二叉树是一种特殊的树形结构,它的每个节点最多有两个子节点。
节点被表示为一个由数据和指向其左右子节点的指针组成的结构。
二叉树可以分为三类:满二叉树、完全二叉树和非完全二叉树。
二叉树可以用链式存储结构或顺序存储结构表示。
- 链式存储结构:采用节点定义和指针表示法,通过将节点起来形成一个树状结构来表示二叉树。
- 顺序存储结构:采用数组存储节点信息,通过计算节点在数组中的位置来进行访问和操作。
二叉树的创建和初始化二叉树的创建和初始化是二叉树操作中的基础部分。
我们可以通过手动输入或读取外部文件中的数据来创建二叉树。
对于链式存储结构,我们需要自定义节点和指针,并通过节点的方式来构建二叉树。
对于顺序存储结构,我们需要定义数组和索引,通过索引计算来定位节点的位置。
一般来说,初始化一个二叉树可以使用以下步骤:1. 创建树根节点,并赋初值。
2. 创建子节点,并到父节点。
3. 重复步骤2,直到创建完整个二叉树。
数据结构二叉树实验报告总结

数据结构二叉树实验报告总结一、实验目的本次实验的主要目的是通过对二叉树的学习和实践,掌握二叉树的基本概念、性质和遍历方式,加深对数据结构中树形结构的理解。
二、实验内容1. 二叉树的基本概念和性质在本次实验中,我们首先学习了二叉树的基本概念和性质。
其中,二叉树是由节点组成的有限集合,并且每个节点最多有两个子节点。
同时,我们还学习了二叉树的高度、深度、层数等概念。
2. 二叉树的遍历方式在了解了二叉树的基本概念和性质之后,我们开始学习如何遍历一个二叉树。
在本次实验中,我们主要学习了三种遍历方式:前序遍历、中序遍历和后序遍历。
其中,前序遍历指先访问节点自身再访问左右子节点;中序遍历指先访问左子节点再访问自身和右子节点;后序遍历指先访问左右子节点再访问自身。
3. 二叉搜索树除了以上内容之外,在本次实验中我们还学习了一种特殊的二叉树——二叉搜索树。
二叉搜索树是一种特殊的二叉树,它的每个节点都满足左子节点小于该节点,右子节点大于该节点的性质。
由于这个性质,二叉搜索树可以被用来进行快速查找、排序等操作。
三、实验过程1. 实现二叉树的遍历方式为了更好地理解和掌握二叉树的遍历方式,我们首先在编程环境中实现了前序遍历、中序遍历和后序遍历。
在代码编写过程中,我们需要考虑如何递归地访问每个节点,并且需要注意访问顺序。
2. 实现二叉搜索树为了更好地理解和掌握二叉搜索树的特性和操作,我们在编程环境中实现了一个简单的二叉搜索树。
在代码编写过程中,我们需要考虑如何插入新节点、删除指定节点以及查找目标节点等操作。
3. 实验结果分析通过对代码运行结果进行分析,我们可以清晰地看到每个遍历方式所得到的结果以及对应的顺序。
同时,在对二叉搜索树进行操作时,我们也可以看到不同操作所产生的不同结果。
四、实验总结通过本次实验,我们进一步加深了对二叉树的理解和掌握,学习了二叉树的遍历方式以及二叉搜索树的特性和操作。
同时,在编程实践中,我们也进一步熟悉了代码编写和调试的过程。
数据结构实验报告-树(二叉树)

实验5:树(二叉树)(采用二叉链表存储)一、实验项目名称二叉树及其应用二、实验目的熟悉二叉树的存储结构的特性以及二叉树的基本操作。
三、实验基本原理之前我们都是学习的线性结构,这次我们就开始学习非线性结构——树。
线性结构中结点间具有唯一前驱、唯一后继关系,而非线性结构中结点的前驱、后继的关系并不具有唯一性。
在树结构中,节点间关系是前驱唯一而后继不唯一,即结点之间是一对多的关系。
直观地看,树结构是具有分支关系的结构(其分叉、分层的特征类似于自然界中的树)。
四、主要仪器设备及耗材Window 11、Dev-C++5.11五、实验步骤1.导入库和预定义2.创建二叉树3.前序遍历4.中序遍历5.后序遍历6.总结点数7.叶子节点数8.树的深度9.树根到叶子的最长路径10.交换所有节点的左右子女11.顺序存储12.显示顺序存储13.测试函数和主函数对二叉树的每一个操作写测试函数,然后在主函数用while+switch-case的方式实现一个带菜单的简易测试程序,代码见“实验完整代码”。
实验完整代码:#include <bits/stdc++.h>using namespace std;#define MAX_TREE_SIZE 100typedef char ElemType;ElemType SqBiTree[MAX_TREE_SIZE];struct BiTNode{ElemType data;BiTNode *l,*r;}*T;void createBiTree(BiTNode *&T){ElemType e;e = getchar();if(e == '\n')return;else if(e == ' ')T = NULL;else{if(!(T = (BiTNode *)malloc(sizeof (BiTNode)))){cout << "内存分配错误!" << endl;exit(0);}T->data = e;createBiTree(T->l);createBiTree(T->r);}}void createBiTree2(BiTNode *T,int u) {if(T){SqBiTree[u] = T->data;createBiTree2(T->l,2 * u + 1);createBiTree2(T->r,2 * u + 2); }}void outputBiTree2(int n){int cnt = 0;for(int i = 0;cnt <= n;i++){cout << SqBiTree[i];if(SqBiTree[i] != ' ')cnt ++;}cout << endl;}void preOrderTraverse(BiTNode *T) {if(T){cout << T->data;preOrderTraverse(T->l);preOrderTraverse(T->r);}}void inOrderTraverse(BiTNode *T) {if(T){inOrderTraverse(T->l);cout << T->data;inOrderTraverse(T->r);}}void beOrderTraverse(BiTNode *T){if(T){beOrderTraverse(T->l);beOrderTraverse(T->r);cout << T->data;}}int sumOfVer(BiTNode *T){if(!T)return 0;return sumOfVer(T->l) + sumOfVer(T->r) + 1;}int sumOfLeaf(BiTNode *T){if(!T)return 0;if(T->l == NULL && T->r == NULL)return 1;return sumOfLeaf(T->l) + sumOfLeaf(T->r);}int depth(BiTNode *T){if(!T)return 0;return max(depth(T->l),depth(T->r)) + 1;}bool LongestPath(int dist,int dist2,vector<ElemType> &ne,BiTNode *T) {if(!T)return false;if(dist2 == dist)return true;if(LongestPath(dist,dist2 + 1,ne,T->l)){ne.push_back(T->l->data);return true;}else if(LongestPath(dist,dist2 + 1,ne,T->r)){ne.push_back(T->r->data);return true;}return false;}void swapVer(BiTNode *&T){if(T){swapVer(T->l);swapVer(T->r);BiTNode *tmp = T->l;T->l = T->r;T->r = tmp;}}//以下是测试程序void test1(){getchar();cout << "请以先序次序输入二叉树结点的值,空结点用空格表示:" << endl; createBiTree(T);cout << "二叉树创建成功!" << endl;}void test2(){cout << "二叉树的前序遍历为:" << endl;preOrderTraverse(T);cout << endl;}void test3(){cout << "二叉树的中序遍历为:" << endl;inOrderTraverse(T);cout << endl;}void test4(){cout << "二叉树的后序遍历为:" << endl;beOrderTraverse(T);cout << endl;}void test5(){cout << "二叉树的总结点数为:" << sumOfVer(T) << endl;}void test6(){cout << "二叉树的叶子结点数为:" << sumOfLeaf(T) << endl; }void test7(){cout << "二叉树的深度为:" << depth(T) << endl;}void test8(){int dist = depth(T);vector<ElemType> ne;cout << "树根到叶子的最长路径:" << endl;LongestPath(dist,1,ne,T);ne.push_back(T->data);reverse(ne.begin(),ne.end());cout << ne[0];for(int i = 1;i < ne.size();i++)cout << "->" << ne[i];cout << endl;}void test9(){swapVer(T);cout << "操作成功!" << endl;}void test10(){memset(SqBiTree,' ',sizeof SqBiTree);createBiTree2(T,0);cout << "操作成功!" << endl;}void test11(){int n = sumOfVer(T);outputBiTree2(n);}int main(){int op = 0;while(op != 12){cout << "-----------------menu--------------------" << endl;cout << "--------------1:创建二叉树--------------" << endl;cout << "--------------2:前序遍历----------------" << endl;cout << "--------------3:中序遍历----------------" << endl;cout << "--------------4:后序遍历----------------" << endl;cout << "--------------5:总结点数----------------" << endl;cout << "--------------6:叶子节点数--------------" << endl;cout << "--------------7:树的深度----------------" << endl;cout << "--------------8:树根到叶子的最长路径----" << endl;cout << "--------------9:交换所有节点左右子女----" << endl;cout << "--------------10:顺序存储---------------" << endl;cout << "--------------11:显示顺序存储-----------" << endl;cout << "--------------12:退出测试程序-----------" << endl;cout << "请输入指令编号:" << endl;if(!(cin >> op)){cin.clear();cin.ignore(INT_MAX,'\n');cout << "请输入整数!" << endl;continue;}switch(op){case 1:test1();break;case 2:test2();break;case 3:test3();break;case 4:test4();break;case 5:test5();break;case 6:test6();break;case 7:test7();break;case 8:test8();break;case 9:test9();break;case 10:test10();break;case 11:test11();break;case 12:cout << "测试结束!" << endl;break;default:cout << "请输入正确的指令编号!" << endl;}}return 0;}六、实验数据及处理结果测试用例:1.创建二叉树(二叉链表形式)2.前序遍历3.中序遍历4.后序遍历5.总结点数6.叶子结点数7.树的深度8.树根到叶子的最长路径9.交换所有左右子女10.顺序存储七、思考讨论题或体会或对改进实验的建议通过这次实验,我掌握了二叉树的顺序存储和链式存储,体会了二叉树的存储结构的特性,掌握了二叉树的树上相关操作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验三二叉树的遍历
一、实验目的
1、熟悉二叉树的结点类型和二叉树的基本操作。
2、掌握二叉树的前序、中序和后序遍历的算法。
3、加深对二叉树的理解,逐步培养解决实际问题的编程能力。
二、实验环境
运行C或VC++的微机。
三、实验内容
1、依次输入元素值,以链表方式建立二叉树,并输出结点的值。
2、分别以前序、中序和后序遍历二叉树的方式输出结点内容。
四、设计思路
1. 对于这道题,我的设计思路是先做好各个分部函数,然后在主函数中进行顺序排列,以此完成实验要求
2.二叉树采用动态数组
3.二叉树运用9个函数,主要有主函数、构建空二叉树函数、建立二叉树函数、访问节点函数、销毁二叉树函数、先序函数、中序函数、后序函数、范例函数,关键在于访问节点
五、程序代码
#include <stdio.h>
#include <stdlib.h>
#include <malloc.h>
#define OK 1
#define ERROR 0
typedef struct TNode//结构体定义
{
int data; //数据域
struct TNode *lchild,*rchild; // 指针域包括左右孩子指针 }TNode,*Tree;
void CreateT(Tree *T)//创建二叉树按,依次输入二叉树中结点的值 {
int a;
scanf("%d",&a);
if(a==00) // 结点的值为空
*T=NULL;
else // 结点的值不为空
{
*T=(Tree)malloc(sizeof(TNode));
if(!T)
{
printf("分配空间失败!!TAT");
exit(ERROR);
}
(*T)->data=a;
CreateT(&((*T)->lchild)); // 递归调用函数,构造左子树 CreateT(&((*T)->rchild)); // 递归调用函数,构造右子树 }
}
void InitT(Tree *T)//构建空二叉树
{
T=NULL;
}
void DestroyT(Tree *T)//销毁二叉树
{
if(*T) // 二叉树非空
{
DestroyT(&((*T)->lchild)); // 递归调用函数,销毁左子树 DestroyT(&((*T)->rchild)); // 递归调用函数,销毁右子树 free(T);
T=NULL;
}
}
void visit(int e)//访问结点
{
printf("%d ",e);
}
void PreOrderT(Tree *T,void(*visit)(int))//先序遍历T
{
if(*T) // 二叉树非空
{
visit((*T)->data); // 先访问根结点
PreOrderT(&((*T)->lchild),visit); // 递归调用函数,先序遍历左子树 PreOrderT(&((*T)->rchild),visit); // 递归调用函数,先序遍历右子树 }
}
void InOrderT(Tree *T,void(*visit)(int))
{
if(*T)
{
InOrderT(&((*T)->lchild),visit); // 递归调用函数,中序遍历左子树 visit((*T)->data); // 访问根结点
InOrderT(&((*T)->rchild),visit); // 递归调用函数,中序遍历右子树
}
}
void PostOrderT(Tree *T,void(*visit)(int))
{
if(*T)
{
PostOrderT(&((*T)->lchild),visit); // 递归调用函数,后序遍历左子树 PostOrderT(&((*T)->rchild),visit); // 递归调用函数,序遍历右子树 visit((*T)->data); // 访问根结点
}
}
void example()
{
int i;
printf("如果你想建立如图所示的二叉树\n");
printf("\n");
printf(" 1 \n");
printf(" / \\ \n");
printf(" 3 3 \n");
printf(" / \\ \\ \n");
printf(" 4 5 7 \n");
printf("\n");
printf("请输入: 1 3 4 00 00 5 00 00 3 00 7 00 00\n");
printf("\n按先序次序输入二叉树中结点的值(输入00表示节点为空)\n");
for(i=0;i<71;i++)
printf("*");
printf("\n");
}
int main ()
{
Tree T;
printf("**************欢迎使用!**************潘俊达\n"); example();
printf("\n请输入所要建立的二叉树:\n");
CreateT(&T);
InitT(&T);
int i;
printf("先序遍历二叉树:\n");
PreOrderT(&T,visit);
printf("\n");
printf("\n中序遍历二叉树:\n");
InOrderT(&T,visit);
printf("\n");
printf("\n后序遍历二叉树:\n");
PostOrderT(&T,visit);
printf("\n");
system("PAUSE");
return 0;
}
六、程序截图
1.范例函数显示,并输入先序二叉树节点值
2.先序遍历二叉树
3.中序遍历二叉树3.后序遍历二叉树。