植物生理学-植物的水分代谢
植物生理学第1章 水分代谢

3、细胞间的水分移动
土壤水势>植物根水势>茎木质部水势>叶片水势>大气水势
4、水分在植物体内的迁移方式 迁移方式主要有两种:集流和扩散
(1)扩散:是物质分子(包括气体分子、水分子、 溶质分子等)从高浓度区域向低浓度区域转移,直 到分布均匀的现象。水分子可以从高水势区域向低 水势区域扩散,但比较慢。 (2)集流:是在外力的作用下,大量水分子快速运 动的现象。如导管的输水作用。 ( 3)渗透作用(osmosis):是指液体通过半透膜进 行扩散的现象,是扩散作用的一种特殊形式。
渗透作用( osmosis) :是指水分从水势高的系 统通过半透膜向水势低的系统进行扩散的现象, 是扩散作用的一种特殊形式。
图1.2 渗透作用示意图
稀溶液的渗透势可用范特· 霍 夫 ( Vant Hoff)计算渗透压的公式来计算: ψs=ψπ=-iCRT
式中 i为溶质的解离系数; C为溶质的体 积 摩 尔 浓 度 ( mol· L-1 ) ; R 为 气 体 常 数 (0.0083dm3· Mpa· mol-1· K-1) ; T 为绝对温度 (K) 。 对于一个开放系统来说,在常温常压下, 溶液的水势就等于其渗透势。
土壤中的水分是以集流的方式向根部移
动。水分移动的速率与土质有关。
农业的节水灌溉
微灌技术:有微喷灌、滴灌、渗灌及微管灌等。 将灌溉水加压、过滤,经各级管道和灌水器具灌水于 作物根际附近。微灌技术具有以下优点: (1) 微灌技术的节水效益更显著。与地面灌溉相比, 可节水 80%~ 85 % .(2) 同时微灌可以与施肥结合,利 用施肥器将可溶性的肥料随水施入作物根区,及时补 充作物需要的水分和养分,增产效果好。 (3) 微灌可 以使土壤疏松、保持颗粒状。( 4)微灌使地表干燥, 不利于杂草生长。
植物的水分代谢解读

质壁分离(plasmolysis):植物细胞由于液泡失水而是 原生质体和细胞壁分离的现象 质壁分离的复原(deplasmolysis)
第二节 植物细胞对水分的吸收
4、细胞的水势
水势就是水的化学势。水流动需要能量,水用于做功的能量大小的 量度用水势来表示。一个系统中物质所含的能量可分为束缚能和自 由能两部分。束缚能是在恒温、恒压下不能做功的能量,而自由能 是在恒温恒压下用于做功的能量。只有自由能可用来做功,水只能 延着能量减小的方向移动,即从水势高向水势低的方向移动。
重力势ψ
g
:是水分因重力下移而引起水势降低的
力量,其大小取决于参考状态下水的高度(h)、
水的密度和重力加速度。
植物细胞水势的组分:
一个典型细胞的水势是由溶质势、压力
势、衬质势和重力势所组成。
ψ w =ψ
s
+ψ
p
+ψ
m
+ψ
g
对已形成中央大液泡的成熟植物细胞
来说,由于原生质仅为一薄层,液泡内的
大分子物质又很少,衬质势 ψ 为 ψ w =ψ 质势 ψ
水势的单位:兆帕( MPa )、帕( Pa )、巴
(bar)、大气压(atm)。 1巴=0.1MPa = 0.987 大气压 = 105 帕
cell水势、溶质势、压力势/MPa
1.5 1.0 0.5 0 -0.5 -1.0 -1.5 -2.0 -2.5
Ψp Ψw
Ψs
0.9 1.0 1.1 1.2 1.3 1.4 1.5 相对体积
水势的应用
水分总是由水势高的部位向水势低的部位运转,故水势 可用于判断水分迁移的方向。如:
1.
相邻细胞的水分转移:水分由水势高的细胞沿水势梯度流向 水势低的细胞。 植物体内的水分转移:植株地上部分的水势低于根系,故根 系水分可向地上部分运转。
植物生理学

1、必需矿质元素具备的条件(判据): (1)该元素缺乏,植物生长发育发生障碍,不能完成生 活史; (2)缺乏该元素,则表现专一性病症,补充该元素时, 其缺乏症减弱或消失; (3)该元素在植物营养生理上表现为直接的效果,而不 是因土壤或培养基的物理、化学、微生物条件的改变而产 生 的间接效果。 2、植物必需的元素: 碳、氢、氧、氮、磷、钾、硫、钙、镁、铁、锰、 硼、锌、铜、钼、氯。除碳、氢、氧外,其余13种元素 都是矿质元素。
• 2、扩散速率快的原因—小孔扩散原理 气孔通过多孔表面的扩散速率不与小孔面积成正比, 而与小孔的周长成正比。 • 3、气孔运动 气孔运动的原因: 保卫细胞的吸水或失水
K+ 、Cl- 、苹 果酸和糖进入 保卫细胞液泡 保卫细胞吸 水膨胀 保卫细胞较薄的壁 膨胀,细胞弓起来, 气孔打开
水势降低
影响气孔运动的因素:
• (四)吸收方式 植物细胞对矿质元素吸收的方式:被动吸收、主动 吸收、胞饮作用。 1、被动吸收 由于扩散作用或其它物理过程而进行的吸收,不需 能量,又称为非代谢吸收。包括: (1)简单扩散:由细胞内外的浓度差决定。 (2)杜南平衡:细胞内可扩散正负离子浓度之积等于细胞 外可扩散正负离子浓度之积,即使是膜两侧离子的浓度 不相等,但也可达到平衡。
(3)藻胆素:藻类进行光合作用的主要色素。 在蓝藻和红藻等藻胆素常与蛋白质结合成藻胆蛋白, 依颜色不同,藻胆蛋白又分为藻红蛋白和藻蓝蛋白。 藻胆蛋白不溶于有机溶剂,易溶于稀盐溶液。 • 2、植物的叶色 (1)叶色是植物叶子各种色素的综合表现,但主要决定于 叶绿素和类胡萝卜素两类色素的比例。 (2)正常叶片中主要色素的比例 叶绿素与类胡萝卜素为3:1,叶绿素a与叶绿素b也 约为3:1,叶黄素与胡萝卜素为2:1。
植物的水分代谢.

第二节 植物细胞对水分的吸收
细胞吸水有三种方式: 吸胀作用吸水(形成液泡前) 渗透性吸水(形成液泡后) 代谢性吸水(形成液泡后)
一、植物细胞的渗透性吸水
1、扩散和渗透作用 扩散是物质分子从高浓度向低浓度转移,直到均匀分布的现象。 渗透作用是扩散作用的特殊形式,是水分通过半透性膜的扩散作用。 半透性膜的特点是:
1巴=0.1MPa = 0.987 大气压 = 105 帕
cell水势、溶质势、压力势/MPa
1.5
1.0
0.5
Ψp
0
-0.5
-1.0 -1.5
Ψw
-2.0 -2.5
Ψs
0.9 1.0 1.1 1.2 1.3 1.4 1.5 相对体积
水势的应用
水分总是由水势高的部位向水势低的部位运转,故水势 可用于判断水分迁移的方向。如:
ψw =ψs +ψp 没有形成液泡如风干种子的细胞,衬 质势ψm 可达-100MPa,渗透势ψs和压力 势ψp很小,可忽略不计,所以它们的细胞 水势可表示为:
ψw =ψm
水势的大小和单位:
纯水的水势(ψw0)最大ψw0=0,植物细胞的 水势都为负值。
水势的单位:兆帕(MPa)、帕(Pa)、巴 (bar)、大气压(atm)。
内皮层(凯氏带)阻碍了水通过。内皮层通道自保就是一个具有选 择性的膜,对根中水分运转其调控作用
2)蒸腾拉力—被动吸水
蒸腾拉力(transpirational pull):由于蒸腾作用产生的一系 列水势梯度使导管中水分上升的力量。主要动力
3 根系吸水的影响因素 A) 植物本身因素
1) 根系发达程度: 根系密度(root desity): cm/cm3
μw-μw0
植物生理学--名词解释

第一章植物的水分代谢一、名词解释1.自由水:距离胶粒较远而可以自由流动的水分。
2.束缚水:靠近胶粒而被胶粒所束缚不易自由流动的水分。
3.渗透作用: 水分从水势高的系统通过半透膜向水势低的系统移动的现象。
4.水势(ψw):每偏摩尔体积水的化学势差。
符号:ψw。
5.渗透势即溶质势(ψπ):由于溶液中溶质颗粒的存在而引起的水势降低值,符号ψπ。
用负值表示。
亦称溶质势(ψs)。
6.压力势(ψp):由于细胞壁压力的存在而增加的水势值。
一般为正值。
符号ψp。
初始质壁分离时,ψp为0,剧烈蒸腾时,ψp会呈负值。
7.衬质势(ψm):细胞胶体物质亲水性和毛细管对自由水束缚而引起的水势降低值,以负值表示。
符号ψm 。
8.小孔扩散律:气体通过多孔表面的扩散速率,不与小孔的面积成正比,而与小孔的周长成正比。
9.水分临界期:10.蒸腾作用:水分以气体状态通过植物体表面从体内散失到体外的现象。
11.根压:植物根部的生理活动使液流从根部上升的压力。
12.质壁分离:将植物细胞放到水势较低的浓溶液中,细胞渗透失水,细胞壁弹性有限,原生质体弹性较大,细胞继续失水造成细胞壁和细胞质分离的现象13.蒸腾速率:又称蒸腾强度,指植物在单位时间内,单位面积通过蒸腾作用而散失的水分量。
(g/dm2·h)14.蒸腾比率(效率):植物每消耗l公斤水时所形成的干物质重量(克)。
15.蒸腾系数:植物制造 1克干物质所需的水分量(克),又称为需水量。
它是蒸腾比率的倒致。
16.内聚力学说:又称蒸腾流-内聚力-张力学说。
即以水分的内聚力解释水分沿导管上升原因的学说。
第二章植物的矿质营养一、名词解释1. 矿质元素:2.灰分元素:亦称矿质元素,将干燥植物材料燃烧后,剩余一些不能挥发的物质称为灰分元素。
3.大量元素:在植物体内含量较多,占植物体干重达万分之一以上的元素。
包括钙、镁、硫、氮、磷、钾、碳、氢、氧等9种元素(C、H、O、N、P、K、Ca、Mg、S)。
植物生理学 2.水分代谢

原因:(F)
①根毛区有许多根毛,增大了吸收面积; ②根毛细胞壁的外部由果胶质组成,粘性强, 亲水性也强,有利于与土壤颗粒粘着和吸水;
③根毛区的输导组织发达,对水分移动的阻 力小。
二 根系吸水的途径
1、质外体途径 2、跨膜途径 3、共质体途径
三 根系吸水的动力
角质蒸腾 叶片蒸腾的方式 气孔蒸腾(主要方式)
(二)气孔蒸腾
一)气孔的形态结构及生理特点
1.气孔数目多、分布广 2.气孔的面积小,蒸腾速率高 3.保卫细胞体积小,膨压变化迅速 4.保卫细胞具有多种细胞器 5.保卫细胞具有不均匀加厚的细胞壁及微 纤丝结构 6.保卫细胞与周围细胞联系紧密
图2-6 气孔蒸腾的过程
(1)气孔的构造:(F)
由两个肾形的保卫细胞组成。
(2)保卫细胞的特点:外壁薄内壁厚;内有叶绿体;
有淀粉磷酸化酶。
(3)气孔运动:
(1)单位:巴(Pa)(帕)
1巴=0.987大气压=106达因/cm2
(10.2米水柱高)
(2)符号:Ψ (3)纯水的水势:0巴 (4)溶液的水势:为负值(小于0)(原因)
(水分的流动是由水势高处流向水势低处。)
小结:
纯水的水势定为零, 溶液的水势就成负值。 溶液越浓,水势 越低 。 水分移动需要能量。
土壤温度过高对根系吸水也不利。
原因:
①高温加速根的老化过程,吸收面积减少, 吸收速率也下降。
②温度过高使酶钝化,影响根系主动吸水。
4土壤溶液浓度
根系要从土壤中吸水,根部细胞的水势必须 低于 土壤溶液的 水势。
➢在一般情况下,土壤溶液浓度较低,水势较 高,根 系吸水;
➢盐碱土则相反
植物生理学第01章 植物的水分代谢

第一章植物的水分代谢本章内容提要水是植物生命的基础。
植物水分代谢包括水的吸收、运输和散失过程。
植物细胞吸水有三种方式:渗透吸水、吸胀吸水和代谢性吸水,以渗透吸水为主。
根系是植物吸水的主要器官,吸水的主要区域为根毛区,吸水的方式有主动吸水和被动吸水,其吸水动力分别为根压和蒸腾拉力。
蒸腾拉力是植物主要的吸水动力。
水分在植物体内连续不断地运输是蒸腾拉力—内聚力克服水柱张力的结果。
植物主要通过叶片蒸腾散失水分,具有重要生理意义。
气孔蒸腾是植物叶片蒸腾的主要形式。
蒸腾速率与气孔的开闭关系很大。
气孔开闭可能是通过保卫细胞内K+的积累学说和苹果酸代谢来调节的。
许多外界因子能调节气孔开闭。
作物需水因作物种类不同而异,一般而论,植物的水分临界期是花粉母细胞四分体形成期,合理灌溉要综合考虑土壤含水量、作物形态指标及生理指标。
灌溉的生理指标能即使反映植物体内的水分状况,是较为科学的。
第一节水分在植物生命活动中的作用一、植物体内的含水量不同植物的含水量不同;同一种植物生长在不同的环境中含水量也有差异;在同一植株中不同器官和不同组织的含水量也不同。
二、水对植物的生理作用1、原生质的主要组分。
原生质一般含水量在70%~90%以上,这样才可使原生质保持溶胶状态,以保证各种生理生化过程的进行。
如果含水量减少,原生质由溶胶变成凝胶状态,细胞生命活动大大减缓(例如休眠种子)。
2、接参与植物体内重要的代谢过程。
在光合作用、呼吸作用、有机物质合成和分解的过程中均有水的参与。
3、多生化反应和物质吸收、运输的良好介质。
植物体内绝大多数生化过程都是在水介质中进行的。
水分子是极性分子,参与生化过程的反应物都溶于水,控制这些反应的酶类也是亲水性的。
各种物质在细胞内的合成、转化和运输分配,以及无机离子的吸收和运输在水介质中完成的。
4、使植物保持固有的姿态。
细胞含有大量的水分,维持细胞的紧张度,因而使植物枝叶挺立、花朵开放等。
3、分裂和延伸生长都需要足够的水。
植物生理学植物的水分生理

➢水孔蛋白(AQPs):一种存在于生物膜上的、分子量为28,000 、具有通透水分功能的内在蛋白。也称之为水通道蛋白。 (图)
第一章 植物的水分生理
植物对水分的吸收、运输、利用和散失的过程,
称为植物的水分代谢(water metabolism)。
植物从环境中不断吸取水分,以满足正常生命活动的需要。 但是,植物又不可避免地要丢失大量的水分到环境中去。这样就形 成了植物水分代谢的三个过程:植物通过根系吸收水分、水分在植 物体内的运输、植物通过气孔排出水分。(图)
➢ 导管上部呈开放状态,不产生压力,于是水柱就在指向上方 的压力下向上移动。
这样就形成了根压
有人指出:根压是由于根内外皮层存在水势梯度而产生的一种 现象,它可作为根产生水势差的一个量度,但不是一种动力,因 为水流的真正动力是水势差.
2. 被动吸水
动力――蒸腾拉力
➢ 蒸腾拉力(transpirational pull):指因为叶片蒸腾作用而产 生的使导管中水分上升的力量。(图)
ψw=ψs+ψp
Ⅱ.植物细胞吸水达到紧张状态 ψw=0,ψs = -ψp 体积最大 , 细胞吸水能力最小。
Ⅲ.植物细胞初始质壁分离状态 ψw =ψs,ψp=0 体积最小,细胞吸水能力最大。
Ⅳ.植物细胞水为蒸汽状态 ψp<0, ψw≤ψs+ψp
三、相邻细胞间水分的运转
相邻细胞的水分移动方向决定于两细胞间的水势差异,
或边缘的水孔向外溢 出液滴的现象。
✓吐水现象可作为根 系活动的生理指标, 并能用以判断植物苗 长势的强弱。 ★
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四节 植物的蒸腾作用
2.气孔开闭的机理: 2)离子泵学说。
第四节 植物的蒸腾作用
2.气孔开闭的机理: 3)苹果酸代谢学说。
第四节 植物的蒸腾作用
六、
1.光:光促进气孔的开启,蒸腾增加。 2.水分状况:足够的水分有利于气孔开放,过 多的水分反而使气孔关闭。 3.温度:气孔开度一般随温度的升高而增大, 但温度过高失水增大也可使气孔关闭。 4.风:微风有利于蒸腾,强风蒸腾降低。 5强.C。O2浓度:CO2浓度低促使气孔张开,蒸腾增
2.土壤温度:适宜的温度范围内土温愈高,
3. 土壤溶液浓度:根细胞水势小于土壤水 势有利于根系吸水
第四节 植物的蒸腾作用
一、概念:
蒸腾作用指水分从植物地上部分 以水蒸汽状态向外散失的过程叫蒸腾 作用。
蒸腾作用与蒸发不同,它是一 个生理过程,受植物体结构和气孔行 为的调节。
第四节 植物的蒸腾作用
二、蒸腾作用的生理意义 1.蒸腾作用是植物对水分吸收和运输的一个
第三节 植物根系对水分的吸收
三.根系吸水的机理: 1.主动吸水的机理: 主动吸水的动力 根压:指植物根系的生理活动使液流从根部 上升的压力。 伤流和吐水是证实根压存在的两种生理现象。 吐水:未受伤的叶片尖端或边缘向外溢出液滴 的现象,是由根压引起的。 伤流:是指从受伤或折断的植物组织溢出液体 的现象。伤流是根压引起的。
Vw
第二节 植物细胞对水分的吸收
一、植物细胞的水势 2.水势的大小和单位: 纯水的水势(ψw0)最大ψw0=0,植物细胞
的水势都为负值。 水势的单位:兆帕(MPa)、帕(Pa)、
巴(bar)、大气压(atm)。 1巴=0.1MPa = 0.987 大气压 = 105
第二节 植物细胞对水分的吸收
一、 3.植物细胞水势的组分: 1)溶质势:由于溶质颗粒的存在而引起
1.气孔的形态结构和特点:
①气孔数目多,分布广。气孔数目,大小,分布因植物种类和 生长环境而异。
②气孔的面积小,蒸腾速率遵循小孔律。 ③保卫细胞的体积小,膨压变化迅速。 ④保卫细胞具有多种细胞器,特别是含有叶绿体,对气孔开闭
有重要作用。 ⑤保卫细胞具有不均匀加厚的细胞壁及微纤丝结构。 ⑥保卫细胞与周围细胞联系紧密,便于物质及水分的交流。
当外界溶液浓度小于细胞液浓度时 (低渗溶液),细胞发生质壁分离复原。
第二节 植物细胞对水分的吸收
二、 细胞吸水的方式:
2.吸胀吸水:依赖于低的ψm而引起的吸 水。是无液泡的分生组织和干燥种子细 胞的主要吸水方式。
原理:淀粉、纤维素和蛋白质这些亲
水性物质吸水而膨胀。
第二节 植物细胞对水分的吸收
二、 细胞吸水的方式: 3. 降 压 吸 水 : 由 ψp 的 降 低 而 引 发的细胞吸水。蒸腾过旺盛时, 可能导致的细胞吸水方式。
第三节 植物根系对水分的吸收
一、根系吸水的部位:
主要在根尖的根毛区。具体的 说是在根尖木质部已成熟的伸长区 及邻接伸长区的部分成熟期。
地上部也可吸收水分。
根毛区
伸 长 区 分 生 区 根 冠
第三节 植物根系对水分的吸收
二、根系吸水的方式: 1.主动吸水:由于根本身的生理活动 引起的植 物吸收水分的现象,与 地上部无关。其动力 是根压。 2.被动吸水:由于地上部的蒸腾作 用而引起的 根部吸水,被动吸水 的动力是蒸腾拉力。
第三节 植物根系对水分的吸收
三.根系吸水的机理: 1.
第三节 植物根系对水分的吸收
三.根系吸水的机理: 1.主动吸水的机理:
第三节 植物根系对水分的吸收
三.根系吸水的机理: 2.被动吸水的机理
第三节 植物根系对水分的吸收
三.根系吸水的机理:
第三节 植物根系对水分的吸收
四、
1.土壤通气状况:通气状况良好,有利于
植物的水分代谢
目的要求:
通过本章学习,主要了解植物对水分的 吸收、运输及蒸腾的基本原理,认识维持植 物水分平衡的重要性,为作物合理灌溉提供 理论基础。
本章重点: 1.植物细胞和根系对水分吸收机制。 2.植物蒸腾作用的调控、气孔运动机
制及其调控。
水是植物的一个重要的先天环境 条件,没有水就没有生命,也就没有植 物。植物的水分代谢包括:
Water molecules are “sticky”
Cohesion
Uptake
第六节合理灌溉的生理基础
一、作物的需水规律
1.不同作物对水分的需要量不同; 2.同一作物不同生育期对水分的需要量 不同; 3.作物的水分临界期;
水分临界期指植物对水分不足特别敏 感的时期。
第六节 合理灌溉的生理基础
第六节 合理灌溉的生理基础
五、灌溉的需水量: 可通过蒸腾系数和田间蒸发量估算。
六、灌溉的方式: 漫灌、沟灌、喷灌、滴灌
七、灌溉增产的原因: 生理效应 生态效应
第四节 植物的蒸腾作用
八、降低蒸腾的途径: 1.减少蒸腾面积; 2.改善植物生态环境; 3.应用抗蒸腾剂。
第五节 植物体内水分的运输
一、水分运输的途径: 土壤水分 → 根毛 → 皮层 →
内皮层 → 木质部薄壁细胞 →茎 的导管 → 叶脉导管 → 叶肉细 胞 → 气孔下腔 → 气孔 → 大 气。
第五节 植物体内水分的运输
第一节 水分在植物生命活动中的重要性
二、 水在植物生命活动中的重要性
1. 2. 水直接参与植物体内重要的代谢过程; 3. 水是各种生理生化反应和运输物质的良
4. 5. 细胞分裂和延伸生长都需要足够的水; 6. 水具有重要的生态意义。
第一节 水分在植物生命活动中的重要性
三、 1.植物体内水分存在的状态有: 自由水:距离胶体颗粒较远,可以自由移动的 水分。 束缚水:较牢固地被细胞胶体颗粒吸附,不易 流动的水分。 2.自由水/束缚水比值影响代谢和抗逆性 自由水/束缚水比值高时,代谢旺盛,但抗逆性较强。
渗透作用:水分子(其他溶剂分子) 通过半透膜扩散的现象。
渗透装置的条件
1、具有半透膜
2、半透膜两侧具有浓度差
渗 透 装 置
经过一段时间后,由于水分子可以自 由通过半透膜,而蔗糖分子不可以。单位 体积内,清水中水分子数多于蔗糖分子中 的,因此,单位时间内由清水向蔗糖溶液 扩散的水分子数多。故而导致蔗糖溶液的 液面升高。
4.细胞吸水过程中水势组分
环境状况 等渗溶液 低渗溶液 纯水中 高渗溶液
体积 细胞状态
V=1 V>1 V最大 V<1
松弛状态,临界质 壁分离
膨胀状态,细胞吸 水
饱和状态,充分膨 胀
萎蔫状态,失水, 质壁分离
ψp ψp=0 ψp增大 ψp=-ψs ψp<0
ψw ψw=ψs
ψw= ψs+ψp ψw=0 ψw下降
第二节 植物细胞对水分的吸收
一、 5.相邻细胞水分移动的规律: 水分总是从水势高的部位向
水势低的部位流动。
第二节 植物细胞对水分的吸收
二、 细胞吸水的方式:
方式
渗透吸水 吸胀吸水
代谢吸水
第二节 植物细胞对水分的吸收
二、 细胞吸水的方式:
1.渗透吸水:由于ψw的下降而引起 细胞吸水。是含有液泡的细胞吸水 的主要方式。
第四节 植物的蒸腾作用
七、蒸腾作用的指标:
1.蒸腾强度:又叫蒸腾速度、蒸腾率,即一 定时间内单位叶面积上蒸腾的水量。一般用每 小时每平方米蒸腾水量的克数来表示。
2.蒸腾效率:亦称蒸腾比率,指植物消耗每 千克水所形成的干物质的克数。
3.蒸腾系数:亦称需水量,指植物制造一克 干物质所需要水分的克数。蒸腾系数与蒸腾效 率互为倒数关系。
蔗糖分子 半透膜
水分子
一个成熟的植物细胞就是一个完整的渗透装置
细胞壁(全透性)
细胞膜 原
液泡膜 生
细胞质
质 层
细胞液
细胞核
原生质层具有选择透过性,近似于半透膜
当外界溶液浓度大于细胞液浓度时(高渗溶 液),细胞发生质壁分离。
细胞壁 细胞膜 液泡膜 原生质层 细胞质
细胞液 细胞空腔
原生质层和细胞壁分离的现象。
体系水势降低的数值,又称渗透势。用 ψs表示。
ψs =ψπ=-P(渗透压)=-iCRT 细胞中含有大量溶质,其溶质势为各 溶质势的总和。
第二节 植物细胞对水分的吸收
2)压力势:是指由于细胞壁压力的存在 而引起的细胞水势增加的数值,用ψp表 示。
原生质吸水膨胀,对细胞壁产生压 力,而细胞壁对原生质会产生一个反作 用力,这就是细胞的压力势。
水水 水 水 分分 分 分 的的 的 的 吸运 利 散 收输 用 失
第一节 水分在植物生命活动中的重要性
一、植物的含水量 植物的含水量一般占组织鲜重的70%~90%。它
随植物种类、植物组织以及外界环境条件而变化。 1、 不同植物:
水生植物:在90%以上; 中生植物:70% ~ 90%; 旱生植物:低于中生植物; 地衣:6%。 2、同一植物生长在不同环境中,含水量有差异。 3、不同发育时期、不同器官和组织中,含水量不同。
; 自由水/束缚水比值低时,代谢缓慢,但抗逆性较强。
第二节 植物细胞对水分的吸收
一、植物细胞的水势
1.概念 水势指每偏摩尔体积水的化学势(差)。即水溶液
的化学势( μw )与同温同压同一系统中纯水的化学势
(μw0 )之差除以水的偏摩尔体积( Vw )所得的商,用
ψw表示。
μw-
Δμw
ψw=
μVww0 =
第四节 植物的蒸腾作用
2.气孔开闭的机理:
1)淀粉-糖转化学说。在光下,光合作用消耗 了CO2,于是保卫细胞细胞质pH增高到7,淀 粉磷酸化酶催化正向反应,使淀粉水解为葡 萄糖-1-磷酸,引起保卫细胞渗透势下降, 水势降低,从周围细胞吸取水分,保卫细胞 膨大,气孔张开。反之,即在黑暗中,气孔 关闭。