六年级奥数专题复习资料

合集下载

小学六年级奥数专题明细

小学六年级奥数专题明细

六年级奥数学习专题专题一:分数乘法与除法的计算
专题二: 分数混合运算训练
专题三:分数应用题
专题四:多位数的运算
专题五:比的应用
专题六:比例的应用
专题七:运用比和比例求解行程问题
专题八:综合复习(一)
专题九:位置与方向(二)
专题十:整取问题
专题十一:工程问题
专题十二:解方程
专题十三:列方程解应用题
专题十四:综合复习(二)
专题十五: 数学的数与形
专题十六:赛况分析
专题十七:圆的应用
专题十八:百分数与扇形统计图的综合应用
专题十九:百分数(一)应用题
专题二十:综合复习(三)。

六年级奥数知识点大纲

六年级奥数知识点大纲

六年级奥数知识点大纲一、整数和有理数1. 正整数、负整数和零的概念2. 实数的概念和表示方法3. 实数的比较和大小关系4. 整数的加减法和乘除法运算5. 有理数的概念和性质6. 有理数的运算规律和运算法则二、分数与百分数1. 分数的概念与表示方法2. 分数的简化与约分3. 分数的加减法和乘除法运算4. 分数的比较与大小关系5. 百分数的概念和应用6. 百分数的转化与运算7. 分数与百分数在生活中的应用三、图形与几何1. 点、线、面的基本概念2. 基本图形的性质和特征3. 三角形的分类和性质4. 四边形的分类和性质5. 正多边形的特征和性质6. 圆的性质和计算7. 直角、锐角和钝角的概念8. 直线、射线和线段的区别和特征四、代数与方程1. 代数式的概念和表示方法2. 一元一次方程的解法和应用3. 同类项的合并和多项式的展开4. 方程的解与方程的应用5. 数列的概念和特征6. 等差数列和等比数列的计算和应用五、函数与图像1. 函数的概念和表示方法2. 函数的定义域和值域3. 一次函数和二次函数的图像和性质4. 函数关系的建立和分析5. 函数的应用和实际问题解决六、概率与统计1. 实验和事件的概念和表示2. 事件的概率和实际意义3. 基本统计量的计算和分析4. 数据的图表表示和分析5. 问题解决中的概率和统计方法以上为六年级奥数的知识点大纲,通过学习这些知识点,同学们可以更好地掌握数学的基础概念和方法,提高解决问题的能力。

希望同学们能够认真学习,并在奥数竞赛中取得优异的成绩!。

六年级奥数知识点汇总

六年级奥数知识点汇总

六年级奥数知识点汇总一、数论1. 质数与合数- 定义- 质数的判定方法- 质数的性质2. 因数与倍数- 因数分解- 最大公约数和最小公倍数- 质因数分解3. 整数的性质- 奇偶性- 整数的四则运算性质- 整数的不等式二、分数1. 分数的基本概念- 真分数与假分数- 带分数与混合数2. 分数的运算- 加减乘除- 分数的通分与约分- 分数的比较3. 分数的应用- 分数在实际问题中的应用- 比例问题三、几何1. 平面几何- 点、线、面的基本性质 - 角的概念及分类- 三角形的性质- 四边形的性质- 圆的基本性质2. 立体几何- 立体图形的认识- 体积和表面积的计算 - 空间图形的投影四、代数1. 代数表达式- 字母表示数- 单项式与多项式- 代数式的加减运算2. 方程与不等式- 一元一次方程- 不等式及其解集- 方程与不等式的解法五、逻辑与推理1. 逻辑推理- 条件与结论- 逻辑运算2. 数列与序列- 等差数列- 等比数列- 数列的求和3. 证明方法- 直接证明- 反证法- 归纳法六、组合数学1. 排列与组合- 排列组合的基本概念- 排列组合的计算公式2. 概率- 概率的基本概念- 事件的概率计算3. 简单的计数问题- 加法原理- 乘法原理- 排列组合的应用请注意,以上内容是一个概要,每个部分都需要进一步扩展和详细解释,以形成一个完整的知识点汇总。

您可以根据这个框架添加更多的细节和例子,以帮助学生更好地理解和掌握这些概念。

完成后,您可以使用Word文档的样式和格式功能来增强文档的可读性和专业性。

六年级奥数全(举一反三)

六年级奥数全(举一反三)

第一章 数与计算第一单元 同余问题1. 知识前提。

(1) 整除:如果整数a 除以自然数b ,所得的商恰好是整数而没有余数(余数是0),我们就称a 能被b 整除或b 能整除a 。

(2) 乘方的意义:求n 个相同因数的乘积的运算,叫做乘方,乘方的结果叫做幂。

n 个相同因数a 相乘,即n aa aa ∙个,记做n a 。

其中a 叫做底,n 叫做指数,na 读做a 的n 次方。

(3) 幂的运算法则:① 同底数的幂相乘,底数不变,指数相加。

即m n m na a a +∙=。

② 幂的乘方,底数不变,指数相乘。

即 ()mn nm aa =。

③ 积的乘方,等于把积的每一个因数分别乘方,再把所得的幂相乘。

即()nn nab a b =∙。

2. 同余如果两个整数的a 、b 除以同一个自然数m 所得的余数相同,那么就说a 、b 对于m 是同余的,记为a h (mod m )。

我们把m 称为模。

如果a 、b 对于m 是同余的,那么a 与b 的差能被m 整除;反之,如果a 与b 的差能被M 整除,那么a 、b 对于m 是同余的。

3. 规律、方法应用。

(1) 反身性规律:a 和a 对于m 同余。

(2) 对称性规律:a 和b 对于m 同余,那么b 和a 对于m 同余。

(3) 传递性规律:如果a 和b 对于m 同余,b 和c 对于m 同余,那么a 和c 对于m 同余。

(4) 同余的加减法、乘法规律:如果a 和b 对于m 同余,c 和d 对于m 同余,那么a +c ,和b +d ,a -c 和b -d ,a c 和bd 对于m 同余。

(5) 同余的乘方规律:如果a 和b 对于m 同余,那么na 和nb 也对于m 同余。

(6) 同余的连加规律:1a 和1b 对于m 同余,2a 和2b 对于m 同余,3a 和3b 对于m 同余……n a 和n b 对于m 同余,那么123n a a a a +++和123n b b b b +++也对于m 同余。

小学六年级奥数经典讲义(全套36讲)

小学六年级奥数经典讲义(全套36讲)

第一讲循环小数与分数第二讲和差倍分问题第三讲行程问题第五讲质数与合数第六讲工程问题第七讲牛吃草问题第八讲包含与排除第九讲整数的拆分第十讲逻辑推理第十一讲通分与裂项第十二讲几何综合第十三讲植树问题第十五讲余数问题第十六讲直线面积第十七讲圆与扇形第十八讲数列与数表综合第十九讲数字迷综合第二十讲计数综合第二十一讲行程与工程第二十二讲复杂工程问题第二十三讲运用比例求解行程问题第二十四讲应用题综合第二十五讲数论综合2第二十六讲进位制问题第二十七讲取整问题第二十八讲数论综合3第二十九讲数论综合4第三十讲几何综合2第三十一讲图形变换第三十二讲勾股定理第三十三讲计数综合第三十四讲最值问题第三十五讲构造与论证1第三十六讲构造与论证2第一讲循环小数与分数循环小数与分数的互化,循环小数之间简单的加、减运算,涉及循环小数与分数的主要利用运算定律进行简算的问题.1.真分数7a化为小数后,如果从小数点后第一位的数字开始连续若干个数字之和是1992,那么a 是多少?【分析与解】17=0.142857 ,27=0.285714 ,37=0.428571 ,47=0.571428 ,57=0.714285 , 67=0.857142. 因此,真分数7a化为小数后,从小数点第一位开始每连续六个数字之和都是1+4+2+8+5+7=27,又因为1992÷27=73……21,27-21=6,而6=2+4,所以7a =0..857142 ,即a =6.评注:7a的特殊性,循环节中数字不变,且顺序不变,只是开始循环的这个数有所变化.2.某学生将1.23乘以一个数a 时,把1.23 误看成1.23,使乘积比正确结果减少0.3.则正确结果该是多少?【分析与解】 由题意得:1.23 a -1.23a =0.3,即:0.003 a =0.3,所以有:3390010a =.解得a = 90,所以1.23a =1.23 × 90=123290-×90=11190× 90=111.3.计算:0.1+0.125+0.3+0.16,结果保留三位小数. 【分析与解】 方法一:0.1+0.125+0.3+0.16≈-0.1111+0.1250+0.3333+0.1666=0.7359≈0.736方法二:0.1+0.125+0.3+0.16113159899011118853720.7361=+++=+== ≈0.7364.计算:0.010.120.230.340.780.89+++++ 【分析与解】 方法一:0.010.120.230.340.780.89+++++ =1121232343787898909090909090-----+++++ =11121317181909090909090+++++ =21690=2.4方法二:0.010.120.230.340.780.89+++++ =0+0.1+0.2+0.3+0.7+0.8+(0.010.020.030.040.080.09+++++ ) =2.1+0.01×(1+2+3+4+8+9) =2.1+190×27 =2.1+0.3 =2.4方法三:如下式, 0.011111… 0.122222... 0.233333... 0.344444...(1+2+3+4+8+9=27) 0.788888...+0.899999... 2.399997...注意到,百万分位的7是因为没有进位造成,而实际情况应该是2.399999…=2.39 =2.4.评注:0.9=99=1 ,0.09 =919010=.5.将循环小数0.027与0.179672 相乘,取近似值,要求保留一百位小数,那么该近似值的最后一位小数是多少?【分析与解】0.×0.179672=27179672117967248560.00485699999999937999999999999⨯=⨯== 循环节有6位,100÷6=16……4,因此第100位小数是循环节中的第4位8,第10l 位是5.这样四舍五入后第100位为9.6.将下列分数约成最简分数:166********66666666664【分析与解】 找规律:161644=,16616644=,1666166644= ,166661666644=,…所以1666666666666666666664=14评注:类似问题还有38538853888538888538888888885234 (29729972999729999729999999997)+⨯+⨯+⨯++.7.将下列算式的计算结果写成带分数:0.523659119⨯⨯【分析与解】0.523659119⨯⨯=11859119⨯=1(1)119-×59=59-59119=58601198.计算:744808333÷2193425909÷11855635255【分析与解】 744808333÷2193425909÷11855635255=62811259093525583332193453811⨯⨯ =373997131993564111136412119973331993⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯=7523⨯⨯=5569.计算:1111111 81282545081016203240648128 ++++++【分析与解】原式1111111 81288128406420321016508254 =++++++2111118128406420321016508254 =+++++ 1111114064406420321016508254 =+++++ 11111203220321016508254=++++111110161016508254=+++111508508254=++11254254=+1127=10.计算:153219(4.85 3.6 6.153) 5.5 1.75(1) 4185321⎡⎤⨯÷-+⨯+-⨯+⎢⎥⎣⎦【分析与解】原式=1757193.6(4.851 6.15)5.5443421⨯⨯-++-⨯-⨯=135193.610 5.5412+⨯⨯+-=9+5.5-4.5 =1011.计算: 41.2×8.1+11×194+537×0.19【分析与解】原式=412×0.81+11×9.25+0.19×(412+125) =412×(0.81+0.19)+11×9.25+0.19×125 =412+11×8+11×1.25+19×1.25=412+88+1.25×30=500+37.5=537.512.计算:2255 (97)() 7979+÷+【分析与解】原式=656555 ()() 7979+÷+=[]555513()()137979⨯+÷+=13.计算:12324648127142113526104122072135⨯⨯+⨯⨯+⨯⨯+⨯⨯⨯⨯+⨯⨯+⨯⨯+⨯⨯【分析与解】 原式=33333333123(1247)1232135(1247)1355⨯⨯⨯+++⨯⨯==⨯⨯⨯+++⨯⨯14.(1)已知等式0.126×79+1235×□-6310÷25=10.08,那么口所代表的数是多少? (2)设上题答案为a .在算式(1993.81+a )×○的○内,填入一个适当的一位自然数,使乘积的个位数字达到最小值.问○内所填的数字是多少? 【分析与解】 (1)设口所代表的数是x ,0.126×79+1235x -6310÷25=10.08,解得:x =0.03,即口所代表的数是0.03.(2)设○内所填的数字是y ,(1993.81+O.03)×y =1993.84×y ,有当y 为8时1993.84×y =1993.84×8=15050.94,所以○内所填的数字是8.15.求下述算式计算结果的整数部分:111111()38523571113+++++⨯ 【分析与解】原式=111111(38538538538538538523571113⨯+⨯+⨯+⨯+⨯+⨯≈192.5+128.3+77+55+35+29.6=517.4 所以原式的整数部分是517.第二讲 和差倍分问题各种具有和差倍分关系的综合应用题,重点是包含分数的问题.基本的解题方法是将已知条件用恰当形式写出或变形,并结合起来进行比较而求出相关的量,其中要注意单位“1”的恰当选取.1.有甲、乙两个数,如果把甲数的小数点向左移两位,就是乙数的18,那么甲数是乙数的多少倍?【分析与解】甲数的小数点向左移动两位,则甲数缩小到原来的1100,设这时的甲数为“1”,则乙数为1×8=8,那么原来的甲数=l×100=100,则甲数是乙数的100÷8=12.5倍.2.有三堆棋子,每堆棋子数一样多,并且都只有黑、白两色棋子.已知第一堆里的黑子和第二堆里的白子一样多,第三堆里的黑子占全部黑子的25.如果把这三堆棋子集中在一起,那么白子占全部棋子的几分之几?【分析与解】如下表所示:设全部黑子为“5”份,则第三堆里的黑子为“2”份,那么剩下的黑子占5-2=“3”份,而第一堆里的黑子和第二堆里的白子一样多,将第一堆黑子和第二堆白子调换,则第二堆全部为黑子.所以第二堆棋子总数为“3”份,三堆棋子总数为3×3=“9”份,其中黑子占“5”份,则白子占剩下的9-5=“4”份,那么白子占全部棋子的4÷9=49.3.甲、乙两厂共同完成一批机床的生产任务,已知甲厂比乙厂少生产8台机床,并且甲厂的生产量是乙厂的1213,那么甲、乙两厂一共生产了机床多少台?【分析与解】因为甲厂生产的是乙厂的1213,也就是甲厂为12份,乙厂为13份,那么甲厂比乙厂少1份=8台.总共=8×(12+13)=200台.4.足球赛门票15元一张,降价后观众增加了一半,收入增加了五分之一,那么一张门票降价多少元?【分析与解】设原来人数为“1”,则现在有1+0.5=1.5.原来收入为l×15=15,降价后收人为15×(1+15)=18元,那么降价后门票为18÷1.5=12元,则一张门票降价15-12=3元.5.李刚给军属王奶奶运蜂窝煤,第一次运了全部的38,第二次运了50块.这时,已运来的恰好是没运来的57.问还有多少块蜂窝煤没有运来?【分析与解】已经运来的是没有运来的57,则运来的是5份,没有运来的是7份,也就是运来的占总数的512.则共有50÷(512-38)=1200块,还剩下1200×712=700块.6.有两条纸带,一条长21厘米,一条长13厘米,把两条纸带都剪下同样长的一段以后,发现短纸带剩下的长度是长纸带剩下的长度的813.问剪下的一段长多少厘米?【分析与解】方法一:开始时,两条纸带的长度差为21-13=8厘米.因为两条纸带都剪去同样长度,所以两条纸带前后的长度差不变.设剪后短纸带长度为“8”份,长纸带即为“13”份,那么它们的差为13-8=5份,则每份为8÷5=1.6(厘米).所以,剪后短纸带长为1.6×8=12.8(厘米),于是剪去13-12.8=O.2(厘米).方法二:设剪下x厘米,则1382113xx-=-,交叉相乘得:13×(13-x)=8×(21-x),解得x=0.2,即剪下的一段长0.2厘米.7.为挖通300米长的隧道,甲、乙两个施工队分别从隧道两端同时相对施工.第一天甲、乙两队各掘进了10米,从第二天起,甲队每天的工作效率总是前一天的2倍,乙队每天的工作效率总是前一天的l 12倍.那么,两队挖通这条隧道需要多少天?【分析与解】如下表所示:天数工作量1 2 3 4 5甲10 20 40 80 160乙10 15 22.5 33.75 50.625 当天工作量20 35 62.5 113.75 210.625已完成工作量20 55 117.5 231.25 441.375 说明在第五天没有全天干活,则第四天干完以后剩下:300-231.25=68.75米,那么共用时间为4+68.75÷210.625=4110 337天.8.有一块菜地和一块麦地.菜地的一半和麦地的三分之一放在一起是13公顷.麦地的一半和菜地的三分之一放在一起是12公顷.那么菜地是多少公顷?【分析与解】如下表所示:菜地12麦地13⇒13公顷菜地3 麦地2 ⇒78公顷菜地2 麦地3 ⇒72公顷菜地13麦地12⇒12公顷即5倍菜地公顷数+5倍麦地公顷数=78+72=150,所以菜地与麦地共有150÷5=30(公顷).而菜地减去麦地,为78-72=6(公顷),所以菜地有(30+6)÷2=18(公顷).9.春风小学原计划栽种杨树、柳树和槐树共1500棵.植树开始后,当栽种了杨树总数的3 5和30棵柳树以后,又临时运来15棵槐树,这时剩下的3种树的棵数恰好相等.问原计划要栽植这三种树各多少棵?【分析与解】将杨树分为5份,以这样的一份为一个单位,则:杨树=5份;柳树=2份+30棵;槐树=2份-15棵,则一份为(1500-30+15)÷(2+2+5)=165棵,有:杨树=5×165=825棵;柳树=165×2+30=360棵;槐树=165×2-15=315棵.10.师徒二人共同加工170个零件,师傅加工零件个数的13比徒弟加工零件个数的14还多10个.那么,徒弟一共加工了多少个零件?【分析与解】我们用“师”表示师傅加工的零件个数,“徒”表示徒弟加工的零件个数,有:1 3“师”-14“徒”=10,4“师”- 3“徒”=120,而4“师”+4“徒”=170×4=680.那么有7“徒”=680-120=560,“徒”=80,徒弟一共加工了80个零件.11. 一批工人到甲、乙两个工地进行清理工作,甲工地的工作量是乙工地的工作量的11 2倍.上午去甲工地的人数是去乙工地人数的3倍,下午这批工人中有712的人去甲工地,其他人到乙工地.到傍晚时,甲工地的工作已做完,乙工地的工作还需4名工人再做1天.那么这批工人共有多少名?【分析与解】设甲工地的工作量为“1.5”,则乙工地的工作量为“1”.甲乙上午33134=+11134=+下午7121-712=512于是甲工地一整天平均用了这批工人的372()24123+÷=,乙工地一整天平均用了这批工人的1-21 33 =.这批工人的23完成了“1.5”的工作量,那么13的这批工人完成1.5÷2=“0.75”的工作量,于是乙工地还剩下1-0.75=“0.25”的工作量,这“0.25”的工作量需要4人工作1天.而甲、乙工地的工作量为1.5+1=2.5,那么需2.5÷0.25× 4=40人工作1天.所以原来这批工人共有40-4=36人.12.有一个分数,如果分子加1,这个分数就等于12;如果分母加1,这个分数就等于13.问原来的分数是多少?【分析与解】如果分子加1,则分数为12,设这时的分数为:2xx,则原来的分数为12xx-,分母加1后为:11213xx-=+,交叉相乘得:3(x-1)=2x+1,解得x=4,则原分数为38.13.图2-1是某市的园林规划图,其中草地占正方形的34,竹林占圆形的67,正方形和圆形的公共部分是水池.已知竹林的面积比草地的面积大450平方米.问水池的面积是多少平方米?【分析与解】因为水池是正方形的14,是圆的17,则正方形是水池的4倍,圆是水池的7倍,相差7-4=3倍,差450平方米,则水池=450÷3=150平方米.14.唐僧师徒四人吃了许多馒头,唐僧和猪八戒共吃了总数的12,唐僧和沙僧共吃了总数的13,唐僧和孙悟空共吃了总数的14.那么唐僧吃了总数的几分之几?【分析与解】唐+猪=12、唐+沙=13、唐+孙=14.(两边同时加减)唐+猪+唐+沙+唐+孙=2唐+(唐+猪+沙+孙)=2唐+1=12+13+14=1112.则:2唐=112,唐=124.唐僧吃了总数的124.15.小李和小张同时开始制作同一种零件,每人每分钟能制作1个零件,但小李每制作3个零件要休息1分钟,小张每制作4个零件要休息1.5分钟.现在他们要共同完成制作300个零件的任务,需要多少分钟?【分析与解】方法一:先估算出大致所需时间,然后再进行调整.因为小李、小张的工作效率大致相等,那么完成时小李完成300÷2=150个零件左右;小李完成150个零件需要150÷3×4=200分钟;在200分钟左右,198分钟是5.5的整数倍,此时乙生产198÷5.5×4=144个零件,并且刚休息完,所以在2分钟后,即200分钟时完成144+2=146个零件;那么在200分钟时,小李、小张共生产150+146=296个零件,还剩下4个零件未完成,所以再需2分钟,小李生产2个零件,小张生产2个零件,正好完成.所以共需202分钟才能完成.方法二:把休息时间包括进去,小李每4分钟做3个,小张每5.5分钟做4个.则在44分钟内小李做了:44÷4×3=33个,小张做了:44÷5.5×4=32个,他们一共做了:33+32=65个.300÷65=4……40,也就是他们共同做了4个44分钟即:44×4=176分钟后,还剩下40个零件没有做完.而22=4+4+4+4+4+2=5.5×4,所以22分钟内小李做了:3+3+3+3+3+2=17个,小张做了:4×2=16个,那么还剩下:40-17-16=7个,4分钟内小李做3个,小张做4个,共做4+3=7个,即这40个零件还需要26分钟.所以共用时间:44×4+26=202分钟.第三讲行程问题(1)涉及分数的行程问题.顺水速度、逆水速度与流速的关系,以及与此相关的问题.环形道路上的行程问题.解题时要注意发挥图示的辅助作用,有时宜恰当选择运动过程中的关键点分段加以考虑.1.王师傅驾车从甲地开往乙地交货.如果他往返都以每小时60千米的速度行驶,正好可以按时返回甲地.可是,当到达乙地时,他发现从甲地到乙地的速度只有每小时55千米.如果他想按时返回甲地,他应以多大的速度往回开?【分析与解】设甲地到乙地的路程为单位“1”,那么按时的往返一次需时间260,现在从甲到乙花费了时间1÷55=155千米,所以从乙地返回到甲地时所需的时间只能是211 605566-=.即如果他想按时返回甲地,他应以每小时66千米的速度往回开.2.甲、乙两地相距100千米,小张先骑摩托车从甲地出发,1小时后小李驾驶汽车从甲地出发,两人同时到达乙地.摩托车开始速度是每小时50千米,中途减速后为每小时40千米.汽车速度是每小时80千米,汽车曾在途中停驶1O 分钟.那么小张驾驶的摩托车减速是在他出发后的多少小时?【分析与解】 汽车从甲地到乙地的行驶时问为100÷80=1.25小时=1小时15分钟,加上中途停驶的10分钟,共用时1小时25分钟.而小张先小李1小时出发,但却同时到达,所以小张从甲到乙共用了2小时25分钟,即2最小时.以下给出两种解法:方法一:设小张驾驶的摩托车减速是在他出发后x 小时,有50×x +40×5210012x ⎛⎫-= ⎪⎝⎭,解得13x =. 所以小张驾驶的摩托车减速是在他出发后13小时. 方法二:如果全程以每小时50千米的速度行驶,需100÷50=2小时的时间,全程以每小时40千米的速度行驶,需100÷40=2.5小时.依据鸡兔同笼的思想知,小张以每小时50千米的速度行驶了52.521122.526-=-的路程,即行驶了10015010063⨯=千米的路程,距出发5015033÷=小时.3. 一位少年短跑选手,顺风跑90米用了10秒钟.在同样的风速下,逆风跑70米,也用了10秒钟.问:在无风的时候,他跑100米要用多少秒?【分析与解】 我们知道顺风速度=无风速度+风速,逆风速度=无风速度-风速. 有顺风时速度为90÷10=9米/秒,逆风速度为70÷10=7米/秒. 则无风速度=2顺风速度+逆风速度=982+7=米/秒 所以无风的时候跑100米,需100÷8=12.5秒.124.一条小河流过A ,B, C 三镇.A,B 两镇之间有汽船来往,汽船在静水中的速度为每小时11千米.B,C 两镇之间有木船摆渡,木船在静水中的速度为每小时3.5千米.已知A,C 两镇水路相距50千米,水流速度为每小时1.5千米.某人从A 镇上船顺流而下到B 镇,吃午饭用去1小时,接着乘木船又顺流而下到C 镇,共用8小时.那么A,B 两镇间的距离是多少千米?【分析与解】 如下画出示意图,有A →B 段顺水的速度为11+1.5=12.5千米/小时, 有B →C 段顺水的速度为3.5+1.5=5千米/小时. 而从A →C 全程的行驶时间为8-1=7小时. 设AB 长x 千米,有50712.55x x -+=,解得x =25. 所以A,B 两镇间的距离是25千米.5.一条大河有A,B 两个港口,水由A 流向B,水流速度是每小时4千米.甲、乙两船同时由A 向B 行驶,各自不停地在A,B 之间往返航行,甲船在静水中的速度是每小时28千米,乙船在静水中的速度是每小时20千米.已知两船第二次迎面相遇的地点与甲船第二次追上乙船(不算甲、乙在A 处同时开始出发的那一次)的地点相距40千米,求A,B 两个港口之间的距离.【分析与解】 设AB 两地的路程为单位“1”,则:甲、乙两人在A 、B 往返航行,均从A 点同时同向出发,则第n 次同向相遇时,甲、乙两人的路程差为2n ;甲、乙两人在A 、B 往返航行,均从A 点同时同向出发,则第n 次相向相遇时,甲、乙两人的路程和为2n ;甲、乙两人在A 、B 往返航行,分别从A 、B 两点相向出发,则第n 次同向相遇时,甲、乙两人的路程差为(2n -1);甲、乙两人在A 、B 往返航行,分别从A 、B 两点相向出发,则第n 次相向相遇时,甲、乙两人的路程和为(2n -1).有甲船的顺水速度为32千米/小时,逆水速度为24千米/小时, 乙船的顺水速度为24千米/小时,逆水速度为16千米/小时. 两船第二次迎面相遇时,它们的路程和为“4”;甲船第二次追上乙船时,它们的路程差为“4”.(一)第二次迎面相遇时,一定是甲走了2~3个AB 长度,乙走了2~1个AB 长度,设甲走了2+x 个AB 的长度,则乙走了2-x 个AB 的长度,有11322432x ++=112416x -+,解得13x =,即第二次迎面相遇的地点距A 点13AB 的距离.(二)①第二次甲追上乙时,有甲行走2y z +(y 为整数,z ≤1)个AB 的长度,则乙行走了24y z -+个AB 的长度,有322432y y z ++=22241624y y z --++,化简得320y z +=,显然无法满足y 为整数,z ≤1;②第二次甲追上乙时,有甲行走21y z ++(y 为整数,z ≤1)个AB 的长度,则乙行走了23y z -+个AB 的长度,有1322424y y z +++=12241616y y z--++,化简有3213y z +=,有0.5z =,4y =. 即第二次甲追上乙时的地点距B 点12AB 的距离,那么距A 也是12AB 的距离.所以,题中两次相遇点的距离为(111236⎛⎫-= ⎪⎝⎭AB ,为40千米,所以AB 全长为240千米.6.甲、乙两船分别在一条河的A ,B 两地同时相向而行,甲顺流而下,乙逆流而上.相遇时,甲乙两船行了相等的航程,相遇后继续前进,甲到达B 地、乙到达A 地后,都立即按原来路线返航,两船第二次相遇时,甲船比乙船少行1000米.如果从第一次相遇到第二次相遇的时间相隔为1小时20分,那么河水的流速为每小时多少千米? 【分析与解】 因为甲、乙第一次相遇时行驶的路程相等,所以有甲、乙同时刻各自到达B 、A 两地.接着两船再分别从B 、A 两地往AB 中间行驶.所以在第二次相遇前始终是一船逆流、一船顺流,那么它们的速度和始终等于它们在静水中的速度和.有:甲静水速度+水速=乙静水速度-水速.还有从开始到甲第一次到达B 地,乙第一次到达A 地之前,两船在河流中的速度相等.所以甲船比乙船少行驶的1000米是在甲、乙各自返航时产生的.甲乙返航时,有甲在河流中行驶的速度为:甲静水速度-水速,乙在河流中的速度为:乙静水速度+水速.它们的速度差为4倍水速.从第一次相遇到第二次相遇,两船共行驶了2AB 的路程,而从返航到第二次相遇两船共行驶了AB 的路程,需时间80÷2=40分钟. 有4倍水速=401000150060⎛⎫÷=⎪⎝⎭,有水速=375米/小时=0.375千米/小时. 即河水的流速为每小时0.375千米.7.甲、乙二人骑自行车从环形公路上同一地点同时出发,背向而行.现在已知甲走一圈的时间是70分钟,如果在出发后45分钟甲、乙二人相遇,那么乙走一圈的时间是多少分钟? 【分析与解】 甲行走45分钟,再行走70-45=25分钟即可走完一圈.而甲行走45分钟,乙行走45分钟也能走完一圈.所以甲行走25分钟的路程相当于乙行走45分钟的路程. 甲行走一圈需70分钟,所以乙需70÷25×45=126分钟.即乙走一圈的时间是126分钟.8.如图3-1,甲和乙两人分别从一圆形场地的直径两端点同时开始以匀速按相反的方向绕此圆形路线运动,当乙走了100米以后,他们第一次相遇,在甲走完一周前60米处又第二次相遇.求此圆形场地的周长.【分析与解】 注意观察图形,当甲、乙第一次相遇时,甲乙共走完12圈的路程,当甲、乙第二次相遇时,甲乙共走完1+12=32圈的路程. 所以从开始到第一、二次相遇所需的时间比为1:3,因而第二次相遇时乙行走的总路程为第一次相遇时行走的总路程的3倍,即100×3=300米. 有甲、乙第二次相遇时,共行走(1圈-60)+300,为32圈,所以此圆形场地的周长为480米.9.甲、乙二人在同一条椭圆形跑道上作特殊训练:他们同时从同一地点出发,沿相反方向跑,每人跑完第一圈到达出发点后立即回头加速跑第二圈,跑第一圈时,乙的速度是甲速度的23.甲跑第二圈时速度比第一圈提高了13;乙跑第二圈时速度提高了15.已知沿跑道看从甲、乙两人第二次相遇点到第一次相遇点的最短路程是190米,那么这条椭圆形跑道长多少米? 【分析与解】设甲跑第一圈的速度为3,那么乙跑第一圈的速度为2,甲跑第二圈的速度为4,乙跑第二圈的速度为125. 如下图,第一次相遇地点逆时针方向距出发点35的跑道长度. 有甲回到出发点时,乙才跑了23的跑道长度.在乙接下来跑了13跑道的距离时,甲以“4”的速度跑了122433÷⨯=圈.所以还剩下13的跑道长度,甲以4的速度,乙以125的速度相对而跑,所以乙跑了112124355⎡⎤⎛⎫⨯÷+ ⎪⎢⎥⎝⎭⎣⎦18=圈.也就是第二次相遇点逆时针方向距出发点18圈.即第一次相遇点与第二次相遇点相差31195840-=圈, 所以,这条椭圆形跑道的长度为1919040040÷=米.10.如图3-2,在400米的环形跑道上,A,B 两点相距100米.甲、乙两人分别从A ,B 两点同时出发,按逆时针方向跑步.甲每秒跑5米,乙每秒跑4米,每人每跑100米,都要停10秒钟.那么甲追上乙需要时间是多少秒?【分析与解】 如果甲、乙均不休息,那么甲追上乙的时间为100÷(5-4)=100秒. 此时甲跑了100×5=500米,乙跑了100×4=400米.而实际上甲跑500米,所需的时间为100+4×10=140秒,所以140~150秒时甲都在逆时针距A 点500处.而乙跑400米所需的时间为100+3×10=130秒,所以130~140秒时乙走在逆时针距B点400处.显然从开始计算140秒时,甲、乙在同一地点,即甲追上乙需要时间是140秒.11.周长为400米的圆形跑道上,有相距100米的A ,B 两点.甲、乙两人分别从A ,B 两点同时相背而跑,两人相遇后,乙即转身与甲同向而跑,当甲跑到A 时,乙恰好跑到B .如果以后甲、乙跑的速度和方向都不变,那么甲追上乙时,甲从出发开始,共跑了多少米? 【分析与解】 如下图,记甲乙相遇点为C.当甲跑了AC 的路程时,乙跑了BC 的路程;而当甲跑了400米时,乙跑了2BC 的路程. 由乙的速度保持不变,所以甲、乙第一次相向相遇所需的时间是甲再次到达A 点所需时间的12. 即AC=12×400=200(米),也就是甲跑了200米时,乙跑了100米,所以甲的速度是乙速度的2倍.那么甲到达A ,乙到达B 时,甲追上乙时需比乙多跑400-100=300米的路程,所以此后甲还需跑300÷(2-1)×2=600米,加上开始跑的l 圈400米.所以甲从出发到甲追上乙时,共跑了600+400=1000米.12.如图3-3,一个长方形的房屋长13米,宽8米.甲、乙两人分别从房屋的两个墙角出发,甲每秒钟行3米,乙每秒钟行2米.问:经过多长时间甲第一次看见乙?【分析与解】 开始时,甲在顺时针方向距乙8+13+8=29米.因为一边最长为 13、所以最少要追至只相差13,即至少要追上29-13=16米. 甲追上乙16米所需时间为16÷(3-2)=16秒,此时甲行了3×16=48米,乙行了2×16=32米.甲、乙的位置如右图所示:显然甲还是看不见乙,但是因为甲的速度比乙快,所以甲能在乙离开上面 的那条边之前到达上面的边,从而看见乙.而甲要到达上面的边,需再跑2米,所需时间为2÷3=23秒. 所以经过16+23=1623秒后甲第一次看见乙.13.如图3-4,学校操场的400米跑道中套着300米小跑道,大跑道与小跑道有200米路程相重.甲以每秒6米的速度沿大跑道逆时针方向跑,乙以每秒4米的速度沿小跑道顺时针方向跑,两人同时从两跑道的交点A 处出发,当他们第二次在跑道上相遇时,甲共跑了多少米?【分析与解】 如下图,甲、乙只可能在大跑道上相遇.并且只能在AB 顺时针的半跑道上.易知小跑道AB 逆时针路程为100,顺时针路程为200,大跑道上AB 的顺、逆时针路程均是200米.我们将甲、乙的行程状况分析清楚.当甲第一次到达B 时,乙还没有到达B 点,所以第一次相遇一定在逆时针的BA 某处.而当乙第一次到达B 点时,所需时间为200÷4=50秒,此时甲跑了50×6=300米,在B 点300-200=100米处.乙跑出小跑道到达A 需100÷4=25秒,则甲又跑了25×6=150米,在A 点左边(100+150)-200=50米处.所以当甲到达B 处时,乙还未到B 处,那么甲必定能在B 点右边某处与乙第二次相遇. 从乙再次到达A 处开始计算,还需(400-50)÷(6+4)=35秒,甲、乙第二次相遇,此时甲共跑了50+25+35=110秒.所以,从开始到甲、乙第二次相遇甲共跑了110×6=660米.14.如图3-5,正方形ABCD 是一条环形公路.已知汽车在AB 上时速是90千米,在BC 上的时速是120千米,在CD 上的时速是60千米,在DA 上的时速是80千米.从CD 上一点P,同时反向各发出一辆汽车,它们将在AB 中点相遇.如果从PC 的中点M,同时反向各发出一辆汽车,它们将在AB 上一点N 相遇.问A 至N 的距离除以N 至B 的距离所得到的商是多少?【分析与解】 如下图,设甲始终顺时针运动,乙始终逆时针运动,并设正方形ABCD 的边长为单位“1”.有甲从P 到达AB 中点O 所需时间为608090PD DA AO ++10.5608090PD =++. 乙从P 到达AB 中点O 所需时间为6012090PC BC BO ++10.56012090PD =++. 有甲、乙同时从P 点出发,则在AB 的中点O 相遇,所以有:16080PD +=160120PC +且有PD=DC-PC=1-PC,代入有116080PC -+160120PC =+,解得PC=58. 所以PM=MC=516,DP=38.现在甲、乙同时从PC 的中点出发,相遇在N 点,设AN 的距离为x .有甲从M 到达N 点所需时间为608090MD DA AN ++351816608090x+=++; 乙从M 到达N 点所需时间为6012090MC CB BN ++511166012090x-=++. 有351816608090x +++511166012090x -=++,解得132x =.即AN=132. 所以AN ÷BN 1313232=÷131=15.如图3-6,8时10分,有甲、乙两人以相同的速度分别从相距60米的A ,B 两地顺时针方向沿长方形ABCD 的边走向D 点.甲8时20分到D 点后,丙、丁两人立即以相同速度从D 点出发.丙由D 向A 走去,8时24分与乙在E 点相遇;丁由D 向C 走去,8时30分在F 点被乙追上.问三角形BEF 的面积为多少平方米?【分析与解】 如下图,标出部分时刻甲、乙、丙、丁的位置.先分析甲的情况,甲10分钟,行走了AD 的路程;再看乙的情况,乙的速度等于甲的速度,乙14分钟行走了60+AE 的路程,乙20分钟走了60+AD+DF 的路程.所以乙10分钟走了(60+AD+DF)-(AD)=60+DF 的路程.有601014AD AE +=6010DF +=,有()()607560AD DFAE ED AE =+⎧⎪⎨-=+⎪⎩然后分析丙的情况,丙4分钟,行了走ED 的路程,再看丁的情况,丁的速度等于丙的速度,丁10分钟行走了DF 的距离.。

六年级奥数知识点及题型

六年级奥数知识点及题型

六年级奥数知识点及题型一、分数运算相关1. 知识点:分数的简便运算裂项相消法题型:计算公式解析:我们知道公式。

所以原式公式可以发现中间项都可以消去,最后得到公式。

2. 知识点:分数的混合运算题型:计算公式解析:先计算括号内的值,公式,公式。

再进行除法运算,公式。

二、比和比例相关3. 知识点:比例的基本性质题型:已知公式,公式,求公式。

解析:因为公式(将公式中的公式化为公式,公式,公式)。

公式(将公式中的公式化为公式,公式,公式)。

所以公式。

4. 知识点:按比例分配题型:有一批图书按照3:4:5的比例分给甲、乙、丙三个班,已知甲班分得60本,求这批图书一共有多少本?解析:设一份为公式本,因为甲班占公式份,且甲班分得公式本,所以公式,解得公式。

这批图书一共有公式本。

三、工程问题相关5. 知识点:工程问题基本公式(工作总量=工作效率×工作时间)题型:一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作需要多少天完成?解析:把这项工程的工作量看作单位“公式”。

甲的工作效率是公式,乙的工作效率是公式。

两人合作的工作效率是公式。

合作完成需要的时间是公式天。

6. 知识点:工程问题中的分干合想与合干分想题型:甲、乙两队合作一项工程,12天可以完成。

如果甲队先做3天,乙队再做5天,共完成这项工程的公式,乙队单独做这项工程需要多少天?解析:设甲队的工作效率为公式,乙队的工作效率为公式。

根据两队合作12天完成工程,可得公式,即公式。

又因为甲队先做3天,乙队再做5天,共完成这项工程的公式,可得公式。

由公式可得公式,代入公式中,公式。

解得公式,所以乙队单独做需要公式天。

四、行程问题相关7. 知识点:相遇问题(路程和=速度和×相遇时间)题型:甲、乙两人分别从A、B两地同时出发,相向而行,甲的速度是每小时5千米,乙的速度是每小时4千米,经过3小时两人相遇,求A、B两地的距离。

解析:速度和为公式千米/小时。

六年级奥数知识点大汇总

六年级奥数知识点大汇总

一、整数的加减乘除运算1.完成含有复杂运算的整数计算,包括加减乘除。

2.正整数和负整数的加减乘除运算。

3.多个整数相加(减)。

二、分数的加减乘除运算1.分数和整数相加(减)。

2.分数相加(减)。

3.分数的乘法和除法运算。

4.分数的化简与约分。

三、小数的加减乘除运算1.完成小数的加减乘除运算。

2.整数与小数相加(减)。

3.小数与小数相加(减)。

四、百分数的运算1.将百分数转化为小数和分数。

2.将百分数转化为小数进行运算。

3.完成包含百分数的加减乘除运算。

4.将小数转化为百分数。

五、图形的认识和计算1.熟悉各种常见图形的名称和性质。

2.利用图形的性质解决问题。

3.利用图形的面积和周长进行计算。

4.利用图形的相似性进行计算。

六、数的性质和运算规律1.数的倍数和约数。

2.数与数的关系。

3.运用数的性质解决问题。

4.运用数的规律进行计算。

七、代数方程1.利用已知条件建立简单的代数方程。

2.运用代数方程解决问题。

3.运用等式交换法则解决问题。

八、图形的位置关系和运动1.图形的位置关系,包括平行、垂直、相交等。

2.利用图形的位置关系解决问题。

3.图形的旋转和对称运动。

九、时间和空间的问题1.计算机算时间的进退。

2.计算车速、工作效率等问题。

3.解决包括时间、速度、距离、容积等单位转化的问题。

4.运用公式解决时间和空间的问题。

十、排列组合和概率1.利用排列组合的原理解决问题。

2.运用概率解决问题。

3.了解数学中的一些常见概率概念。

十一、逻辑推理和解决问题1.运用逻辑推理解决问题。

2.运用问题解决方法解决数学问题。

3.运用直觉猜想解决问题。

小学六年级奥数专题大全

小学六年级奥数专题大全

第一讲计数原理知识纵横:如果完成一件事情,有几类不同的方法,而且每类方法中又有几种可能的方法,那么求完成这件事的方法总数,即各类方法的总和,就是我们要掌握的加法原理。

加法原理:完成某件事情,如果有几类方法,而在第一类方法中有m1种方法,第二类方法中有m2种方法……第n类有m n种,那么完成这件事的方法总数可以表示为m1+ m2+ m3+…+m n。

完成一件事,需要分几个步骤来完成,而完成每步又有几种不同的方法,要求完成这件事的方法的总数,应当将各步骤方法总数相乘,这就是我们应掌握的乘法原理。

乘法原理:完成一件事需要分成几个步骤,第一步有m1种方法,第二步有m2种方法,第三步有m3种方法……第n步有m n种方法,那么完成这件事共有m1×m2×m3×…×m n种不同的方法。

例题求解:【例1】 10个人进行乒乓球比赛,每两个人之间比赛一场,问:一共要比赛多少场?【例2】一天有6节不同的课,这一天的课表有多少种排法?【例3】 1000至1999这些自然数中,个位数大于百位数的有多少个?【例4】 4只鸟飞入4个不同的笼子里,每只小鸟都有自己的一个笼子(不同的鸟,笼子也不同),每个笼子只能进一只鸟。

若都不飞进自己的笼子里去,有种不同的飞法。

【例5】如果组成三位数abc的三个数字a,b,c中,有一个数字是另外两个数字的乘积,则称它为“特殊数”。

在所有的三位数中,共有个“特殊数”。

【例6】如下图所示,用红、绿、蓝、黄四种颜色,涂编号为1、2、3、4的长方形,使任何相邻的两个长方形的颜色都不相同,一共有多少种不同的涂法?【例7】恰有两位数字相同的三位数共有多少个?基础夯实1、一件工作可以用3种方法完成,有5人会用第1种方法完成,有4人会用第2种方法完成,有6人会用第3种方法完成。

选出一个人来完成这项工作共有多少种选法?2、一件工序可以分3步方法完成,有5人会做第1步,有4人会做第2步,有6人会做第3步,每个人只会做一步。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、华联商厦出售彩色电视机,上午售出总数的一半多10台,下午售出剩下的一半多20台,
还剩95台。

店里原有彩色电视机多少台?
2、解放军某部参加抗洪救灾,从第一队抽调一半人支援第二队,抽调35人支援第三队,
又抽调剩下的一半支援第四队,后来又调进8人,这时第一队还有30人。

第一队原有多少人?
3、甲、乙、丙三个组共有图书90本,如果乙组向甲组借3本后,又送给丙组5本,三个组所有图书的本书刚好相等。

甲、乙、丙三个组原来各有图书多少本?
4、甲、乙、丙、丁四个小朋友共有彩色玻璃弹子100颗。

甲给乙13颗,乙给丙18颗,丙给丁16颗,丁给甲2颗后,四人的弹子数相等,他们原来各有弹子多少颗?
5、学校运来36棵树苗,冬冬和丽丽两人争着去栽。

冬冬先拿了树苗若干棵,丽丽看到冬冬拿得太多,就抢了10棵;冬冬又从丽丽那里抢走了6棵,这时冬冬拿的棵树时丽丽的2倍。

最初冬冬拿了多少棵?
6、书架分上、中、下三层,一共放192本书。

先从上层取出与中层同样多的书放到中层,再从中层取出与下层同样多的书放到下层,最后从下层取出与上层剩下的本数同样多的书放到上层,这时三层书架所放的本数相同。

这个书架上、中、下层原来各放有多少本书?
7、小松、小明、小航各有玻璃球若干个,如果小松按小明现有的玻璃球个数给小明,再按小航现有的玻璃球个数给小航,小明也按小松、小航现有的个数再分别给小松、小航;最后,小航也按同样的办法分给小松和小明。

这时,他们三人都各有32个玻璃球。

小明原来有多少个玻璃球?
1、张大爷提篮去卖蛋,第一次卖了全部的一半又半个,第二次卖了余下的一半又半个,第三次卖了第二次余下的一半又半个,第四次卖了第三次余下的一半又半个。

这时,鸡蛋都卖完了。

张大爷篮中原有鸡蛋多少个?
2、3只猴子吃篮里的桃子,第一只猴子吃了1
3
,第二只猴子吃了剩下的
1
3
,第三只猴子吃
了第二只剩下的1
4
,最后篮里还剩下6只桃子。

篮里原有桃子多少只?
3、一捆电线,第一次用去全长的一半多3米,第二次用去余下的一半少10米,第三次用去15米,最后还剩7米。

这捆电线原有多少米?
4、修一段路,第一天修全路的1
2
还多2千米,第二天修余下的
1
3
少1千米,第三天修余下
的1
4
还多1千米,这样还剩下20千米没有修完,求公路的全长多少千米?
5、仓库里的水泥要全部运走。

第一次运走了全部的1
2

1
2
吨,第二次运走了剩余的
1
3

1
3
吨,第三次运走了第二次余下的1
4

1
4
吨,第四次运走了第三次余下的
1
5

1
5
吨,第五次
运走了最后剩下的19吨。

这个仓库原来共有水泥多少吨?
6、有铅笔若干枝,分配给甲、乙、丙三个学生,最初甲分得的最多,乙分得的较少,丙分得的最少,因此重新分配。

第一次分配,甲分别给乙、丙各所有枝数多4枝;第二次分配,乙分别给甲、丙各所有枝数多4枝;第三次分配,丙分别给甲、乙各所有枝数多4枝。

经过三次重新分配后,甲、乙、丙三人各得铅笔44枝,最初甲得几枝?
1、两根同样长的铁丝,第一根剪去18厘米,第二根剪去26厘米。

余下的铁丝,第一根是
第二根的3倍,原来每根铁丝各长多少厘米?
2、五(1)班50名同学中,参加语文兴趣组的有20人,参加数学兴趣组的有26人,既没
有参加语文兴趣组也没有参加数学兴趣组的有12人。

那么参加数学兴趣组且没有参加语文兴趣组的有多少人?及参加语文兴趣组又参加数学兴趣组的有多少人?
3、在一个除法算式中,如果被除数减少1,商就是2;如果除数减少2,商就是3,求原式。

4、虹桥瓜果批发部有甲、乙两个仓库,乙仓库的水果存量是甲仓库的5倍。

如果从甲仓库
中抽出5吨水果放到乙仓库,那么乙仓库的水果数就是甲仓库的8倍。

原来两仓库的水果存数各是多少?
5、大、小卡车运了两批同样吨数的黄沙。

第一批大卡车运的吨数比小卡车吨数的3倍多4
吨;第二批大卡车运的吨数增加了5吨,正好是小卡车运的吨数的6倍。

求这两批黄沙共有多少吨。

6、一个长方形的周长是24厘米,如果长和宽各增加5厘米,面积增加多少平方厘米?
7、赵、钱、孙、李四人共植树370棵,如果赵植的棵树加上10,钱植的棵树减去20,孙
植的棵树乘以2,李植的棵树除以2,四人植的棵树相等。

求钱实际植了多少棵树?
8、在期末考试中,亮亮语文得了92分,数学比语文和体育的总分少83分。

亮亮的数学比体育高多少分?
9、城南小学的少先队员帮助学校清理基建工地。

已知甲工地比乙工地大一倍,上午他们
甲工地清理了半天;下午将人数对半分,一半留在甲工地,另一半到乙工地清理。

到收工时,甲工地已清理完毕,乙工地还剩一小块需1个人再清理1天才能完工。

如果每人的工作效率相等,那么共有多少少先队员参加了清理?
10、甲、乙两列车同时从A、B两地相对开出,第一次在离A地75千米处相遇,相遇后继续前进到达目的地后又立刻返回,第二次相遇在离B地55千米处。

求A、B间距离。

11、学校组织夏令营活动,如果参加的女同学人数减少5,同时增加5各男同学,则参加夏令营的男、女同学人数相等;如果参加的男同学人数减少4,同时女同学增加4个,则女同学的人数是男同学的2倍。

原定参加夏令营的男、女同学各是多少?
12、小明如果以每分钟50米的速度从家走到学校,则要迟到8分钟。

他这样走了2分钟以后,改用每分钟60米的速度前进,结果早到5分钟。

小明家离学校多少米?
13、甲、乙、丙三人,甲每分钟走20米,乙每分钟走22.5米,丙每分钟走25米。

甲、乙从东镇,丙从西镇同时相向出发,丙遇到乙后再过10分钟遇到甲,两镇相距多少米?
14、有一根绳子和一根水泥柱子,把绳子对折后比水泥柱子长2m,把绳子四折后比水泥柱子短3m。

求绳子和水泥柱子各多少米?
15、甲在南北路上,由南向北行进,乙在东西路上,由西向东行进。

甲出发的地点在两条路交叉点南面1120米,乙在交叉点出发,两人同时开始行进;4分钟后,甲、乙两人所在的位置与交叉点等远(这时甲仍在交叉点南);再经过52分钟后,两人所在的位置又距交叉点等远(这时甲在交叉点北)。

甲、乙两人每分钟各行多少米?。

相关文档
最新文档