数学人教版五年级下册因数和倍数的概念

数学人教版五年级下册因数和倍数的概念
数学人教版五年级下册因数和倍数的概念

《因数和倍数的概念》教学设计

白水县白水小学李艳妮

人教版五年级下册第二单元因《数与倍数》第一节内容《因数与倍数的概念》。

2、教学目标

知识与技能:

理解因数和倍数的意义以及两者之间相互依存的关系。

过程与方法:

通过自主探索和总结求一个数的因数和倍数的方法。

教学方法采用:创设情境,质疑引导、合作探究。

情感态度与价值观:

培养学生概括能力分析比较能力以及热爱数学的情感。

a、通过小组合作培养学生自主探究与合作的精神

b、通过学习活动让学生体会数学乐趣

3、教学重点与难点:

重点:理解因数和倍数的含义。

难点:掌握因数和倍数之间的关系,运用所学知识解决实际问题。

a、在转化难点教学中,我采用具体到抽象引出概念,再由抽象回到具体让学生举例说明这样的思维转化过程有利于学生的认知概念切实掌握概念。

学法:合作探究,讨论交流

一、教学准备:

多媒体课件(通过复习与回顾,为新知的学习做好铺垫有效提高课堂教学质量和针对性)

三、教学过程:

(一)创设情境,谈话导入

教师:同学们,你们看过《爸爸去哪儿吗》?里面的kimi你们喜欢吗?林志颖是谁?他们之间有什么关系?

学生:父子关系,林志颖是kimi的爸爸,kimi是林志颖的儿子。

教师:他们能单独成立吗,林志颖是爸爸,kimi是儿子?

学生:不能他们之间是相互依存的

教师:同学们生活中存在着这种相互依存的关系,数与数之间也存在这这种关系这节课我们就一起研究两个自然数之间的关系。(板书课题因数和倍数的概念)

二、探究新知

教师:看到这个题目,你想知道了解什么?

预设:(因数是什么,倍数是什么,因数和倍数之间存在着什么关系?)

教师:就让我们带着这些问题开始今天的研究。

组织学生观察算式特点,独立分类互相交流指名汇报。

预设:

学生(一):这些算式都是除法算式,被除数和除数都是整数。

学生(二):按商共分为两类,第一类商是整数,第二类商不是整数,有的有余数,有的商是一个小数。

设计意图:让学生体会生活中处处有数学,激发学生探究问题的兴趣,进而从情境中提出问题寻找解决问题的方法。

教师:第一类算式都是整数的除法,而且商也没有余数,它们之间就存在着一种相互依存的关系。

被除数是除数的倍数,除数是被除数的因数。

学生说一说12÷2=6中谁是谁的倍数谁是谁的因数。

剩余的算式同桌之间互相说一说谁是谁的因数谁是谁的倍数。

教师:因数与倍数之间存在什么关系?像这样的算式还有吗?能不能说完?

通过学生自主探究可以知道(被除数是除数的倍数,除数是被除数的因数。)

学生举例

教师:能用一个式子来表示这样的除法算式

为了统一我们用字母a和b表示两个数相除,商用c来表示,思考表示整除a和b必须符合什么条件?

学生思考概括:

1、a和b必须是整数。

2、商必须是整数而且没有余数

3、B不能为0

教师引导学生明确:a是b的倍数,b是a的因数是在a能在被b整除的条件下说的。板书a÷b=c(b≠0)

教师强调:为了方便在研究因数和倍数的时候,我们所说的数指自然

数(一般不包括0)

教师引导总结板书:在整数除法中,如果商是整数而没有余数,那么被除数就是除数和商的倍数,除数和商就是被除数的因数。

设计意图:让学生通过自主探究,小组合作发现被除数和除数只有在整除的情况下才能说谁是谁的倍数,谁是谁的因数,这样的算是很多。要用一个统一的式子来表示,从而得出a÷b=c(b≠0),培养学生的探究精神促进学生的交流能力。

三、随堂练习

练一练、判断下面说法是否正确.

1、8是2的倍数,2是8的因数.()

2、6是倍数,3是因数.()

3、30是5的倍数.()

4、9是9的因数.()

5、5是因数.()

教材第5页做一做

组织学生独立思考,相互交流,指名汇报,集体订正。

四、课后小结分享收获

同学们,这节课我们学习了哪些知识谈谈你的收获。

板书设计

因数和倍数的概念

12÷2=6 12是2的倍数 2是12的因数

因数和倍数关系:相互依存

a÷b=c(b≠0)

教后反思

我执教的五年级数学第二单元<因数和倍数的概念》第一课时,学生初次接触。数学中的“起始概念”一般比较难教,我创设有效的数学学习情境,数形结合,变抽象为直观。首先以人物情景为素材,让学生借助算式引出因数和倍数的意义。这样在学生已有的知识基础上,从动手操作,直观感知,使概念的揭示突破了从抽象到抽象,从数学到数学,让学生自主体验数与形的结合,进而形成因数与倍数的意义.使学生初步建立了“因数与倍数”的概念。这样,充分学习、利用、挖掘教材,用学生已有的数学知识引出了新知识,减缓难度,效果较好。

课的最后一个环节我让学生说说本节课的学习收获,使学生对本节课的学习进行了梳理和反思,在这一过程中使学生体验到数学学习的快乐。

这堂课虽有成绩但也存在不足,我的教学理念很清楚,课堂上学生是主体教师只是合作者。但在教学过程中许多地方还是不由自主的说得过多,教学语言不够精炼带有随意性的语言,这会对学生的学习理解造成一定的影响。因此在今后的教学中我要克服这一缺点。同时还要多学多问,把握好各种学习机会,通过各种渠道不断的学习,

提高自己的素质。多反思认真分析教学中出现的问题,通过不断地反思提高自己业务水平。

人教版五年级下册数学概念及公式

第一单元图形的变换 1、轴对称图形沿着对称轴重叠后,图形两边可以完全重合。 2、平形四边形不是轴对称图形。长方形有2条对称轴,正方形有4条对称轴,等腰三角形有1条对称轴,正(等边)三角形有3条对称轴,圆有无数条对称轴,半圆有一条对称轴。 3、轴对称图形沿着对称轴的交点至少旋转(360÷对称轴的条数)=度,可以与原来的图形完全重合。 长方形沿着对称轴的交点至少旋转360÷2=180(度) 正方形沿着对称轴的交点至少旋转360÷4=90(度) 等腰三角形沿着对称轴的交点至少旋转360÷1=360(度) 等边(正)三角形方形沿着对称轴的交点至少旋转360÷3=120(度),形沿着对称轴的交点至少旋转360÷360=1(度) 半圆沿着对称轴的交点至少旋转360÷1=360(度)与原来的图形完全重合。 4、我们学过的图形的变换有轴对称、平移、旋转。 第二单元因数和倍数

1、我们说的因数和倍数指的是整数,不包括0,也不能说小数。 2、因数和倍数是相对的,不能单独说因数和倍数。 3、一个数的因数的个数是有限的,最小的因数是1,最大的因数是它本身。一个数的倍数的个数有无限的,最小的倍数是它本身,没有最大的倍数。 一个数的最大因数=它最小倍数=它本身。 4、a÷b=c(a、b、c都是整数),我们就可以说,a能被b整除,也可以说b能整除a.,a是b的倍数,b是a的因数(例10÷2=5,可以说10能被2整除,2能整除10) 5、2的倍数特征:个位上是0、2、4、 6、8的数都是2的倍数。 5的倍数特征:个位上是0或5的数都是5的倍数。 3的倍数特征:一个数各位上的数的和是3的倍数,这个数就是3的倍数。 2和5的倍数特征:个位上是0的数,既是2的倍数又是5的倍数。 判断奇数和偶数的依据是:是否是2的倍数。自然数不是奇数就是偶数。

小学五年级数学下册概念及公式合集

小学五年级数学下册概念及公式合集 一.旋转.平移.轴对称 1.平移.旋转.轴对称都是一种图形的全等变换.也就是说,经过这三种变换的图形在形状和大小上都没有改变. 2.平移是一个图形或一个物体沿同一个方向做直线运动.平移的基本要素就是方向和距离.方向就是 直线的方向.也就是移动路径的方向.一般我们常见的题目平移方向是向左,向右,或向上,向下.在平移问题中 确定距离是学生们易错的地方.学生总是把原图形与平移后图形之间的距离就当做了平移的距离.也就是说 把图形与图形之间的距离当做平移的距离了.其实应该在原图形上找一个关键点,这个点与平移后图形的对 应点之间的距离就是平移的距离,原图形上的每一个点与其平移后的图形上的对应点的距离处处相等. 3.旋转是把一个图形绕着某一点O转动一个角度的图形变换.在小学阶段我们主要让学生明确“绕一个点旋转”“向什么方向旋转”“转动多少度”这几点就可以了.“绕一个点旋转”这一点也就是旋转中心了.在 小学阶段旋转中心一般都在图形自身的一个点上.也就是一直没动的那一点就是旋转中心.旋转方向就是 顺时针或逆时针.旋转角度对应点与中心点所连线段的夹角. 4.轴对称是沿着一条直线对折.左右两边完全重合这样的图形就是成轴对称图形.这条直线我们一般 用虚线或点画线来表示.有的轴对称图形有一条对称轴.有的有两条.还有有无数条对称轴的图形.如圆. 5.时针旋转1小时是30度. 二.因数与倍数 1.如果a×b=c[a.b.c都是不为0的整数].那么a.b就是c得因数.c就是a.b的倍数。 2.一个数的因数个数是有限的.其中最小的因数是1.最大的因数是它本身。一个数的 倍数是无限的.其中最小的倍数是它本身.没有最大倍数。 3.奇数与偶数; 自然数中.是2的倍数的数叫做偶数[0也是偶数].不是2的倍数的数叫做奇数。 偶数;个位是0.2.4.6.8的数。 奇数;个位不是0.2.4.6.8的数。 4.倍数特征; 2的倍数的特征;各位是0.2.4.6.8。 3[或9]的倍数的特征;各个数位上的数之和是3[或9]的倍数。 5的倍数的特征;各位是0.5。 5.质数与合数; 质数;一个数.如果只有1和它本身两个约数.这样的数叫做质数[或素数]。

五年级下册因数和倍数基础练习题

填空题。 1、因为3×6=18,所以()是()的因数,18是6的()。 2.个位是()的自然数,叫做奇数。两位数中,最小的奇数是(),最大的偶数是()。 3.同时是2,5的倍数的最大两位数是()。 4.有一个两位数5□,如果它是5的倍数,□里填()。如果它是3的倍数,□里可以填(),如果它同时是2、5的倍数,□里可以填()。 5、三个连续的偶数和是96,这三个数分别是()、()、()。 6、226至少增加()就是3的倍数,至少减少()就是5的倍数。 7. 个位上是()或()的数,是5的倍数。 8. 既是2的倍数又是5的倍数的数的特征是()。 9. 6既是()的倍数,又是()的倍数,还是()的倍数。 10. 奇数与偶数的和是()数;奇数与奇数的和是()数;偶数与偶数的和是()数。 11. 一个两位数,它既是5的倍数,又是3的倍数,而且是偶数,这个数最小是()。 12. 能被2、3、5整除的最小两位数是()。 13、一个自然数比20小,它既是2的倍数,又有因数7,这个自然数是()。 14、比6小的自然数中,其中2是( )的因数,又是( )的倍数。

15、个位上是( )的数,都能被2整除;个位上是( )的数,都能被5整除。 16、在自然数中,最小的奇数是( ),最小的偶数是( ),最小的素数是( ),最小的合数是( )。 17、同时是2和5倍数的数,最小两位数是( ),最大两位数是( )。 18、1024至少减去( )就是3的倍数,1708至少加上( )就是5的倍数。 19、我是50以内7的倍数,我的其中一个因数是4。() 20、我是30的因数,又是2和5的倍数。() 21、我是36的因数,也是2和3的倍数,而且比15小。() 22、根据算式25×4=100,()是()的因数,()也是()的因数;()是()的倍数,()也是()的倍数。23、在18、29、45、30、17、72、58、43、75、100中,2的倍数有();3的倍数有();5的倍数有( ),既是2的倍数又是5的倍数有(),既是3 的倍数又是5的倍数有()。 24、48的最小倍数是(),最大因数是()。最小因数是()。27、用5、6、7这三个数字,组成是5的倍数的三位数是();组成一个是3的倍数的最小三位数是()。 28、一个自然数的最大因数是24,这个数是()。

人教版五年级下册因数和倍数教案

第二单元因数与倍数 一、教学内容1、因数与倍数2、2、5、3的倍数的特征3、质数与合数 二、教材分析 本单元教材就是在学生学过整数的四则运算的基础上进行教学。它就是以后学习约分,通分,最大公因数,最小公倍数的基础。通过这部分内容的教学,使学生获得一些有关整数的知识,即数论中最初步的知识,还为学生到中学学习因式分解做些准备,使学生加深对整数的认识,还有助于发展她们的抽象思维。 本单元教材概念较多,内容比较抽象。重点就是使学生掌握因数、倍数、质数、合数等概念,知道有关概念之间的联系与区别。其中,因数与倍数的概念就是其她概念的基础与前提。接着教学2、5、3的倍数的数的特征。因为小学的分数计算中,分子、分母都不大,只要掌握用2、5、3整除的数的特征,基本上就够用了,至于7、11的倍数的特征,只在较大的数目时用到,不需要学生熟练掌握。注意增加判断练习来沟通概念之间的联系与区别。 三、教学目标 1、使学生掌握因数、倍数、质数、合数等概念,知道有关概念之间的联系与区别。 2、使学生通过自主探索,掌握2、5、3的倍数的特征。 3、逐步培养学生的数学抽象能力。 四、教学重点 1、使学生掌握因数、倍数、质数、合数等概念,知道有关概念之间的联系与区别。 2、使学生通过自主探索,掌握2、5、3的倍数的特征。 五、教学难点 使学生掌握因数、倍数、质数、合数等概念,知道有关概念之间的联系与区别。 第一课时 教学内容:教材P12~p13 例1及做一做,练习二中部分习题。 教学目标:1、知识目标:使学生知道因数与倍数的含义,以及它们之间的相互依存的关系。并且知道研究因数与倍数时所说的数一般指非0整数。 2、能力目标: 进一步培养学生知识迁移、概括的能力。 3、思想教育目标: 培养学生初步辩证唯物主义观点。 教学重点、难点:使学生知道因数与倍数的含义,以及它们之间的相互依存的关系。

人教版小学五年级下册数学概念和公式

总复习;基本概念和公式 1、 因数和倍数:如:5×6=30,我们就可以说5和6是30的因数,30是5和6 的倍数。 ①一个数最小的因数是1,最大的因数是它本身,因数的个数是有限的。 ②一个数最小的倍数是它本身,没有最大的倍数,倍数的个数是无限的。 2、 公因数:两个或几个数的共同有的因数叫公因数,最大的那个叫最大公因数。 公倍数;两个或几个数的共同有的倍数叫公倍数,最小的那个叫最小公倍数。 3、2的倍数特征:个位上是0、2、 4、6、8的数都是2的倍数。 5的倍数特征:个位上是0或5的数都是5的倍数。 3的倍数特征:各个数位上的数的和是3的倍数,这个数就是3的倍数。 4、偶数:是2的倍数的数叫偶数。 奇数:不是2的倍数的数叫奇数。 5、质数:只有1和它本身两个因数的数叫质数,或叫素数。 合数:除了1和它本身还有别的因数的数叫合数。 ︴1不是质数也不是合数,最小的质数是2,最小的合数是4. ︴100以内的质数表: 6、73表示把单位“1”平均分成( ),其中的( )份就是它的73 ,它的分数单位是( ),有( )这样的分数单位。 把3米长的绳子平均分成5份,每份占全长的( ),每段长( )米。 7、1米的5 3等于3米的( ) 8、分数与除法的关系:B A =( )÷( ) 9、真分数:分子( )分母的数叫真分数。 假分数:分子( )或者( )分母的分数叫假分数。 最简分数:分子和分母只有公因数( )的分数叫最简分数。 10、分数的基本性质:分数的分子和分母同时( )或( )相同的数(0 除外),分数的大小不变,这叫做分数的基本性质。 11、约分:把一个分数化成和它相等,但分子和分母都比较小的分数叫约分。 通分:把异分母分数分别化成和原来分数相等的同分母分数叫通分。 12、分数加减法:同分母分数加减:分母不变,分子相加减。 异分母分数加减:先通分变同分母,再分子相加减。 13、总棱长:长方体总棱长=(长+宽+高)×4 正方体总棱长=棱长×12 14、总面积:6个面的:长方体=(长×宽+长×高+宽×高)×2 (或长×宽×2+长×高×2+宽×高×2) 正方体=棱长×棱长×6 5个面的:长方体=长×宽+长×高×2+宽×高×2 正方体=棱长×棱长×5 4个面的:长方体=长×高×2+宽×高×2 正方体=棱长×棱长×4

新人教版小学五年级下册数学《因数和倍数》优秀教学设计

新人教版小学五年级下册数学《因数和倍数》教学设计 一、教学目标 (一)知识与技能 理解因数和倍数的意义以及两者之间相互依存的关系,掌握找一个数的因数和倍数的方法,发现一个数的倍数、因数中最大的数、最小的数,及因数和倍数个数方面的特征。 (二)过程与方法 通过整数的乘除运算认识因数和倍数的意义,自主探索和总结出求一个数的因数和倍数的方法。 (三)情感态度和价值观 在探索的过程中体会数学知识之间的内在联系,在解决问题的过程中培养学生思维的有序性和条理性。 二、教学重难点 教学重点:理解因数和倍数的含义。 教学难点:自主探索有序地找一个数的因数和倍数的方法。 三、教学准备 教学课件。 四、教学过程 (一)理解因数和倍数的意义 教学例1:

1.观察算式的特点,进行分类。 (1)仔细观察算式的特点,你能把这些算式分类吗? (2)交流学生的分类情况。(预设:学生会根据算式的计算结果分成两类) 第一类是被除数、除数、商都是整数;第二类是被除数、除数都是整数,而商不是整数。 2.明确因数和倍数的意义。 (1)同学们,在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数。例如,12÷2=6,我们就说12是2的倍数,2是12的因数。12÷6=2,我们就说12是6的倍数,6是12的因数。 (2)在第一类算式中找一个算式,说一说,谁是谁的因数?谁是谁的倍数? (3)强调一点:为了方便,在研究倍数与因数的时候,我们所说的

数指的是自然数(一般不包括0)。 3.理解因数和倍数的依存关系。 (1)独立完成教材第5页“做一做”。 (2)我们能不能说“4是因数”“24是倍数”呢?表述时应该注意什么? 4.理解一个数的“因数”和乘法算式中的“因数”的区别以及一个数的“倍数”与“倍”的区别。 (1)今天学的一个数的“因数”与以前乘法算式中的“因数”有什么区别呢? 课件出示: 乘法算式中的“因数”是相对于“积”而言的,可以是整数,也可以是小数、分数;而一个数的“因数”是相对于“倍数”而言的,它只能是整数。

北师大版数学五年级下册概念整理

五年级数学下册概念公式 一、分数乘法、分数除法 1. 分数乘法的意义:求几个相同分数的和的简便运算 2. 分数除法的意义:已知两个乘数的积和其中一个乘数,求另一个乘数的运算 3. 分数乘法的运算法则: (1)分数与整数相乘:分子和整数相乘,分母不变。 (2)分数与分数相乘:分子与分子相乘,分母与分母相乘,能约分的可以先约分。 4. 分数除法的运算法则: (1)一个数除以一个整数(0除外)等于这个数乘以这个整数的倒数。 (2)一个数除以一个分数等于这个数乘以这个分数的倒数。 (3)除以一个数(0除外)等于乘这个数的倒数。 5. 如果两个数的乘积是1,那么我们称其中一个数是另一个数的倒数。比如1/2的倒 数是2,2的倒数是1/2,这两个数互为倒数。1的倒数是1,0没有倒数。 6. 分数乘、除法的实际问题 (1)求一个数的几分之几是多少,用乘法。 (2)已知一个数的几分之几是多少,求这个数,用除法,也可以用解方程。 二、分数的混合运算 1. 分数混合运算的顺序与整数混合运算的顺序一样:先算乘除后算加减,有括号的 先算括号里面的,再算括号外面的。 2. 运算定律: (1)乘法分配律:c ? + ?) ( + = b a? a a c b (2)乘法结合律:) ? = ? a? ? b (c b a c (3)乘法交换律:a = a? ? b b 运用运算定律可对分数的混合运算进行简便运算。 三、长方体的认识、表面积、体积和容积 1. 长方体有6个面,一般都是长方形(特殊情况时有两个相对的面是正方形),相对 的面面积相等;有8个顶点,12条棱,12条棱可以分为三组:4条长,4条宽,4条高。 2. 正方体有6个面,都是面积相等的正方形;有8个顶点,12条棱,每条棱的长度 都相等。 3.正方体是特殊的长方体。(长宽高都相等) 4.长方体的棱长总和=(长+宽+高)×4 5.正方体的棱长总和=棱长×12

小学一至五年级数学公式及定义(人教版)

小学一至五年级数学公式及定义(人教版)常用数量关系及计算公式: 1、每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数 2、1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数 3、速度×时间=路程 路程÷速度=时间 路程÷时间=速度 4、单价×数量=总价 总价÷单价=数量 总价÷数量=单价 5、工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率 6、加数+加数=和 和-一个加数=另一个加数 7、被减数-减数=差 被减数-差=减数 差+减数=被减数 8、因数×因数=积 积÷一个因数=另一个因数

9、被除数÷除数=商 被除数÷商=除数 商×除数=被除数 10、单产量×面积=总产量 总产量÷面积=单产量 总产量÷单产量=面积 和差问题的公式: 总数÷总份数=平均数 (和+差)÷2=大数 (和-差)÷2=小数 和倍问题: 和÷(倍数-1)=小数 小数×倍数=大数 (或者和-小数=大数) 差倍问题: 差÷(倍数-1)=小数 小数×倍数=大数 (或小数+差=大数) 植树问题: 1 非封闭线路上的植树问题主要可分为以下三种情形: ⑴、如果在非封闭线路的两端都要植树,那么: 株数=段数+1=全长÷株距-1 全长=株距×(株数-1) 株距=全长÷(株数-1) ⑵、如果在非封闭线路的一端要植树,另一端不要植树,那么:

株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数 ⑶、如果在非封闭线路的两端都不要植树,那么: 株数=段数-1=全长÷株距-1 全长=株距×(株数+1) 株距=全长÷(株数+1) 2 封闭线路上的植树问题的数量关系如下: 株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数 图形计算公式: 1、正方形 周长=边长×4 字母公式:C=4a 面积=边长×边长 S=a×a 2、正方体 表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长V=a×a×a 3、长方形 周长=(长+宽)×2 C=2(a+b) 面积=长×宽 S=ab 4、长方体 (1)、表面积=(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh) (2)、体积=长×宽×高V=abh 5、三角形

人教版五年级数学下册因数和倍数教案

《因数和倍数》 前埔北区小学刘桂珠 一、教学目标 1.理解因数和倍数的意义以及两者之间相互依存的关系,会判断一个数是不是另一个数的因数或倍数。 2. 培养学生抽象、概括的能力,在交流、互动中培养学生的分析能力以及说理的能力。 3.体会数学内容的奇妙、有趣,产生对数学的好奇心。 二、教学重难点 教学重点难点:理解因数和倍数的含义。 三、教学准备 教学课件、白板、学号卡片。 四、教学过程 课前三分钟: 1.简单聊聊师生关系,母子关系,这些关系都是相互依存的。 “在数学中,数与数之间也存在相互依存的关系,这节课我们就要一起来研究这种关系。” 2.加密的电话号码给孩子,“你想要把它破解出来吗?认真学完这节课后,我们一起来试试。” 上课过程: 师:“孩子们,老师给大家带来一些老朋友,我们一起来看看。” 一、分类 课件出示例1的9个算式, 1.师:“观察,他们都有哪些相同点?” 生:都是除法,都是整数除以整数。 2.观察算式的特点,进行分类。 再看,这是它们的商。 (1)课件出示商,“你能根据这些商的特点进行分类吗”? (2)为了交流方便,我们给出编号。交流学生的分类情况。 师根据学生的汇报,在白板上拖拽分类。

预设分类一:商有余数,商是整数没有余数,商是小数 预设分类二:商有余数,商没有余数 预设分类三:商是有余数或小数,商是整数没有余数 学生交流讨论:聚焦②④两类,我们学过,除法算式中,当有余数时该么办? 统一分类标准,整数和小数两大类。课件显示分类结果。 二、明确因数和倍数的意义。 1.聚焦第一类 师:第一类的算式,它们有什么特点? 被除数、除数都是整数,商也是整数没有余数。 2.感悟定义: 师:在这样被除数、除数都是整数,商也是整数的算式中,数与数存在一种新的关系,你们想知道吗?这就是今天我们要重点研究的内容。(板书课题:因数和倍数) 师:我们先来看第一个算式:12÷2=6。像这样,被除数是整数12,除数是整数2,除得的商是整数没有余数,我们就可以说12是2的倍数,2是12的因数。 师:你听懂了吗?我们可以怎么说?这样说的前提是什么? 30÷6=5谁也能像这样说一说。请两个学生说,全班一起说。 在第一类算式中找一个算式和同桌互相说一说,谁是谁的因数?谁是谁的倍数? 两个单独汇报,全班一起汇报最后一个。 3.辨析定义: ①9÷5=1.8,我们能说9是5的倍数,5是9的因数吗? 学生讨论:明确商是整数,没有余数。

数学人教版五年级下册因数和倍数的概念

《因数和倍数的概念》教学设计 白水县白水小学李艳妮 人教版五年级下册第二单元因《数与倍数》第一节内容《因数与倍数的概念》。 2、教学目标 知识与技能: 理解因数和倍数的意义以及两者之间相互依存的关系。 过程与方法: 通过自主探索和总结求一个数的因数和倍数的方法。 教学方法采用:创设情境,质疑引导、合作探究。 情感态度与价值观: 培养学生概括能力分析比较能力以及热爱数学的情感。 a、通过小组合作培养学生自主探究与合作的精神 b、通过学习活动让学生体会数学乐趣 3、教学重点与难点: 重点:理解因数和倍数的含义。 难点:掌握因数和倍数之间的关系,运用所学知识解决实际问题。 a、在转化难点教学中,我采用具体到抽象引出概念,再由抽象回到具体让学生举例说明这样的思维转化过程有利于学生的认知概念切实掌握概念。 学法:合作探究,讨论交流 一、教学准备:

多媒体课件(通过复习与回顾,为新知的学习做好铺垫有效提高课堂教学质量和针对性) 三、教学过程: (一)创设情境,谈话导入 教师:同学们,你们看过《爸爸去哪儿吗》?里面的kimi你们喜欢吗?林志颖是谁?他们之间有什么关系? 学生:父子关系,林志颖是kimi的爸爸,kimi是林志颖的儿子。 教师:他们能单独成立吗,林志颖是爸爸,kimi是儿子? 学生:不能他们之间是相互依存的 教师:同学们生活中存在着这种相互依存的关系,数与数之间也存在这这种关系这节课我们就一起研究两个自然数之间的关系。(板书课题因数和倍数的概念) 二、探究新知 教师:看到这个题目,你想知道了解什么? 预设:(因数是什么,倍数是什么,因数和倍数之间存在着什么关系?) 教师:就让我们带着这些问题开始今天的研究。 组织学生观察算式特点,独立分类互相交流指名汇报。 预设: 学生(一):这些算式都是除法算式,被除数和除数都是整数。 学生(二):按商共分为两类,第一类商是整数,第二类商不是整数,有的有余数,有的商是一个小数。

苏教版五年级下册数学基本概念

苏教版五年级下册基本概念 第一单元方程 1、表示相等关系的式子叫做等式。 2、含有未知数的等式是方程。 3、方程一定是等式;等式不一定是方程。等式>方程 4、等式两边同时加上或减去同一个数,所得结果仍然是等式。这是等式的性质。 等式两边同时乘或除以同一个不等于0的数,所得结果仍然是等式。这也是等式的性质。 5、求方程中未知数的过程,叫做解方程。 解方程时常用的关系式: 一个加数=和-另一个加数减数=被减数-差 被减数=减数+差一个乘数=积÷另一个乘数 除数=被除数÷商被除数=商×除数 注意:解完方程,要养成检验的好习惯。 6、五个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的5倍。奇数个连续的自然数(或连续的奇数,连续的偶数)的和÷个数=中间数 7、4个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间两个数或首尾两个数的和×个数÷2(高斯求和公式) 8、列方程解应用题的思路:A、审题并弄懂题目的已知条件和所求问题。B、理清题目的等量关系。C、设未知数,一般是把所求的数用X表示。D、根据等量关系列出方程E、解方程F、检验G、作答。 第二单元统计 1、从复式折线统计图中,不仅能看出数量的多少和数量增减变化的情况,而且便于这两组相关数据进行比较。 2、作复式折线统计图步骤: ①写标题和统计时间; ②注明图例(实线和虚线表示); ③分别描点、标数; ④实线和虚线的区分(画线用直尺)。 注意:先画表示实线的统计图,再画虚线统计图。不能同时描点画线,以免混淆。(也可以先画虚线的统计图) 第三单元因数和倍数 1、质数:一个数,如果只有1和它本身两个因数的数叫做素数。 合数:除了1和它本身外还有另外的因数叫做合数。 2、一个数最小的因数是1,最大的因数是它本身,一个数因数的个数是有限的。 一个数最小的倍数是它本身,没有最大的倍数。一个数倍数的个数是无限的。 一个数最大的因数等于这个数最小的倍数。 3、几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,用符号[,]表示。几个数的公倍数也是无限的。 4、两个数公有的因数,叫做这两个数的公因数,其中最大的一个,叫做这两个数的最大公因数,用符号(,)。两个数的公因数也是有限的。 5、两个质数的积一定是合数。举例:3×5=15,15是合数。

人教版小学五年级数学下册概念及公式一点通

五年级数学下册概念公式 一、旋转、平移 时针旋转1小时是30度 二、因数与倍数 1、如果a×b=c(a、b、c都是不为0的整数),那么a、b就是c得因数,c就是a、b的倍数。 2、一个数的因数个数是有限的,其中最小的因数是1,最大的因数是它本身。一个数的倍数是无限的,其中最小的倍数是它本身,没有最大倍数。 3、奇数与偶数: 自然数中,是2的倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。 偶数:个位是0,2,4,6,8的数。 奇数:个位不是0,2,4,6,8的数。 4、倍数特征: 2的倍数的特征:各位是0,2,4,6,8。 3(或9)的倍数的特征:各个数位上的数之和是3(或9)的倍数。 5的倍数的特征:各位是0,5。 5、质数与合数: 质数:一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。 合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。 1既不是质数也不是合数。 6、奇数与偶数的运算规律 偶数+偶数=偶数奇数+奇数=偶数奇数+偶数=奇数 偶数-偶数=偶数奇数-奇数=偶数奇数-偶数=奇数 偶数个偶数相加是偶数,奇数个奇数相加是奇数。 偶数×偶数=偶数奇数×奇数=奇数奇数×偶数=偶数 7、质因数:如果一个质数是某个数的因数,那么这个质数就是这个数的质因数。 8、分解质因数:把一个合数用质因数相乘的方式表示出来叫做分解质因数。

9、100以内的质数表: 2、 3、 5、 7、 11、 13、17、19 23、29、31、 37、 41、 43、47、53 59、61、67、71、 73、 79、83、89、97 三、长方体的认识、表面积、体积和容积 1. 长方体有6个面,一般都是长方形(特殊情况有两个相对的面是正方形),相对的面面积相等;有8个顶点,12条棱,12条棱可以分为三组:4条长,4条宽,4条高。 2. 正方体有6个面,都是面积相等的正方形;有8个顶点,12条棱,每条棱的长度都相等。 3. 正方体是特殊的长方体。(长宽高都相等) 4. 长方体的棱长总和=(长+宽+高)×4 5. 正方体的棱长总和=棱长×12 6. 长方体6个面的总面积叫作它的表面积。长方体相对的面的面积相等,前后面的面积=长×高;左右面的面积=宽×高;上下面的面积=长×宽 7. 长方体的表面积=(长×宽+长×高+宽×高)×2 2)(??+?+?=h b h a b a S 8. 正方体6个面的总面积叫作它的表面积,6个面的面积都相等。 9. 正方体的表面积=棱长×棱长×6 266a a a S =??= 10. 物体所占空间的大小叫作物体的体积。常用的体积单位有:立方厘米,立方分米,立方米。 1立方米=1000立方分米 1立方分米=1000立方厘米 1立方米=1000000立方厘米 11. 容器所能容纳物体的体积叫作容器的容积。常用的容积单位有:升和毫升 1升=1立方分米 1毫升=1立方厘米 12. 相邻的的体积单位之间的互化: 低级单位 高级单位 (大化小除于进率,小化大乘于进率) 13. 计算物体的体积用体积单位,计算液体、气体的体积一般用容积单位。 14. 长方体的体积=长×宽×高 a b h h b a =??=V 15. 正方体的体积=棱长×棱长×棱长 3a a a a V =??= 16. 长方体(正方体)的体积=底面积×高 Sh h S V =?= 17.正方形 :周长=边长×4 C=4a 面积=边长×边长 S=a ×a 长方形 :周长=(长+宽)×2 C=2(a+b) 面积=长×宽 S=ab ÷进率 ×进率

小学五年级数学公式大全

小学五年级数学公式大全 一、数学计算公式: 1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数 2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数 3、速度×时间=路程路程÷速度=时间路程÷时间=速度 4、单价×数量=总价总价÷单价=数量总价÷数量=单价 5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率 6、加数+加数=和和-一个加数=另一个加数 7、被减数-减数=差被减数-差=减数差+减数=被减数 8、因数×因数=积积÷一个因数=另一个因数 9、被除数÷除数=商被除数÷商=除数商×除数=被除数 二、小学数学图形计算公式 1 正方形C周长S面积a边长周长=边长×4 C=4a 面积=边长×边长S=a×a

2 正方体V:体积a:棱长表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长V=a×a×a 3 长方形C周长S面积a边长周长=(长+宽)×2 C=2(a+b) 面积=长×宽S=ab 4 长方体V:体积s:面积a:长b: 宽h:高表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh) 体积=长×宽×高V=abh 5 三角形s面积a底h高面积=底×高÷2 s=ah÷2 三角形高=面积×2÷底三角形底=面积×2÷高 6 平行四边形s面积a底h高面积=底×高s=ah 7 梯形s面积a上底b下底h高面积=(上底+下底)×高÷2 s=(a+b)×h÷2 8 圆形S面积C周长∏d=直径r=半径周长=直径×∏=2×∏×半径C=∏d=2∏r 面积=半径×半径×∏ 9 圆柱体v:体积h:高s;底面积r:底面半径c:底面周长侧面积=底面周长×高表面积=侧面积+底面积×2 体积=底面积×高体积=侧面积÷2×半径 10 圆锥体v:体积h:高s;底面积r:底面半径体积=底面积×高÷3 和差问题的公式(和+差)÷2=大数(和-差)÷2=小数 和倍问题的公式和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数) 差倍问题的公式差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数) 三、植树问题的公式 1 非封闭线路上的植树问题主要可分为以下三种情形: ⑴如果在非封闭线路的两端都要植树,那么: 株数=段数+1=全长÷株距-1 全长=株距×(株数-1) 株距=全长÷(株数-1)

人教版五年级数学下册《因数和倍数》教案

《因数和倍数》教案 教学目标 1、知识与技能 掌握因数、倍数的概念,知道因数、倍数的相互依存关系。 2、过程与方法 通过自主探究,使学生学会用因数、倍数描述两个数之间的关系。 3、情感态度与价值观 使学生感悟到数学知识的内在联系的逻辑之美。 教学重点 掌握找一个数的因数、倍数的方法。 教学难点 能熟练地找一个数的因数和倍数。 教学准备 课件、投影等。 教学过程 一、迁移引入 同学们,在我们的日常生活中,人与人之间存在着许多相互依存的关系,如:佳爸是佳佳的爸爸,佳佳是佳爸的儿子。其实在我们的数学王国里,数与数回见也存在着这种相互依存的关系,请看大平米,认识这些吗?(课件出示:0,1,2,3,4,5……) 这些自然数。(课件去“0”) 去0后这又是什么数?(非零自然数中。)这节课我们就在非零自然数中来研究数与数之间的这种相互依存的关系。 板书:因数和倍数 二、情境创设,探究新知 1、理解整除的意义。 (1)出示例1,在前面学习中,我们见过下面的算式。 12÷2=6 8÷3=2……2 30÷6=5 19÷7=2……5 9÷5=1.8 26÷8=3.25 20÷10=2 21÷21=1 63÷9=7 你能把这些算式分类吗?

(2)分类所得: (3)观察发现,合作交流。 观察算式,说一说谁是谁的倍数,谁是谁的约数。 2、理解因数、倍数的意义。 12÷2=6中,我们就说12是2的倍数,2是12的因数。12÷6=2,所以12是6的倍数,6是12的因数。由此可知:(在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数。) 3、总结归纳 (1)在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数。 (2)因数与倍数是相互依存的关系。 4、注意: 为了方便,在研究因数和倍数的时候,我们所说的数指的是自然数(一般不包括0)。 5、做一做。 下面的4组数中,谁是谁的因数?谁是谁的倍数? 4和24 36÷13 75÷25 81÷9 6、教学例2 18的因数有哪几个? 18的因数有1、2、3、6、9、18。 也可以这样用图表示。 18的因数 1,2,3, 6,9,18 30的因数有哪些?36呢? 7、教学例3 2的倍数有哪些? 2的倍数有2、4、6、8……

人教版数学五年级下册因数与倍数的概念

因数和倍数的概念的教学设计 教学内容:教材第5页的内容以及练习二的第5题。 教学目标: 1、结合情景教学,使学生初步认识自然数之间存在着因数和倍数的关系,初步理解倍数和倍数的含义。 2、通过学习,使学生有条理、清晰地说出因数和倍数的概念以及它们之间的联系。 3、初步学会运用所学的知识解决实际问题,培养学生概括、分析和比较的能力,体会数学知识的内在联系。 教学重点、难点:理解并掌握因数和倍数之间的关系。 教具学具:投影仪。 教学过程: 一、创设情境,激趣导入。 师:同学们喜欢看《熊出没》吗?(出示画面)这部电视主要讲得是谁?(熊大和熊二)它们是什么关系?(兄弟关系)那么老师和同学们之间是什么关系?(师生关系) 师:同学们,在生活中不仅人与人存在的关系,在数学中,数与数之间也存在的关系。 今节课,我们就一起来研究两个自然数之间的关系。板书课题:因数和倍数。【设计意图:通过情景图知道人与人之间存在着关系,为理解因数与倍数存在着关系打下基础】 二、探究体验,经历过程。 投影出示例1。 1、提出问题。 师:请同学们认真观察这9个算式,把它们进行分类,可以怎样分?说说你的理由。(分小组讨论,师巡回指导) 2、展示交流。 生:老师,我们这组是根据商的特点,把这些算式分成三类。第一类为结果是整数的,第二类为结果是小数且能除得尽的,第三类为结果是带有余数的。 师:你们组的同学观察得真仔细,分类也很明确,很棒。还有没有不同的分类?又该怎样分? 生:老师,我们组把这些算式分成了两类。我们也是按商的特点去分。一类为结果是整数的,另一类为结果不是整数的。 师:你们组的同学也观察得很仔细,分类也很明确,真聪明。 在整数除法中,如果商是除数且没有余数,我们就说被除数是除数的倍数,除数是被除数的因数。例如,12÷2=6我们就说12是2的倍数,2是12的因数。12

五年级数学公式大全

五年级数学公式及定义 常用数量关系及计算公式: 1、每份数×份数=总数总数÷每份数=份数 总数÷份数=每份数 2、速度×时间=路程 v×t=s 路程÷速度=时间 s÷v=t 路程÷时间=速度 s÷t=v 3、单价×数量=总价总价÷单价=数量 总价÷数量=单价 4、工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率 5、单产量×面积=总产量总产量÷面积=单产量 总产量÷单产量=面积 植树问题: 1 非封闭线路上的植树问题主要可分为以下三种情形: ⑴、如果在非封闭线路的两端都要植树,那么: 株数=段数+1=全长÷株距-1 全长=株距×(株数-1) 株距=全长÷(株数-1) ⑵、如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距全长=株距×株数 株距=全长÷株数

⑶、如果在非封闭线路的两端都不要植树,那么: 株数=段数-1=全长÷株距-1 全长=株距×(株数+1) 株距=全长÷(株数+1)

2 封闭线路上的植树问题的数量关系如下: 株数=段数=全长÷株距全长=株距×株数 株距=全长÷株数 图形计算公式: 1、正方形周长=边长×4 字母公式:C=4a 面积=边长×边长S=a ×a 2、长方形周长=(长+宽)×2 C=2(a+b) 面积=长×宽S=ab 3、三角形面积=底×高÷2 s=ah÷2 三角形高=面积×2÷底 h=s×2÷a 三角形底=面积×2÷高 a=s×2÷h 4、平行四边形面积=底×高S=ab 5、梯形面积=(上底+下底)×高÷2 s=ah s=(a+b)×h÷2 单位换算: 长度单位: 一公里=1千米=1000米 1分米=10厘米 1米=10分米1厘米=10毫米 面积单位: 1平方千米=100公顷1公顷=100公 亩 1 公亩=100平方米

五年级下册因数和倍数提高练习题1

因数和倍数提高练习题1 一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)。一个数,如果除了只有1和它本身还有别的因数,这样的数叫做合数。 1即不是质数也不是合数。 把一个合数用质因数相乘的形式表示出来,叫做分解质因数。 最小的偶数是:0,最小的奇数是:1,最小的质数是2,最小的合数是:4. 既是质数也是偶数的数是2 1、练习: (1)把下面各数分解质因数 27 35 24 54 91 78 50 64 (2)有两个质数,和是18,积是65,这两个质数是()和()。 (3)在100~150中,找出两个整数,使它们相乘的积等于91和187的乘积,这两个数分别是()和()。(4)连续五个奇数的积的末位数是()。(5)两数相加的和是最大的两位数,两数相减的差是大于90的最小质数,那么这两个数的积是()。(6)三个连续自然数的乘积是720,这三个数是()、()和()。(7)把六个数:85、51、33、91、65、77分成两组,每组三个数,每组中三个数的乘积相等。写出其中一个组的三个数() (8)张爷爷今年84岁,他告诉人家:“我有3个孙子,他们三人年龄的乘积才有我这么大,而且这三个孙子中,有两个孙子年龄的和正好是另外一个孙子的年龄。”问:这三个孙子各几岁? 2、有四个孩子,恰好一个比一个大1岁,他们年龄相乘的积等于3024,问这四个孩子中年龄最大的是几岁?他们的平均年龄是几岁? 利用集合,探究公因数和最大公因数 15的约数 18的因数 15的约数 18的因数 15和18的公因数 一、概念(最大公约数) 1、()叫这几个数的公约数;()叫做最大公约数。 2、12的约数有();18的约数有();其中()是12和18的公约数;它们的最大公约数是()。 3、()叫做互质数二、求最大公约数和最小公倍数的方法 一般采用短除法。如果两个数中大数是小数的倍数,小数是大数的约数,则大数是它们的最小公倍数;小数是他们的最大公约数。如果两个数是互质数,则它们的最大公约数是1,最小公倍数是两个数相乘的积练一练:求下面数的最大公约数 (1)24和36 (2)13和5 (3)12和48 (4)12、16、18 三、最小公倍数 1、()叫这几个数的公倍数;()叫做最小公倍数 2、写出100以内的4的倍数有();100以内的6的倍数有();它们的公倍数有();它们的最小公倍数是()。 3、求下面数的最小公倍数 (1)24和36 (2)13和5 (3)12和48 (4)2、4、5 作业与练习 一、概念理解 12=()×()×() 30=()×()×() (12,30)=()×()=() [ 12,30 ] =()×()×()×()=()二、用短除法计算出下面个数的最大公约数和最小公倍数。

北师大五年级数学下册概念公式

北师大五年级数学下册概念公式 1、分数乘整数的意义就是求几个相同加数的和的简便运算。 例如1/5×8表示求8个五分之二是多少? 一个数乘分数的意义就是求这个数的几分之几是多少。 例如:8×1/5表示求8的五分之二是多少? 2、分数与整数相乘:分子和整数相乘,分母不变。 3、分数与分数相乘,分子与分子相乘,分母与分母相乘,能约分的可以 先约分。 4、长方体有6个面,一般都是长方形(特殊情况有两个相对的面是正方 形),相对的面面积相等;有8个顶点,12条棱,12条棱可以分为三 组:4条长,4条宽,4条高。 5、长方体的棱长总和=(长+宽+高)×4 6、长方体的长=长方体的棱长总和÷4-宽-高 长方体的宽=长方体的棱长总和÷4-长-高 长方体的高=长方体的棱长总和÷4-长-宽 7、长方体6个面的总面积叫作它的表面积。长方体相对的面的面积相等, 前后面的面积=长×高;左右面的面积=宽×高;上下面的面积=长×宽 8、长方体的表面积=(长×宽+长×高+宽×高)×2 S=(a×b+a×h+b×h)×2 无盖的长方体的表面积=(长×宽+长×高+宽×高)×2-长×宽 或=(长×高+宽×高)×2+长×宽 9、正方体是特殊的长方体。(长宽高都相等) 10、正方体有6个面,面积都相等的正方形;12条棱都相等。 11、正方体的棱长总和=棱长×12 棱长=正方体的棱长总和÷12 12、正方体6个面的总面积叫作它的表面积,6个面的面积都相等。 13、至少要8个大小相同的小正方体才可以拼成一个较大的正方体。 14、正方体的表面积=棱长×棱长×6 或=底面积×6 S=6a2 15、如果两个数的乘积是1,那么我们称其中一个数是另一个数的倒数。 比如1/2的倒数是2,2的倒数是1/2,这两个数互为倒数。1的倒 数是它本身,0没有倒数。 16、分数除法的意义:已知两个因数的积与其中一个因数,求另一个因 数的运算叫除法。例如:÷表示:已知两个因数的积与其中一个 因数,求另一个因数是多少。 17、一个数除以一个整数(零除外)等于这个数乘以这个整数的倒数。 18、一个数除以一个分数等于这个数乘以这个分数的倒数。 19、除以一个数(零除外)等于乘这个数的倒数。 20、任何数乘以“1”或者除以“1”,结果还是原数。 任意一个数,乘以一个大于“1”的数时,结果大于原数,乘以一个小 于“1”的数时,结果小于原数。 任意一个数,除以一个大于“1”的数时,结果小于原数,除以一个 小于“1”的数时,结果大于原数。 单位“1”的量×分率=比较量

五年级下册因数与倍数练习题大全

因数与倍数练习题班级:姓名: 一、填空题: 1、一个数的最大因数是12,这个数是();一个数的最小倍数是18,这个数是()。 2、根据算式25×4=100,则()是()的因数,()也是()的因数;()是()的倍数,()也是()的倍数。 3、48的最小倍数是(),最大因数是()。最小因数是()。 4、在1 5、18、25、30、19中,2的倍数有( ),5的倍数有( ), 3的倍数有( ),既是2、5又是3的倍数有( )。 5、56的所有因数之和是()。 6、在18÷3=6中,( )和( )是( )的因数。 在3×9=27中,( )是( )和( )的倍数。 7、2 的所有因数有( ),从小到大15的5个倍数是( )。 8、7是7的( )数,也是7的( )数。 9、一个数的最大因数是12,这个数是();一个数的最小倍数是18,这个数是()。 10、10以内,所有质数的积是() 11、一个数既是25的倍数,又是25的因数,这个数是()。12、质数a有()和()两个因数。 13、最小的质数和最小的合数的积是()。 14、在20以内的自然数中,是奇数又是合数的数有()。。 15、30的因数中,最小的是( ),最大的是( )。 二、判断题: 1. 任何自然数,它的最大因数和最小倍数都是它本身。( ) 2、36的全部因数是2、 3、 4、6、9、12和18,共有7个。() 3、因为18÷9=2,所以18是9的倍数,9是18的因数。() 4、一个数的倍数总比它的因数大。() 5、18的因数有6个,18的倍数有无数个。() 6、一个数是6的倍数,这个数一定是2和3的倍数。() 7、两个奇数的和是偶数,两个奇数的积是合数。() 三、选择: 1.13的倍数是() ①合数②质数③可能是合数,也可能是质数 2.2是(),但不是()。 ①合数②质数③偶数 3.4的倍数都是()的倍数。

相关文档
最新文档