物理学第3版习题解答_第1章流体的运动
流体力学 第1章(下) 流体的主要物理性质

连续介质假设
连续介质假设是将流体区域看成由流体质点连续组成,占满空 间而没有间隙,其物理特性和运动要素在空间是连续分布的。
为什么要做这样的假设呢?
对流体物质结构的简化,使我们在分析问题时得到两大方便: 第一,它使我们不考虑复杂的微观分子运动,只考虑在外 力作用下的宏观机械运动; 第二,能运用数学分析的连续函数工具。因此,本课程分 析时均采用“连续介质”这个模型。
和流层问距离dy成反比;
2.与流层的接触面积A的大小成正比;
3.与流体的种类有关;
4.与流体的压力大小无关。
动力粘滞系数μ
表征单位速度梯度作用下的切应力,
Байду номын сангаас
所以它反映了粘滞性的动力性质,因此 也称为动力粘滞系数。
单位是N/m2·s或Pa·s。
运动粘滞系数ν
理解为单位速度梯度作用下的切应力对单位体
2、流体质点和连续介质模型
流体质点的概念 流体质点也称流体微团,是指尺度大小同一 切流动空间相比微不足道又含有大量分子,具有 一定质量的流体微元。 如何理解呢?
宏观上看(流体力学处理问题的集合尺度):流体质 点足够小,只占据一个空间几何点,体积趋于零。
微观上看(分子集合体的尺度):流体质点是一个足 够大的分子团,包含了足够多的流体分子,以至于对 这些分子行为的统计平均值将是稳定的,作为表征流 体物理特性的运动要素的物理量定义在流体质点上。
实例应用:以密度为例来说明物理量如何在流体质点上定义的。 假设流体微团的质量为Δm ,体积为ΔV ,则流体质点的密度 m 为Δm/ΔV lim
v 0
V
其中,ΔV的含义可以理解为流体微团趋于流体质点。
连续介质假设为建立流场的概念奠定了基础:设 在t时刻,有某个流体质点占据了空间点(x,y,z), 将此流体质点所具有的某种物理量定义在该时刻和空 间点上,根据连续介质假设,就可形成定义在连续时 间和空间域上的数量或矢量场。
大学物理学(第三版)上课后习题答案

第一章运动的描述1-1 ||与有无不同?和有无不同? 和有无不同?其不同在哪里?试举例说明.解:(1)是位移的模,是位矢的模的增量,即,;(2)是速度的模,即.只是速度在径向上的分量.∵有(式中叫做单位矢),则式中就是速度径向上的分量,∴不同如题1-1图所示.题1-1图(3)表示加速度的模,即,是加速度在切向上的分量.∵有表轨道节线方向单位矢),所以式中就是加速度的切向分量.(的运算较复杂,超出教材规定,故不予讨论)1-2 设质点的运动方程为=(),=(),在计算质点的速度和加速度时,有人先求出r=,然后根据 =,及=而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即=及=你认为两种方法哪一种正确?为什么?两者差别何在?解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有,故它们的模即为而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作其二,可能是将误作速度与加速度的模。
在1-1题中已说明不是速度的模,而只是速度在径向上的分量,同样,也不是加速度的模,它只是加速度在径向分量中的一部分。
或者概括性地说,前一种方法只考虑了位矢在径向(即量值)方面随时间的变化率,而没有考虑位矢及速度的方向随间的变化率对速度、加速度的贡献。
1-3 一质点在平面上运动,运动方程为=3+5, =2+3-4.式中以 s计,,以m计.(1)以时间为变量,写出质点位置矢量的表示式;(2)求出=1 s 时刻和=2s 时刻的位置矢量,计算这1秒内质点的位移;(3)计算=0 s时刻到=4s时刻内的平均速度;(4)求出质点速度矢量表示式,计算=4 s 时质点的速度;(5)计算=0s 到=4s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算=4s 时质点的加速度(请把位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式).解:(1)(2)将,代入上式即有(3)∵∴(4)则(5)∵(6)这说明该点只有方向的加速度,且为恒量。
大学物理课后习题1第一章答案

习题11.1选择题(1)一运动质点在某瞬时位于矢径),(y x r的端点处,其速度大小为()(A)dtdr (B)dtr d (C)dtr d || (D)22)()(dtdy dt dx +答案:(D)。
(2)一质点作直线运动,某时刻的瞬时速度s m v /2=,瞬时加速度2/2s m a -=,则一秒钟后质点的速度()(A)等于零(B)等于-2m/s (C)等于2m/s (D)不能确定。
答案:(D)。
(3)一质点沿半径为R 的圆周作匀速率运动,每t 秒转一圈,在2t 时间间隔中,其平均速度大小和平均速率大小分别为()(A)t R t R ππ2,2(B)tRπ2,0(C)0,0(D)0,2tRπ答案:(B)。
(4)质点作曲线运动,r表示位置矢量,v 表示速度,a 表示加速度,S 表示路程,τa 表示切向加速度,下列表达式中,()①a t = d /d v ,②v =t r d /d ,③v =t S d /d ,④τa t =d /d v.(A)只有①、④是对的.(B)只有②、④是对的.(C)只有②是对的.(D)只有③是对的.答案:(D)。
(5)一质点在平面上作一般曲线运动,其瞬时速度为v,瞬时速率为υ,某一时间内的平均速度为v,平均速率为v ,它们之间的关系必定有:()(A)vv v,v == (B)v v v,v =≠ (C)vv v,v ≠≠ (D)vv v,v ≠= 答案:(D)。
1.2填空题(1)一质点,以1-⋅s m π的匀速率作半径为5m 的圆周运动,则该质点在5s 内,位移的大小是;经过的路程是。
答案:10m;5πm。
(2)一质点沿x 方向运动,其加速度随时间的变化关系为a=3+2t (SI),如果初始时刻质点的速度v 0为5m ·s -1,则当t 为3s 时,质点的速度v=。
答案:23m·s -1.(3)一质点从静止出发沿半径R=1m 的圆周运动,其角加速度随时间t 的变化规律是α=12t 2-6t (SI),则质点的角速度ω=__________________;切向加速度τa =_________________.答案:4t 3-3t 2(rad/s),12t 2-6t (m/s 2)(4)一质点作直线运动,其坐标x 与时间t 的关系曲线如题1.2(4)图所示.则该质点在第___秒瞬时速度为零;在第秒至第秒间速度与加速度同方向.题1.2(4)图答案:3,36;(5)一质点其速率表示式为v s =+12,则在任一位置处其切向加速度a τ为。
大学物理第三版上册课后习题答案

大学物理第三版上册课后习题答案【篇一:物理学教程(第二版)上册课后习题答案详解】s=txt>第一章质点运动学v,||=(b) |v|≠v,||≠ v,||≠(d) |v|≠v,||=,即||≠. ?但由于|dr|=ds,故drds,即||=.由此可见,应选(c). dtdt1 -2dr(1)dt一运动质点在某瞬时位于位矢r(x,y)的端点处,对其速度的大小有四种意见,即; (2)drdt;ds(3)dt; (4)dxdydtdt22.下述判断正确的是( )(a) 只有(1)(2)正确 (b) 只有(2)正确(c) 只有(2)(3)正确 (d) 只有(3)(4)正确分析与解drdt表示质点到坐标原点的距离随时间的变化率,在极坐标系中叫径向速率.通常用符号vr表示,drdt表示速度矢量;在自然坐标系中速度大小可用公式v22ds计dtdxdy算,在直角坐标系中则可由公式vdtdt表达式,即求解.故选(d).1 -3 质点作曲线运动,r 表示位置矢量, v表示速度,a表示加速度,s 表示路程, at表示切向加速度.对下列(1)d v /dt =a;(2)dr/dt =v;(3)ds/dt =v;(4)d v /dt|=at.下述判断正确的是( )(a) 只有(1)、(4)是对的 (b) 只有(2)、(4)是对的 (c) 只有(2)是对的(d) 只有(3)是对的dv表示切向加速度at,它表示速度大小随时间的变化率,是加速度矢量沿速度方向的一个分量,dtdrds起改变速度大小的作用;在极坐标系中表示径向速率vr(如题1 -2 所述);在自然坐标系中表示质dtdt分析与解点的速率v;而dvdt表示加速度的大小而不是切向加速度at.因此只有(3) 式表达是正确的.故选(d).1 -4 一个质点在做圆周运动时,则有( ) (a) 切向加速度一定改变,法向加速度也改变 (b) 切向加速度可能不变,法向加速度一定改变 (c) 切向加速度可能不变,法向加速度不变 (d) 切向加速度一定改变,法向加速度不变分析与解加速度的切向分量at起改变速度大小的作用,而法向分量an起改变速度方向的作用.质点作圆周运动时,由于速度方向不断改变,相应法向加速度的方向也在不断改变,因而法向加速度是一定改变的.至于at是否改变,则要视质点的速率情况而定.质点作匀速率圆周运动时, at恒为零;质点作匀变速率圆周运动时, at为一不为零的恒量,当at改变时,质点则作一般的变速率圆周运动.由此可见,应选(b). 1 -5 已知质点沿x 轴作直线运动,其运动方程为s.求:(1) 质点在运动开始后4.0 s内的位移的大小; (2) 质点在该时间内所通过的路程; (3) t=4 s时质点的速度和加速度.x?2?6t2?2t3,式中x 的单位为m,t 的单位为xtx0,而在求路程时,就必dx0来确dt须注意到质点在运动过程中可能改变运动方向,此时,位移的大小和路程就不同了.为此,需根据dxd2xs??x1??x2,如图所示,至于t =4.0 s 时质点速度和加速度可用和2两式计算.dtdt题 1-5 图解 (1) 质点在4.0 s内位移的大小(2) 由得知质点的换向时刻为dx0 dttp?2s (t=0不合题意)则所以,质点在4.0 s时间间隔内的路程为(3) t=4.0 s时v?dx48m?s?1dtt?4.0sd2xa?2??36m.s?2dtt?4.0s1 -6 已知质点的运动方程为r(1) 质点的运动轨迹;(2) t =0 及t =2s时,质点的位矢;解 (1) 由x(t)和y(t)中消去t 后得质点轨迹方程为2ti(2t2)j,式中r 的单位为m,t 的单位为s.求:y?2?这是一个抛物线方程,轨迹如图(a)所示.12x 4(2) 将t =0s和t =2s分别代入运动方程,可得相应位矢分别为r0?2j , r2?4i?2j图(a)中的p、q 两点,即为t =0s和t =2s时质点所在位置. (3) 由位移表达式,得其中位移大小2222r2r0x2y2x0y02.47m题 1-6 图1 -7 质点的运动方程为x??10t?30t2y?15t?20t2式中x,y 的单位为m,t 的单位为s.试求:(1) 初速度的大小和方向;(2) 加速度的大小和方向.分析由运动方程的分量式可分别求出速度、加速度的分量,再由运动合成算出速度和加速度的大小和方向.解 (1) 速度的分量式为vx?dx10?60t dtdyvy15?40tdt22v0?v0x?v0y?18.0m?s?1v0yv0x3 2(2) 加速度的分量式为ax?则加速度的大小为dvydvx40m?s?2 ?60m?s?2 , ay?dtdta?ax?ay?72.1m?s?2ayax2 3分析在升降机与螺丝之间有相对运动的情况下,一种处理方法是取地面为参考系,分别讨论升降机竖直向上的匀加速度运动和初速不为零的螺丝的自由落体运动,列出这两种运动在同一坐标系中的运动方程y1 =y1(t)和y2 =y2(t),并考虑它们相遇,即位矢相同这一条件,问题即可解;另一种方法是取升降机(或螺丝)为参考系,这时,螺丝(或升降机)相对它作匀加速运动,但是,此加速度应该是相对加速度.升降机厢的高度就是螺丝(或升降机)运动的路程.解1 (1) 以地面为参考系,取如图所示的坐标系,升降机与螺丝的运动方程分别为1y1?v0t?at221y2?h?v0t?gt22当螺丝落至底面时,有y1 =y2 ,即11v0t?at2?h?v0t?gt222t?2h0.705sg?a(2) 螺丝相对升降机外固定柱子下降的距离为d?h?y2??v0t?12gt?0.716m 2解2 (1)以升降机为参考系,此时,螺丝相对它的加速度大小a′=g +a,螺丝落至底面时,有10?h?(g?a)t22t?(2) 由于升降机在t 时间内上升的高度为2h0.705sg?a则1h??v0t?at22d?h?h??0.716m【篇二:大学物理上册课后习题答案】-1 |?r|与?r 有无不同?drdrdvdv和有无不同? 和有无不同?其不同在哪里?dtdtdtdt试举例说明.解:(1)r是位移的模,?r是位矢的模的增量,即?r?r2?r1,?r?r2?r1;(2)dsdrdr是速度的模,即. ?v?dtdtdtdr只是速度在径向上的分量. dt(式中r?叫做单位矢)∵有r?rr,则式中drdrdrr?rdtdtdtdr就是速度径向上的分量, dt∴drdr与不同如题1-1图所示.dtdt题1-1图dvdv?dv(3)表示加速度的模,即a?,是加速度a在切向上的分量.dtdtdt∵有v?v?(?表轨道节线方向单位矢),所以dvdv?dv dtdtdtdv就是加速度的切向分量. dtd??dr与(?的运算较复杂,超出教材规定,故不予讨论) dtdt式中1-2 设质点的运动方程为x=x(t),y=y(t),在计算质点的速度和加速度时,有人先求drd2r出r=x?y,然后根据v =,及a=2而求得结果;又有人先计算速度和加速度dtdt22的分量,再合成求得结果,即?dx??dy?=及a=dtdt?22d2xd2y22正确?为什么?两者差别何在?解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有r?xi?yj,drdxdyvijdtdtdt2?22drdxdy?a?2?2i?2jdtdtdt故它们的模即为dxdyv?v?vdtdt2x2y2222dxdy22a?ax?aydt2??dt2??22而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作drv?dtd2ra?2dtdrdrd2r与2误作速度与加速度的模。
医学物理学习题解答(第3版)

《医学物理学(第3版)》习题解答2009.10 部分题解2-10.解:已知 363102525m cm v -⨯==; a P .p 511051⨯= a P .p 521011⨯=()())J (..vp p 110251011105165521=⨯⨯⨯-⨯=-=ω∴-2-11.10-5s第三章 液体的表面现象3-1.解:设由n 个小水滴融合成一个大水滴,释放出的能量为P E ∆。
n 个小水滴的总表面积S 1=24r n ⋅⋅π,大水滴的表面积S 2=42R ⋅π,利用n 个小水滴的体积等于一个大水滴的体积,可求出n 即n ×334r ⋅π=334R ⋅π 所以n ×334r ⋅π=334R ⋅π; ()()936333310102102=⨯⨯==--r R n 个 将910个半径为2×310-mm 小水滴融合成一个半径为2mm 的大水滴时,其释放的能量等于表面能的减少,所以 )44()(2221R r n S S E P ⋅-⋅⨯=-=∆ππαα=3612931066.3)10414.3410414.3410(1073----⨯≈⨯⨯⨯-⨯⨯⨯⨯⨯J3-2解:由于肥皂泡非常薄,因此可忽略肥皂泡的厚度,取外内=R R =2d=0.05m 。
因为肥皂泡有内外两个表面,所以肥皂泡增加的表面积242R S π⨯=∆。
根据SW∆=α可得吹一个直径为10cm 的肥皂泡,需要做的功 4423108105421040---⨯=⨯⨯⨯⨯⨯=∆⋅=ππαS W J 又因为增加表面能等于外力所做的功 W E P =∆ 所以 4108-⨯==∆πW E P J根据拉普拉斯公式,可得球形液面的内外压强差 =-外内p p Rα2由于肥皂泡有内外两个表面,所以其内外压强差 =-外内p p 2.3100.510404423=⨯⨯⨯=--R α(P a ) 3-3.解:根据拉普拉斯公式,可得球形液面的内外压强差 =-外内p p Rα2 所以,当肺泡的半径为0.04mm 时,它的内外压强差为=-外内p p 353100.2100.4104022⨯=⨯⨯⨯=--R α(P a ) 3-4.解:根据拉普拉斯公式可得球形液面的内外压强差 =-外内p p Rα2 因为气泡在水下面只有一个球形表面,所以气泡的内外压强差=-外内p p Rα2 而 h g p p ⋅⋅+ρ0=外 所以,气泡内的压强 h g p p ⋅⋅+ρ0=内+Rα2 即 内p =1.013×105+310×9.8×10+5331001.2101.010732⨯=⨯⨯⨯--(P a ) 3=5.解:根据毛细现象的公式 θραcos 2rg h ⋅⋅=由于乙醇能完全润湿玻璃壁,所以接触角O=0θ,故 rg h ⋅⋅=ρα2所以 332107.2221015.08.97911090.32---⨯=⨯⨯⨯⨯⨯=⋅⋅⋅=r g h ρα (N/m) 3-6.解:根据毛细现象的公式 θραcos 2rg h ⋅⋅=由于水能完全润湿玻璃壁,所以接触角O =0θ,故 rg h ⋅⋅=ρα2所以 112r g h ⋅⋅=ρα 222r g h ⋅⋅=ρα⎪⎭⎫⎝⎛⨯-⨯⨯⨯⨯=⎪⎪⎭⎫ ⎝⎛-=-=-=∆---3333212121105.11105.018.9101073211222r r g gr gr h h h ραραρα =1.99×210-(m)=1.99(cm)3-7.解:根据毛细现象的公式 θραcos 2rg h ⋅⋅=;由于水能完全润湿毛细管,所以接触角O =0θ,因此水在毛细管中上升的高度为 rg h ⋅⋅=ρα2而管中水柱的高度r g R h ⋅⋅+='ρα223333103.5103.08.91010732103----⨯=⨯⨯⨯⨯⨯+⨯=(m)=5.3(cm)3-8.解::根据毛细现象的公式 θραcos 2rg h ⋅⋅=由于水和丙酮能完全润湿毛细管,所以接触角O =0θ,因此水和丙酮在毛细管上升的高度分别为rg h ⋅=水水ρα21 ① rg h ⋅=酮酮ρα22 ②②式除以①式可得 酮水水酮ρραα⋅=t h h 12 所以 3332212104.32107310105.2792104.1-⨯=⨯⨯⨯⨯⨯⨯⋅⋅---水水酮酮==αρραh h (N/m) 3-9.解:根据毛细现象的公式 θραcos 2rg h ⋅⋅=由于血液在毛细管产生完全润湿现象,所以接触角O =0θ,故 rg h ⋅⋅=ρα2所以,血液表面张力系数3332109.572105.08.91005.11025.22---⨯=⨯⨯⨯⨯⨯⨯=⋅⋅⋅=r g h ρα (N/m)第四章 振动和波动及超声波成像的物理原理4-2.解:已知 kg M 5=;()cm t cos x 44010π+π=(1) 由()cm t cos x 44010π+π=得m cm A 11010-==;)srad (π=ω40;mk 2=ω; m k 2ω= 则)J (.)J (.mA kA E 384394400105160021212122222=π=⨯⨯π⨯=ω==s .T 0504022=ππ=ωπ=; Hz Tf 201==; ()()sm 43t 40cos 4s m 4t 40sin 4vπ+ππ=π+ππ-= ()()2222sm 45t 40cos 160s m 4t 40cos 160a π+ππ=π+ππ-=(2) 当s .t 21=时,则()m .cos x 2110254214010--⨯=π+⨯π=;()sm .cos v π=π+⨯ππ=224321404)J (kx E );J (mv E p k 242222220105051600212120852121π=⨯⨯⨯π⨯==π=π⨯⨯==-(或)J (E E E k p 222202040π=π-π=-=)4-3.解:已知cm A 2=;0=t 时,刚好向x 反向传播;πω==250Hz f , 则 s rad π=ω100()ϕ+ω=t cos A x ,0=t 时 0=x 则 2πϕ±=又由 ()0sin 〈+-=ϕωωt A v , 得 2π=ϕ所以,振动方程为 cm 2t 100cos 2x ⎪⎭⎫ ⎝⎛π+π=速度方程为 s cm t sin v ⎪⎭⎫ ⎝⎛π+ππ-=2100200 s m t cos ⎪⎭⎫ ⎝⎛π+ππ=231002 ;s m 2v m π= 加速度方程为 222100200s m t cos a ⎪⎭⎫ ⎝⎛π+ππ-=;22m s m 200a π= 4-4. 解:(1)2A x =时,222121kA kx E p ==; 41218122==kA kAE E p 即势能占总能量的25%,动能占总能量的75% 。
第版医用物理学课后习题答案

习题三第三章流体的运动3-1 若两只船平行前进时靠得较近,为什么它们极易碰撞?答:以船作为参考系,河道中的水可看作是稳定流动,两船之间的水所处的流管在两船之间截面积减小,则流速增加,从而压强减小,因此两船之间水的压强小于两船外侧水的压强,就使得两船容易相互靠拢碰撞。
3-6 水在截面不同的水平管中作稳定流动,出口处的截面积为管的最细处的3倍,若出口处的流速为2m·s-1,问最细处的压强为多少?若在此最细处开一小孔,水会不会流出来。
(85kPa)3-7 在水管的某一点,水的流速为2m·s-1,高出大气压的计示压强为104Pa,设水管的另一点的高度比第一点降低了1m,如果在第二点处水管的横截面积是第一点的1/2,求第二点处的计示压强。
(13.8kPa)3-8 一直立圆柱形容器,高0.2m,直径0.1m,顶部开启,底部有一面积为10-4m2的小孔,水以每秒 1.4×10-4m3的快慢由水管自上面放人容器中。
问容器内水面可上升的高度? (0.1;11.2s.)3-9 试根据汾丘里流量计的测量原理,设计一种测气体流量的装置。
提示:在本章第三节图3-5中,把水平圆管上宽、狭两处的竖直管连接成U形管,设法测出宽、狭两处的压强差,根据假设的其他已知量,求出管中气体的流量。
解:该装置结构如图所示。
3-10 用皮托管插入流水中测水流速度,设两管中的水柱高度分别为5×10-3m和5.4×10-2m,求水流速度。
(0.98m·s-1)3-11 一条半径为3mm的小动脉被一硬斑部分阻塞,此狭窄段的有效半径为2mm,血流平均速度为50㎝·s-1,试求(1)未变窄处的血流平均速度。
(0.22m·s—1)(2)会不会发生湍流。
(不发生湍流,因Re = 350)(3)狭窄处的血流动压强。
(131Pa)3-12 20℃的水在半径为 1 ×10-2m的水平均匀圆管内流动,如果在管轴处的流速为0.1m·s-1,则由于粘滞性,水沿管子流动10m后,压强降落了多少? (40Pa)3-13 设某人的心输出量为0.83×10—4m3·s-1,体循环的总压强差为12.0kPa,试求此人体循环的总流阻(即总外周阻力)是多少N.S·m-5,?3-14 设橄榄油的粘度为0.18Pa·s,流过管长为0.5m、半径为1㎝的管子时两端压强差为2×104Pa,求其体积流量。
2023人教版带答案高中物理必修一第一章运动的描述微公式版必练题总结

2023人教版带答案高中物理必修一第一章运动的描述微公式版必练题总结单选题1、一质点沿Ox方向做直线运动,它离开O点的距离x随时间t变化的关系为x=2+3t-t3(m),它的速度v随时间t变化的关系为v=3-3t2(m/s),则该质点在t=2s时的瞬时速度和t=0到t=2 s 间的平均速度、平均速率分别为()A.-9m/s 0 6m/sB.9m/s -3m/s 6m/sC.9m/s -1m/s 2m/sD.-9m/s -1m/s 3m/s答案:D根据v=3-3t2(m/s)知,t=2s时瞬时速度为v=-9 m/s根据x=2+3t-t3(m)知,t=0时,质点离O点的距离x0=2mt=2s时,质点离O点的距离x2=0由速度与时间关系知t=1s时,v=0,即t=1s时质点的速度减小到零,然后反向运动,此时离O点的距离为x1=4m所以质点在t=0到t=2s间的平均速度为v̅=ΔxΔt=x2−x0Δt=0−22m/s=−1m/s质点在t=0到t=2s间的路程为s=2m+4m=6m平均速率为v̅′=sΔt=62m/s=3m/s故选D。
2、如图所示是我国福厦高铁泉州湾跨海大桥,是全球第一座高铁跨海大桥,它全长20.3公里主跨400米。
它的设计行车时速达350公里,刷新了世界桥梁最高记录,预计2022年正式通车。
下列说法正确的是()A.“时速达350公里”表示平均速度B.“20.3公里”表示位移C.在研究火车的速度时,可以将火车看作质点D.在研究火车的速度时,可以将火车作为参考系答案:CA.“时速达350公里”表示瞬时速度,故A错误;B.“20.3公里”指的是路线的长度,表示路程,故B错误;C.在研究火车的速度时,火车的大小和形状可以忽略,可以将火车看作质点,故C正确;D.在研究火车的速度时,可以选地面为参考系,不可以将火车本身作为参考系,故D错误。
故选C。
3、某些汽车会用“G值”来表示其加速能力,G值越大,加速越快。
物理学第一章习题解答

l 1 2 1 at g (sin cos )t 2 cos 2 2
t
2l g cos (sin cos )
dt 令: 0 d
sin (sin cos ) cos (cos sin ) 0
tan 2
dv d 2 at t 1 ( vx2 v y ) 3.58 m s 2 dt dt
an a a 1.79 m s
2 2 t
2
(4)
t 1.0s 时质点的速度大小为
2 2 v v x v y 4.47 m s 1
则
v 11 .17 m an
*1-17质点在Oxy平面内运动,其运动方程为 2 r 2.0t i (19.0 2.0t ) j 式中 r 的单位为m, t 的单位为s。 求(1)质点的轨迹方程; (2)在 t1 1.0s 到 t2 2.0s 内的平均速度; (3) t1 1.0s 的速度及切向和法向加速度; (4)t1 1.0s 质点所在处轨道的曲率半径 。
2
a (R ) 2 ( 2 R ) 2 1.01m s 2
2.0s 内所转过的角度
2 32 0 dt 2t dt t 0 5.33rad 3 0 0
2 2 2
1-24 一质点在半径为0.10m 的圆周上运动, 2 4t 3 ,式中 的单位为 其角位置为 rad , t的单位为s。求: (1)在 t=2.0s时质点的法向加速度和切向 加速度。 (2)当切向加速度的大小恰等于总加速度大 小的一半时, 值为多少? (3)t为多少时,法向加速度和切向加速度 相等? d 2 3 得: 12t 解 (1)由 2 4t dt
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
v1
(2)
2( 1 ) gr 2 2(0.94 103 1.034 103 ) 10 (1.0 10 6 ) 2 1.9 10 7 m / s 9 9 1.1 10 3
v2
2( 1 )( 2 x)r 2 3.8 10 4 m / s 9
l-2 有一水管,如图所示,设管中的水作稳定流动。水流过 A 管后,分 B、C 两支管流出。已知三管 的横截面积分别为 SA=100 cm2,SB=40 cm2,SC=80 cm2。A、B 两管中的流速分别为 vA=40 cm·s-1 及 vB=30 cm·s-1。则 C 管中的流速 vC 等于多少? 解:根据连续性原理,得
根据连续性方程,得
v2
S1v1 2 6m / s S2
根据伯努利方程,得
h1 0.9m
2
1-9 一个顶端开口的圆筒容器, 高为 20 cm, 直径为 10 cm, 在圆筒的底部中心, 开一横截面积为 1 cm2 的小圆孔,水从圆筒的顶部以 140 cm3·s-1 的流量由水管注入圆筒内。问圆筒中的水面可以升到多大的高 度? 解: v1 1.4m / s 根据伯努利方程方程,得
1-24 粘度 0.8 Pa·s 的甘油流过半径 1.0 cm 的管子,由于粘滞性在 2 m 长的管中产生的压强降落为 9.6×103 Pa。求管心处的流速。
5
解:
v
p 2 R 0.15m / s 4l
1-25 液体中有一个直径为 1 mm 的空气泡。如液体的粘度为 0.15 Pa·s,密度为 0.9×103 kg·m-3, 问空气泡在该液体中匀速上升的速度多大?(空气密度 1.3kg·m-3) 解:
根据伯努利方程,得
v2 17.7 m / s
p2 p1
1 2 1 v1 v2 2 5.2 10 4 Pa 2 2
l-17 注射器的活塞截面 S1=1.2 cm2,而针头针孔的截面 S2=0.25 cm2。当注射器水平放置时,用 F=49 N 的力压迫活塞,使之移动 L=4 cm,问水从注射器中流出需要多少时间? 解;
v
2( p1 p2 )
144.9m / s
1-15 某水泵厂用如图所示的流量计检查水泵的流量。流量计的粗管直径 d1=8 cm,狭窄部分的直径 d2=4 cm,水银压强计两管内水银柱的高度差 h=9 cm。求水泵的流量 QV。 解: 根据伯努利方程,得
v1
所以
2 10 m/s 5
Q 6.36 10 3 m / s
vt
2( 1 ) 2 gr 3.3 10 3 m / s 9
1-26 牛奶的分离,可用自动凝乳法和离心分离法,其原理都是利用奶油与奶液密度不同,以达到分 离的目的。(1)自动凝乳时,设小油滴的直径 d=2.0 μ m,它在牛奶中的粘度 =1.1×10-3 Pa·s,奶液密度
p1
得
1 2 1 v1 p2 v2 2 2 2
v 2 0 .5 m / s
l-6 如图所示,在一竖直放置的大容器侧面,开一直径为 2 cm 的小孔,孔的位置在水面以下 10 cm 处。求单位时间从小孔流出的水的体积。 解: 根据伯努利方程,得
v2 2 gh 2m / s
Q S 2 v2 4.44 10 4 m / s
V 2.68 10 2 m3
1-11 化学上采用如图所示的方法洗瓶。已知 h=20 cm,则从 A 管吹进气体使瓶内压强 p 多大才能使 水从管 B 以 v =60 cm·s-1 的速度喷出?
图 1-18
题 1-11 图
图 1-19
题 1-12 图
图 1-20
题 1-13 图
解:根据伯努利方程,得
v2 v1 2 gh2 (6.67 103 ) 2 2 10 2 6.67 103 m / s
2
得
根据连续性原理,得
S 2 1.5cm 2
1
1-5 水在粗细不均匀的水平管中稳定流动,已知截面 S1 处的压强为 110 Pa,流速为 0.2 m·s-1;在截 面 S2 处的压强为 5 Pa,求 S2 处的流速。 解:根据伯努利方程
题 1-6 1-7 水在管道中作稳定流动, 在某点处流速为 3 m· s , 而在比它高 1m 的另一点处的流速为 4 m· s-1。 已知低处的压强 p1=1.8×104 Pa,求高处的压强 p2。(计算时取 g =10 m·s-2)。 解: 根据伯努利方程
-1
p1
得:
1 2 1 v1 gh1 p2 v2 2 gh2 2 2
v 2 35m / s
(2) 根据伯努利方程,得
1 2 2 p A p0 (vB v A ) ghA 2.13 10 4 Pa 2
3
1-13 图中所示为一喷泉喷嘴的示意图,其上底面积为 S1,下底面积为 S2(S2>S1),喷嘴的高度为 h。 已知该喷嘴能喷出高度为 H 的喷泉。求:(1)水的流量 QV;(2)下底面处的压强 p2,已知大气压强为 p0。 解: (1)水的流量
Q
pR 4 8.7 10 4 m 3 / s 8l
1-22
有一粘度为 的液体,以层流流过一半径为 R 的管道。试证明:该液体的流量和截面上各点速
度均为轴线速度一半时的液体流量相等。 证明: Q1
ห้องสมุดไป่ตู้
( p1 p2 ) R 4 8l
v p p2 2 2 R 2 1 (R r ) 2 8l
d 2 ( 1 )2 S1 r1 2 4 解: S 2 r2 2 ( d1 ) 2 2
根据连续性方程,得
v2
S1 v1 4 1m / s 4m / s S2
根据伯努利方程,
1 2 1 v1 gh1 p2 v2 2 gh2 2 2 1 1 2 2 5 3 2 2 5 得: p2 p1 (v1 v2 ) 1.96 10 10 (1 4 ) Pa 1.885 10 Pa 2 2 p1
p1
F 4.08 105 Pa S1
v2 25.4m / s
根据伯努利方程,得
Q S 2 v2 6.35 10 4 m 3 / s
4
t
V 7.56 10 3 s Q
1-18 油在直径为 50 mm 的管中以 60 m3·h-1 的流量流出。如果已知油的粘度是 0.3 Pa·s,油的密 度是 800 kg·m-3,此时油的流动是层流还是湍流? 解:
1-16 如图为一水流抽气机,水管在粗处(图中 A 处)的直径为 2.5 cm,水流量为 2×10-3 m3·s-1,压强 为 2.0×105 Pa;其收缩处(图中 C 处)的直径为 1.2 cm,计算收缩处的压强。 解: 根据连续性原理:
S1v1 S 2 v2 Q
得:
v1 4.08m / s
Q S1v1 2 gH
(2) 根据伯努利方程,得
2
S p2 p0 gh gH (1 1 2 ) S2
1-14 飞机上量度空速的比托管,其流体压力计中装的是水银。如果两水银柱的最大高度差为 0.1 m, 问能测出空气的最大流速是多少?已知水银的密度是 13.6×103 kg·m-3,空气的密度是 1.3 kg·m-3。 解: 根据伯努利方程,得
1 1 p p0 v 2 gh (1.013 105 103 0.6 2 103 10 0.2) Pa 2 2 5 1.0348 10 Pa
1-12 U 形管能起水流虹吸管的作用(如图)。水在大气压的作用下从虹吸管流出。求:(1)水流的速度。 (2)点 A 处的压强。 解: (1)根据伯努利方程,得
S Av A S B vB SC vC
所以 VC
S Av A S B vB 100 40 40 30 cm / s 35cm / s SC 80
题 l-2
1-3 水平放置的自来水管,粗处的直径是细处的 2 倍。若水在粗处的流速和压强分别为 1.0 m·s-1 和 1.96×105 Pa,那么水在细处的流速和压强各是多少?
所以流动为层流 1-20 设某人的心脏输出的血量为 0.83×10-4 m3·s-1,体循环的总压强差为 1.2×105 Pa,求出人体循 环的总流阻是多少 N·s·m-5? 解:
p 1.2 105 Z 1.45 109 N .s.m 5 4 Q 0.83 10
1-21 橄榄油的粘度为 0.18 Pa·s,流过管长为 0.5 m,半径为 1cm 的管子时,两端的压强差为 2×104 Pa,求其流量。
Q2 S
当 r 0 时 Q1=Q2 1-23 为了测定石油的粘度 ,使石油在长为 1m,半径为 1mm 的水平圆管中流动。若测得石油的流 量为 2×10-6 m3·s-1,细管两端的压强差为 1.4×104 Pa,则石油的粘度多大?
R 4 p
8lQ
2.7 10 3 Pa.s
1-4 灭火水枪每分钟喷出 60 m3 的水,若喷口处水柱的截面积为 1.5 cm2,问水柱喷到 2m 高时的截面 积有多大? 解:
V 60 m / s 6.67 103 m / s 4 St 1.5 10 60 1 2 1 根据伯努利方程 v1 v2 2 gh2 2 2 v1
p2 4500 Pa
1-8 一个大面积的水槽,其中所盛水的深度为 0.3 m。在槽的底部有一面积为 5 cm2 的圆孔,水从圆 孔连续流出。问: (1)水从圆孔流出的流量是多少? (2)在槽底以下多远的地方,水流的横截面积为圆孔面积的二分之一? 解: v
2 gh 6m / s
Q S1v1 5 6 10 4 m3 / s