智能算法之蚁群算法PPT课件

合集下载

蚂蚁算法PPT课件

蚂蚁算法PPT课件

路由问题 (RP)
其他问题
Bullnheimer,Hartl,Strauss Gambardella ,Taillard,Agazzi Schoonderwoerd, Bonabeau ,van der put et al White,Pagurek,Oppacher Di Caro,Dorigo Subramanian,Druschel,Chen Heusse et al Navarro Varela,Sinclair 李生红,刘泽民,周正 张素兵,刘泽民 丁建立、陈增强、袁著祉
蚂蚁圈模型调整方法相似;ij(t1)•ij(t) iej
(3)为了避免算法过早收敛非全局最优解,将各路经的信息素浓度
限制在于[min,max] 之间,即 minij ma。x 超出这个范围的值
被强制设为 min 或者 max 。
从实验结果看,MMAS算法在防止算法过早停滞及有效性方面对 AS算法有较大的改进。
Colorni, Dorigo,Maniezzo Stizle Bauer et al DenBesten, Dorigo, Maniezzo 陈义宝、周济等
AS-JSP AS-FSP ACS-SMTTP ACS-SMTWTP 工件排序蚁群算法
1994 1997 1999 1999 2002
表2 蚂蚁算法及其应用(续)
MMAS(Max-Min Ant System)模型
为避免停滞和陷入局部,Stutzle和Hoos 提出了MAX-MIN Ant System(简称MMAS)模型,它对AS进行了三点改进:
(1)为了更加充分地寻优,各路径信息素初值设为最大值 max; (2)一圈中只有最短路径的蚂蚁才进行信息素修改增加,这与AS
V
qq0 qq0

蚁群算法.pptx [修复的]

蚁群算法.pptx [修复的]

蚁量算法(ant-quantity algorithm)的信息素更新 Q ( k ) d 为 ij di j ,Q为常量, ij 表示i到j的距离,这样信息 浓度会随城市距离的减小而加大。 蚁密算法( ant-density algorithm )信息素更新 为 ij (k ) Q,在此算法中,从城市i到j的蚂蚁在路径 上残留的信息浓度为一个与路径无关的常量Q。 后两种算法与前一种算法的区别在于:后两种算 法中每走一步(即从时间t到t+1),都要更新残留信息 素的浓度,而非等到所有蚂蚁完成对所有城市的访问 之后。
(1)
其中: (i, j ) 表示边(i,j)上的信息素浓度; (i, j ) 1/ d (i, j ) 是启发信息,d是城市i和j之间的距离; α 和β 反映了信息素与启发信息的相对重要性; tabuk 表示蚂蚁k已经访问过的城市列表。
当所有蚂蚁完成周游后,按以下公式进行信息素更新。
ij (t n) ij (t ) ij
为了进一步克服AS中暴露出的问题,提出了蚁 群系统(Ant Colony System, ACS)。该系统的提出是以 Ant-Q算法为基础的。Ant-Q将蚂蚁算法和一种增强 型学习算法Q-learning有机的结合了起来。ACS与AS 之间存在三方面的主要差异:首先,ACS采用了更为 大胆的行为选择规则;其次,只增强属于全局最优 解的路径上的信息素。其中,0<ρ<1是信息素挥发参 Lgb 是从寻路开始到当前为止全局最优的路径长 数, 度。
假设蚂蚁每经过一处所留下的信息素为一个单位,则经 过36个时间单位后,所有开始一起出发的蚂蚁都经过不同路 径从D点取得了食物,此时ABD的路线往返了2趟,每一处的 信息素为4个单位,而 ACD的路线往返了一趟,每一处的信息 素为2个单位,其比值为2:1。 寻找食物的过程继续进行,则按信息素的指导,蚁群在 ABD路线上增派一只蚂蚁(共2只),而ACD路线上仍然为一 只蚂蚁。再经过36个时间单位后,两条线路上的信息素单位 积累为12和4,比值为3:1。 若按以上规则继续,蚁群在ABD路线上再增派一只蚂蚁 (共3只),而ACD路线上仍然为一只蚂蚁。再经过36个时间 单位后,两条线路上的信息素单位积累为24和6,比值为4:1。 若继续进行,则按信息素的指导,最终所有的蚂蚁会放 弃ACD路线,而都选择ABD路线。这也就是前面所提到的正反 馈效应。

蚁群算法最全集PPT课件

蚁群算法最全集PPT课件
参数优化方法
采用智能优化算法,如遗传算法、粒子群算法等,对算法参数进行 优化,以寻找最优参数组合,提高算法性能。
04
蚁群算法的实现流程
问题定义与参数设定
问题定义
明确待求解的问题,将其抽象为优化 问题,并确定问题的目标函数和约束 条件。
参数设定
根据问题的特性,设定蚁群算法的参 数,如蚂蚁数量、信息素挥发速度、 信息素更新方式等。
动态调整种群规模
根据搜索进程的需要,动态调整参与搜索的蚁群规模,以保持种群 的多样性和搜索的广泛性。
自适应调整参数
参数自适应调整策略
根据搜索进程中的反馈信息,动态调整算法参数,如信息素挥发速 度、蚂蚁数量、移动概率等。
参数动态调整规则
制定参数调整规则,如基于性能指标的增量调整、基于时间序列的 周期性调整等,以保持算法性能的稳定性和持续性。
06
蚁群算法的优缺点分析
优点
高效性
鲁棒性
蚁群算法在解决组合优化问题上表现出高 效性,尤其在处理大规模问题时。
蚁群算法对噪声和异常不敏感,具有较强 的鲁棒性。
并行性
全局搜索
蚁群算法具有天然的并行性,可以充分利 用多核处理器或分布式计算资源来提高求 解速度。
蚁群算法采用正反馈机制,能够实现从局 部最优到全局最优的有效搜索。
强化学习
将蚁群算法与强化学习相结合,利用强化学习中的奖励机制指导 蚁群搜索,提高算法的探索和利用能力。
THANKS
感谢观看
蚂蚁在移动过程中会不断释放新 的信息素,更新路径上的信息素 浓度。
蚂蚁在更新信息素时,会根据路 径上的信息素浓度和自身的状态 来决定释放的信息素增量。
搜索策略与最优解的形成
搜索策略

蚁群算法的最好入门的PPT

蚁群算法的最好入门的PPT
5、避障规则:如果蚂蚁要移动的方向有障碍物挡住,它会 随机的选择另一个方向,并且有信息素指引的话,它会按 照觅食的规则行为。
6、播撒信息素规则:每只蚂蚁在刚找到食物或者窝的时候 撒发的信息素最多,并随着它走远的距离,播撒的信息素 越来越少。根据这几条规则,蚂蚁之间并没有直接的关系, 但是每只蚂蚁都和环境发生交互,而通过信息素这个纽带, 实际上把各个蚂蚁之间关联起来了。比如,当一只蚂蚁找 到了食物,它并没有直接告诉其它蚂蚁这儿有食物,而是 向环境播撒信息素,当其它的蚂蚁经过它附近的时候,就 会感觉到信息素的存在,进而根据信息素的指引找到了食 物。
3、觅食规则:在每只蚂蚁能感知的范围内寻找是否有食物, 如果有就直接过去。否则看是否有信息素,并且比较在能 感知的范围内哪一点的信息素最多,这样,它就朝信息素 多的地方走,并且每只蚂蚁多会以小概率犯错误,从而并 不是往信息素最多的点移动。蚂蚁找窝的规则和上面一样, 只不过它对窝的信息素做出反应,而对食物信息素没反应。
蚁群算法的分析
1、范围:蚂蚁观察到的范围是一个方格世界,蚂蚁有一个 参数为速度半径(一般是3),那么它能观察到的范围就是 3*3个方格世界,并且能移动的距离也在这个范围之内。
2、环境:蚂蚁所在的环境是一个虚拟的世界,其中有障碍 物,有别的蚂蚁,还有信息素,信息素有两种,一种是找 到食物的蚂蚁洒下的食物信息素,一种是找到窝的蚂蚁洒 下的窝的信息素。每个蚂蚁都仅仅能感知它范围内的环境 信息。环境以一定的速率让信息素消失。
蚁群算法的分析
4、移动规则: 每只蚂蚁都朝向信息素最多的方向移,并 且,当周围没有信息素指引的时候,蚂蚁会按照自己原来 运动的方向惯性的运动下去,并且,在运动的方向有Байду номын сангаас个 随机的小的扰动。为了防止蚂蚁原地转圈,它会记住最近 刚走过了哪些点,如果发现要走的下一点已经在最近走过 了,它就会尽量避开。

蚁群算法的最好入门的PPT

蚁群算法的最好入门的PPT

旅行商问题
旅行商问题,即TSP(Travelling
Salesman Problem)又译为旅行推 销员问题、货郎担问题,是数学领 域中著名问题之一。假设有一个旅 行商人要拜访n个城市,他必须选 择所要走的路径,路径的限制是每 个城市只能拜访一次,而且最后要 回到原来出发的城市。路径的选择 目标是要求得的路径路程为所有路 径之中的最小值。
TSP 的重要性
TSP 在蚁群算法中扮演着非常重要的角色,虽然现在




蚁群算法的应用越来越广泛,但是第一个蚁群算法- 蚂蚁系统(AS),以及后来出现的蚁群算法一开始大都 是应用在 TSP 问题上的,现在 TSP 的很多算例仍然是 一些改进算法的检验。选择 TSP 问题主要有以下几个 原因: ① TSP 问题与真实蚂蚁寻径的相似性; ②TSP 问题是一个 NP-hard (非确定性多项式)问题; ③对于一个新的算法,TSP 问题是一个标准的测试问 题,能为算法的使用性提供很好的证据; ④TSP 问题较始的时候是怎么找到食物的呢? B.蚂蚁究竟是怎么找到食物的呢?
这一是要归功于信息素,另外要归功于环境, 这要归功于蚂蚁的移动规则,尤其是在 具体说是计算机时钟。信息素多的地方显然 没有信息素时候的移动规则。首先,它 经过这里的蚂蚁会多,因而会有更多的蚂蚁 要能尽量保持某种惯性,这样使得蚂蚁 聚集过来。假设有两条路从窝通向食物,开 尽量向前方移动(开始,这个前方是随 始的时候,走这两条路的蚂蚁数量同样多 机固定的一个方向),而不是原地无谓 (或者较长的路上蚂蚁多,这也无关紧要)。 的打转或者震动;其次,蚂蚁要有一定 当蚂蚁沿着一条路到达终点以后会马上返回 的随机性,虽然有了固定的方向,但它 来,这样,短的路蚂蚁来回一次的时间就短, 也不能像粒子一样直线运动下去,而是 这也意味着重复的频率就快,因而在单位时 间里走过的蚂蚁数目就多,洒下的信息素自 有一个随机的干扰。这样就使得蚂蚁运 然也会多,自然会有更多的蚂蚁被吸引过来, 动起来具有了一定的目的性,尽量保持 从而洒下更多的信息素……;而长的路正相 原来的方向,但又有新的试探,尤其当 反,因此,越来越多地蚂蚁聚集到较短的路 碰到障碍物的时候它会立即改变方向, 径上来,最短的路径就近似找到了。也许有 这可以看成一种选择的过程,也就是环 人会问局部最短路径和全局最短路的问题, 境的障碍物让蚂蚁的某个方向正确,而 实际上蚂蚁逐渐接近全局最短路的,为什么 其他方向则不对。这就解释了为什么单 呢?这源于蚂蚁会犯错误,也就是它会按照 个蚂蚁在复杂的诸如迷宫的地图中仍然 一定的概率不往信息素高的地方走而另辟蹊 径,这可以理解为一种创新,这种创新如果 能找到隐蔽得很好的食物。 能缩短路途,那么根据刚才叙述的原理,更 多的蚂蚁会被吸引过来。

蚁群算法最全集PPT课件

蚁群算法最全集PPT课件

3.最大-最小蚂蚁系统
蚁群算法将蚂蚁的搜索行为集中到最优解的附近可以提高解的质
量和收敛速度,从而改进算法的性能。但这种搜索方式会使早熟
收敛行为更容易发生。 MMAS能将这种搜索方式和一种能够有效避
免早熟收敛的机制结合在一起,从而使算法获得最优的性能
13
基本蚁群算法
蚂蚁k(k=1,2,…,m)根据各个城市间连接路径上的信息素浓
基本蚁群算法
ij(t1)(1)ij(t)ij
ij n ikj
,01
k1
在算法初始化时,问题空间中所有边上的信息素都被初
信始完息化部更为集新中公0 ,在式如为一果:个 局0 太部小最,优算的法路容径易上早,熟反,之即,蚂如蚁果很 0 快太就大
,信息素对搜索方向的指导作用太低,也会影响算法的
性能。对AS来说,我们使用 0 n/ Cn ,n是蚂蚁的
蚁群算法及其应用
马文强 欢迎下载
1
在非洲的大草原上,如果你发现羚羊在奔逃, 那一定是狮子来了;如果见到狮子在躲避,那 一定是象群在发怒了;如果见到成百上千的狮 子和大象集体逃命的壮观景象,那是什么来了 呢? ——蚂蚁军团来了
2
3

算法的背景与意义

国内外研究现状

研究内容与方法

蚁群算法的应用
从当前可以检索到的文献情况看,研究和应用蚁群优化算法的学者 主要集中在比利时,意大利,英国,法国和德国等欧洲国家。日本和美 国在这两年也开始启动对蚁群算法的研究。目前,蚁群优化算法在启发 式方法范畴内已逐渐成为一个独立的分支。
尽管蚁群优化的严格理论基础尚未奠定,国内外的有关研究仍停留 在实验探索阶段,但从当前的应用效果来看,这种新型的寻优思想无疑 是具有十分光明的前景,更多深入细致的工作还有待于进一步展开。

蚁群算法PPT课件

蚁群算法PPT课件

Macro Dorigo
2021/7/1
3
基本原理
Nest
Food
Obstacle
图1 蚂蚁正常行进,突然环境改变,增加了障碍物
2021/7/1
4
基本原理
Nest
Food
Obstacle
图2 蚂蚁以等同概率选择各条路径 较短路径信息素浓度高,选择该路径的蚂蚁增多
2021/7/1
5
基本原理
E
t=0
迭代次数 t_max 4784 1999 806 8950 6665 884 3650 2214 948 1802
程序运行时间 time 99.0466 123.0078 458.4601 148.2777 381.1539 499.8319 88.1896 149.1128 495.0127 134.2481
LumerE和FaietaB通过在Denurbourg的基本分 类模型中引入数据对象之间相似度的概念,提出了 LF聚类分析算法,并成功的将其应用到数据分析中。
2021/7/1
11
基于蚂蚁觅食行为和信息素的聚类分析模型
蚂蚁在觅食的过程中,能够分为搜索食物和 搬运食物两个环节。每个蚂蚁在运动过程中 都将会在其所经过的路径上留下信息素,而 且能够感知到信息素的存在及其强度,比较 倾向于向信息素强度高的方向移动,同样信 息素自身也会随着时间的流逝而挥发,显然 某一路径上经过的蚂蚁数目越多,那么其信 息素就越强,以后的蚂蚁选择该路径的可能 性就比较高,整个蚁群的行为表现出了信息 正反馈现象。
2021/7/1
Z
蚁 群 聚 类 结 果 (R=100,t=1000)
3500
3000
2500
2000

蚁群算法PPT课件

蚁群算法PPT课件

1
k 1
基本蚁群算法
针对蚂蚁释放信息是问题,M.Dorigo等人曾给出3中不同的模型, 分别为蚁周系统、蚁量系统和蚁密系统,其计算公式如下:
1.蚁周系统模型
k ii
Q 0,
/ Lk,第k只蚂蚁从城市i访问城市j 其他
2.蚁量系统模型
k ii
Q / dij,第k只蚂蚁从城市i访问城市j
0,
其他
3.蚁密系统模型
max (1 n Pbest )
(avg 1) n Pbest
信息素轨迹的初始化
在第一次循环后所有信息素轨迹与max (1) 相一致 通过选择对这种类型的轨迹初始化来增加在算法的
第一次循环期间对新解的探索
当将信息素轨迹初始化为 max 时,选择概率将增加
得更加缓慢 实验表明,将初始值设为 (1) max可以改善最大-
信息素轨迹的限制
在 决一于个 m选in和择点m上ax 选择相应解元素的概率Pdec直接取
Pdec
max
max (avg 1) min
在每个选择点上蚂蚁需在avg=n/2个解元素中选择
蚂蚁构造最优解,需作n次正确的决策
P P n
dec
best
min
max (1 Pdec )
(avg 1)Pdec
3.最大-最小蚂蚁系统
蚁群算法将蚂蚁的搜索行为集中到最优解的附近可以提高解的质 量和收敛速度,从而改进算法的性能。但这种搜索方式会使早熟 收敛行为更容易发生。 MMAS能将这种搜索方式和一种能够有效避 免早熟收敛的机制结合在一起,从而使算法获得最优的性能
基本蚁群算法
蚂蚁k(k=1,2,…,m)根据各个城市间连接路径上的信息素浓度决
边作为移动方向
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11
蚁群算法与TSP问题
TSP问题表示为一个N个城市的有向图G=(N,A),
其中 N {1,2,..., n} A {(i , j) | i, j N}
城市之间距离 目标函数为
(d ij ) nn
n
f (w)
d, il 1il
l 1
其中 w (i1 , i2 ,, in 为) 城市1,2,…n的一个排列, in1 。i1
9
简化的蚂蚁寻食过程
假设蚂蚁每经过一处所留下的信息素为一个单位,则经过36 个时间单位后,所有开始一起出发的蚂蚁都经过不同路径从D点 取得了食物,此时ABD的路线往返了2趟,每一处的信息素为4个 单位,而 ACD的路线往返了一趟,每一处的信息素为2个单位, 其比值为2:1。
寻找食物的过程继续进行,则按信息素的指导,蚁群在ABD 路线上增派一只蚂蚁(共2只),而ACD路线上仍然为一只蚂蚁。 再经过36个时间单位后,两条线路上的信息素单位积累为12和4, 比值为3:1。
基于以上蚁群寻找食物时的最优路径选择问题,可以构造 人工蚁群,来解决最优化问题,如TSP问题。
人工蚁群中把具有简单功能的工作单元看作蚂蚁。二者的 相似之处在于都是优先选择信息素浓度大的路径。较短路径的 信息素浓度高,所以能够最终被所有蚂蚁选择,也就是最终的 优化结果。
两者的区别在于人工蚁群有一定的记忆能力,能够记忆已 经访问过的节点。同时,人工蚁群再选择下一条路径的时候是 按一定算法规律有意识地寻找最短路径,而不是盲目的。例如 在TSP问题中,可以预先知道当前城市到下一个目的地的距离。
14
蚁群算法的计算流程
开始
[ ij (t )] [ij ]
k p (t) ij
[
jallowed
ij
(t
)]
[ij
]
0
if j allowed otherwise
初始化
Nc Nc +1
轨迹更新: ij (t n) ij (t) ij (t,t n) Visibility: ij = 1/dij 表示轨迹的相对重要性
若按以上规则继续,蚁群在ABD路线上再增派一只蚂蚁(共 3只),而ACD路线上仍然为一只蚂蚁。再经过36个时间单位后, 两条线路上的信息素单位积累为24和6,比值为4:1。
若继续进行,则按信息素的指导,最终所有的蚂蚁会放弃 ACD路线,而都选择ABD路线。这也就是前面所提到的正反馈效 应。
10
自然蚁群与人工蚁群算法
1.将解空间的每一个分量分成许多小区间,这样整个解 空间被分成许多小多面体,将每个多面体看为一个节点, 然后用人工蚂蚁在这些节点之间行走最后找到最优解。
13
蚁群算法与TSP问题
蚂蚁向下一个目标的运动是通过一个随 机原则来实现的,也就是运用当前所在节点 存储的信息,计算出下一步可达节点的概率, 并按此概率实现一步移动,逐此往复,越来 越接近最优解。
蚂蚁在寻找过程中,或者找到一个解后, 会评估该解或解的一部分的优化程度,并把 评价信息保存在相关连接的信息素中。
对每只蚂蚁按概率移到下一顶点 更新每个蚂蚁的个体禁忌表 信息量更新
表示能见度的相对重要性
达到最大循环次数
Байду номын сангаас
轨迹的持久性
ij 表示第K只蚂蚁在本次循环中留在路径ij上的输信出最息短路量径及其长度
结束
计算结果
10城市TSP问题
20城市TSP问题
计算结果
30城市TSP问题
48城市TSP问题
连续蚁群算法
6
蚁群算法原理
为了说明蚁群算法的原理,先简要介绍一下蚂蚁 搜寻食物的具体过程。在蚁群寻找食物时,它们总能 找到一条从食物到巢穴之间的最优路径。这是因为蚂 蚁在寻找路径时会在路径上释放出一种特殊的信息素。 当它们碰到一个还没有走过的路口时,就随机地挑选 一条路径前行,与此同时释放出与路径长度有关的信 息素。路径越长,释放的激索浓度越低,当后来的蚂 蚁再次碰到这个路口的时候,选择激素浓度较高路径 概率就会相对较大,这样形成一个正反馈。最优路径 上的激索浓度越来越大,而其它的路径上激素浓度却 会随着时间的流逝而消减,最终整个蚁群会找出最优 路径。
12
蚁群算法与TSP问题
TSP问题的人工蚁群算法中,假设m只蚂蚁 在图的相邻节点间移动,从而协作异步地得到 问题的解。每只蚂蚁的一步转移概率由图中的 每条边上的两类参数决定:1.信息素值,也称 信息素痕迹。2.可见度,即先验值。
信息素的更新方式有2种,一是挥发,也 就是所有路径上的信息素以一定的比率进行减 少,模拟自然蚁群的信息素随时间挥发的过程; 二是增强,给评价值“好”(有蚂蚁走过)的边 增加信息素。
7
简化的蚂蚁寻食过程
蚂蚁从A点出发,速度相同,食物在D点,可能随机选
择路线ABD或ACD。假设初始时每条分配路线一只蚂蚁,
每个时间单位行走一步,本图为经过9个时间单位时
的情形:走ABD的蚂蚁到达终点,而走ACD的蚂蚁刚好
走到C点,为一半路程。
8
简化的蚂蚁寻食过程
本图为从开始算起,经过18个时间单位时的情形: 走ABD的蚂蚁到达终点后得到食物又返回了起点A, 而走ACD的蚂蚁刚好走到D点。
从上面可以看出,蚁群算法比较显著的特点是: 整个算法过程更适用于离散对象问题。在算法求解 组合优化问题过程中,路径是离散和有限的路径, 蚂蚁的每一步选择都是在离散值中进行的。这一特 点使得将蚁群算法直接应用于一般常规的连续对象 优化问题存在一定的困难。
应用蚁群算法求解连续对象优化问题,目前的处理方 法大致为:
蚁群算法
2010-9
算法背景
1992年,意大利学者M.Dorigo在他的博士论文中引 入蚁群算法,其灵感来源于蚂蚁在寻找食物过程中发现路 径的行为。通过对这种行为的模拟,提出来一种新型的模 拟进化算法—— 蚁群算法。目前,蚁群算法已经是群智 能理论研究领域的一种主要算法。
Macro Dorigo
A C
3
A C
4
C
A
5
蚁群算法原理
蚁群算法是对自然界蚂蚁的寻径方式进行模似而得出的 一种仿生算法。蚂蚁在运动过程中,能够在它所经过的路 径上留下一种称之为外激素(pheromone)的物质进行信息 传递,而且蚂蚁在运动过程中能够感知这种物质,并以此 指导自己的运动方向,因此由大量蚂蚁组成的蚁群集体行 为便表现出一种信息正反馈现象:某一路径上走过的蚂蚁 越多,则后来者选择该路径的概率就越大。
相关文档
最新文档