常用逻辑用语测试题2
(好题)高中数学选修1-1第一章《常用逻辑用语》测试(包含答案解析)(2)

一、选择题1.已知命题p :x R ∀∈,0x x +≥,则( ) A .p ⌝:x R ∀∈,0x x +≤ B .p ⌝:x R ∃∈,0x x +≤ C .p ⌝:x R ∃∈,0x x +<D .p ⌝:x R ∀∈,0x x +<2.下列选项中,p 是q 的必要不充分条件的是( )A .p :a c b d +>+,q :a b >且c d >B .p :1a >, 1b >,q :()x f x a b =-(0a >且1a ≠)的图像不过第二象限C .p :1x =,q :2x x =D .p :1a >,q :()log a f x x =(0a >且1a ≠)在()0,∞+上为增函数 3.“∀x ∈R ,e x -x +1≥0”的否定是( ) A .∀x ∈R ,e x -x +1<0 B .∃x ∈R ,e x -x +1<0 C .∀x ∈R ,e x -x +1≤0 D .∃x ∈R ,e x -x +1≤0 4.命题“a ∀∈R ,20a >或20a =”的否定形式是( )A .a ∀∈R ,20a <B .a ∀∈R ,20aC .0a R ∃∈,200aD .0a R ∃∈,200a <5.“2a =”是直线“1:210l ax y ++=与2:3(1)30l x a y ++-=平行”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6.“x y <”是“1122log log x y >”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件7.命题“,40x x ∀∈>R ”的否定是( ) A .,40x x ∀∉<R B .,40x x ∀∈≤R C .00,40xx ∃∉<RD .00,40x x ∃∈≤R8.若,a b ∈R ,使||||6a b +>成立的一个充分不必要条件是( ) A .6a b +≥B .6a ≥C .6b <-D .||3a ≥且3b ≥9.命题:p “11,22xx N *⎛⎫∀∈≤ ⎪⎝⎭”的否定为( )A .11,22xx N *⎛⎫∀∈> ⎪⎝⎭B .11,22xx N *⎛⎫∀∉> ⎪⎝⎭C .0011,22x x N *⎛⎫∃∉> ⎪⎝⎭D .0011,22xx N *⎛⎫∃∈> ⎪⎝⎭10.命题“21,1x x ∀>>”的否定是( ) A .21,1x x ∀>≤B .21,1x x ∀≤≤C .21,1x x ∃≤≤D .21,1x x ∃>≤11.若条件:|1|1p x -,条件:q x a ,且p 是q 的充分不必要条件,则a 的取值范围是( ) A .2aB .2aC .2a -D .2a -12.“2x <”是“22320x x --<”的( )条件 A .充分不必要 B .必要不充分 C .充要D .既不充分也不必要二、填空题13.若命题“2,10x x ax ∃∈-+≤R ”是假命题,则a 范围是_________. 14.下列说法中,正确的序号为___________.①命题“2,0x R x x ∃∈->”的否定是“2,0x R x x ∀∈-≤”;②已知,x y R ∈,则“10x y +≠”是“5x ≠或5y ≠”的充分不必要条件; ③命题“若22am bm <,则a b <”的逆命题为真;④若p q ∨为真命题,则p ⌝与q 至少有一个为真命题; 15.命题p :已知0a >,且满足对任意正实数x ,总有1ax x+≥成立.命题q :二次函数2()6f x x ax a =-+在区间[]1,2上具有单调性.若“p 或q ⌝”与“q ”均为真命题,则实数a的取值范围为_________;16.若命题x R ∃∈,使得()2110x a x +-+<成立是真命题,则实数a 的取值范围是______.17.能够说明“设x ,y ,z 是任意实数.若x y z >>,则x y z >+”是假命题的一组整数x ,y ,z 的值依次为______.18.命题“x R ∀∈,使20x a -≥”是真命题,则a 的范围是________. 19.原命题“若1z 与2z 互为共轭复数,则2121z z z =”,则其逆命题,否命题,逆否命题中真命题的个数为___________. 20.条件:25p x -<<,条件2:0x q x a+<-,若p 是q 的充分不必要条件,则实数a 的取值范围是______________.三、解答题21.已知2:760p x x -+≤,22:230q x ax a -≤-.(1)若1a =,“p q ∨”为真命题,“p q ∧”为假命题,求实数x 的取值范围; (2)若p 是q 的充分不必要条件,求实数a 的取值范围.22.已知A ={x |112x +-<0},B ={x |x 2-2x+1-m 2<0,m>0}. (1)若m =2,求A ∩B ;(2)若x ∈A 是x ∈B 的充分不必要条件,求实数m 的取值范围. 23.已知集合{}3A x x a =<+,501x B x x ⎧⎫-=>⎨⎬+⎩⎭.(1)若2a =-,求()RAB ;(2)若x A ∈是x B ∈的充分不必要条件,求实数a 的取值范围. 24.命题:p 函数()0,1xy cc c =>≠是R 上的单调减函数;命题:120q c -<.若p q∨是真命题,p q ∧是假命题,求常数c 的取值范围.25.在平面直角坐标系x O y 中,直线l 与抛物线2y =2x 相交于A 、B 两点. (1)求证:命题“如果直线l 过点T (3,0),那么OA OB ⋅=3”是真命题; (2)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由. 26.已知: p x R ∀∈,230ax x -+>,:[1,2]q x ∃∈,21x a ⋅≥.(1)若p 为真命题,求a 的取值范围;(2)若p q ∨为真命题,且p q ∧为假命题,求a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据全称命题的否定是特称命题进行否定即可得答案. 【详解】解:因为全称命题的否定为特称命题,所以命题p :x R ∀∈,0x x +≥的否定为:p ⌝:x R ∃∈,0x x +<. 故选:C.2.A解析:A 【分析】一一分析每个选项中,p q 的充分必要性即可. 【详解】A 选项中,由不等式的性质可知,q p p q ⇒⇒,故p 是q 的必要不充分条件;B 选项中,若:()(0x q f x a b a =->且1)a ≠的图象不过第二象限,则1,1a b >≥,故p 是q 的充分不必要条件;C 选项中,若q :2x x =,则1x =或0,故p 是q 的充分不必要条件;D 选项中,若:()log (0a q f x x a =>,且1)a ≠在(0,)+∞上为增函数,则1a >,故p 是q 的充要条件; 故选:A.3.B解析:B 【分析】由全称命题的否定即可得解. 【详解】因为命题“∀x ∈R ,e x -x +1≥0”为全称命题, 所以该命题的否定为:∃x ∈R ,e x -x +1<0. 故选:B.4.D解析:D 【分析】利用全称命题的否定是特称命题可得出结论. 【详解】命题“a ∀∈R ,20a >或20a =”为全称命题,该命题的否定为“0a R ∃∈,200a <”.故选:D.5.A解析:A 【分析】根据充分条件和必要条件的定义即可求解. 【详解】当2a =时,1:2210l x y ++=,2:10l x y +-=,此时两直线斜率都是1-且不重合,所以12//l l ,即2a =可以得出12//l l , 若12//l l ,则21313a a =≠+- ,即()16a a +=,解得3a =-或2a =, 所以12//l l 得不出2a =,所以“2a =”是“直线1:210l ax y ++=与直线2:3(1)30l x a y ++-=平行”的充分不必要条件, 故选:A6.B解析:B 【分析】根据充分条件、必要条件的定义判断即可; 【详解】解:若0x y <<,则1122log log x y >不成立,故不具有充分性,因为12log y x =单调递减,若1122log log x y >,所以x y <,故有必要性,故选:B .7.D解析:D 【分析】利用全称命题的否定可得出结论. 【详解】命题“,40x x ∀∈>R ”的否定是“00,40x x ∃∈≤R ”,故选:D.8.C解析:C 【分析】利用不等式的性质以及充分条件、必要条件的定义逐一判断即可. 【详解】A ,3+36≥,不满足6a b +> ;B ,660a b =≥=,,不满足6a b +> ;C ,由6b <-可得6a b +>,反之,6a b +>,得不到6b <-,如2,5a b ==-.D ,33≥,33≥,不满足6a b +>. 故选:C9.D解析:D 【分析】根据全称命题的否定是特称命题即可得正确选项. 【详解】命题:p “11,22x x N *⎛⎫∀∈≤ ⎪⎝⎭”的否定为0011,22xx N *⎛⎫∃∈> ⎪⎝⎭,故选:D.10.D解析:D 【分析】根据命题的否定的定义写出命题的否定. 【详解】命题“21,1x x ∀>>”的否定是21,1x x ∃>≤.故选:D .11.A解析:A 【分析】转化成两个集合之间的包含关系求解即可. 【详解】:|1|1p x -解之得02x ≤≤设{}|02A x x =≤≤,{}|B x x a =,p 是q 的充分不必要条件,则A 是B 的真子集 则2a 故选:A12.B解析:B 【分析】解不等式22320x x --<,利用集合的包含关系判断可得出结论. 【详解】解不等式22320x x --<,可得122x -<<, {}2x x < 122x x ⎧⎫-<<⎨⎬⎩⎭,因此,“2x <”是“22320x x --<”的必要不充分条件. 故选:B.二、填空题13.【分析】由题设可得为真命题利用判别式可得a 的范围【详解】因为命题是假命题故恒成立故即故答案为: 解析:(2,2)-【分析】由题设可得2,10x x ax ∀∈-+>R 为真命题,利用判别式可得a 的范围. 【详解】因为命题“2,10x x ax ∃∈-+≤R ”是假命题,故x ∀∈R ,210x ax -+>恒成立,故240a ∆=-<即22a -<<. 故答案为:(2,2)-.14.①②【分析】对于①把特称命题否定为全称命题即可;对于②由充分条件和必要条件的定义判断即可;对于③取验证即可;对于④由为真命题得命题与命题至少有一个为真命题由此可判断【详解】解:对于①命题的否定是所以解析:①②【分析】对于①,把特称命题否定为全称命题即可;对于②,由充分条件和必要条件的定义判断即可;对于③,取0m =验证即可;对于④,由p q ∨为真命题,得命题p 与命题q 至少有一个为真命题,由此可判断 【详解】解:对于①,命题“2,0x R x x ∃∈->”的否定是“2,0x R x x ∀∈-≤”,所以①正确;对于②,因为10x y +≠,所以5x =与5y =不可能同时成立,即10x y +≠可得5x ≠或5y ≠,但5x ≠或5y ≠不能得到10x y +≠,比如4,6x y ==,可得10x y +=,所以“10x y +≠”是“5x ≠或5y ≠”的充分不必要条件,所以②正确;对于③,题“若22am bm <,则a b <”的逆命题为“若a b <,则22am bm <”,当0m =时,结论不成立,所以③错误;对于④,若p q ∨为真命题,则命题p 与命题q 至少有一个为真命题,而当命题p 为真命题,命题q 为假命题时,p ⌝与q 均为假命题,所以④错误, 故答案为:①②15.或【分析】依据题意知p 均为真命题再计算p 为真命题时的取值范围求公共解即得结果【详解】若或与均为真命题则p 均为真命题若命题为真命题即且满足对任意正实数总有成立而当且仅当时等号成立故则若命题为真命题即二解析:1143a ≤≤或23a ≥【分析】依据题意知p ,q 均为真命题,再计算p ,q 为真命题时a 的取值范围,求公共解即得结果. 【详解】若“p 或q ⌝”与“q ”均为真命题,则p ,q 均为真命题.若命题p 为真命题,即0a >,且满足对任意正实数x ,总有1ax x+≥成立,而a x x +≥=a x x =时等号成立,故min 1a x x ⎛⎫+= ⎪⎝⎭,则14a ≥. 若命题q 为真命题,即二次函数2()6f x x ax a =-+在区间[]1,2上具有单调性, 由对称轴3x a =,故31a ≤或32a ≥,故13a ≤或23a ≥. 由p ,q 均为真命题,知14a ≥,且13a ≤或23a ≥, 故1143a ≤≤或23a ≥.故答案为:1143a ≤≤或23a ≥.16.【分析】由题意得从而解出实数a 的取值范围【详解】若命题使得成立是真命题则在上有解即解得或故答案为:【点睛】关键点点睛:开口向上的二次函数图象的应用 解析:()(),13,-∞-+∞【分析】由题意得()2140a ∆=-->,从而解出实数a 的取值范围. 【详解】若命题x R ∃∈,使得()2110x a x +-+<成立是真命题,则()2110x a x +-+<在R 上有解,即()2140a ∆=-->,解得3a >或1a <-. 故答案为:()(),13,-∞-+∞【点睛】关键点点睛:开口向上的二次函数图象的应用.17.321(答案不唯一)【分析】由题意举出反例即可得解【详解】由题意整数满足但不满足所以的值依次可以为321故答案为:321(答案不唯一)解析:3,2,1(答案不唯一) 【分析】由题意举出反例即可得解. 【详解】由题意,整数x ,y ,z 满足x y z >>,但不满足x y z >+, 所以x ,y ,z 的值依次可以为3,2,1. 故答案为:3,2,1(答案不唯一).18.【分析】等价于在恒成立即得解【详解】命题使是真命题等价于时恒成立所以在恒成立所以故答案为:【点睛】本题主要考查全称命题的真假求参数的问题的求解意在考查学生对该知识的理解掌握水平解析:0a ≤. 【分析】等价于2a x ≤在x ∈R 恒成立,即得解. 【详解】命题“x R ∀∈,使20x a -≥”是真命题等价于x ∈R 时,2x a ≥恒成立. 所以2a x ≤在x ∈R 恒成立, 所以0a ≤. 故答案为:0a ≤ 【点睛】本题主要考查全称命题的真假求参数的问题的求解,意在考查学生对该知识的理解掌握水平.19.1【分析】根据共轭复数的定义判断命题的真假根据逆命题的定义写出逆命题并判断真假再利用四种命题的真假关系判断否命题与逆否命题的真假【详解】解:根据共轭复数的定义原命题若与互为共轭复数则是真命题;其逆命解析:1 【分析】根据共轭复数的定义判断命题的真假,根据逆命题的定义写出逆命题并判断真假,再利用四种命题的真假关系判断否命题与逆否命题的真假. 【详解】解:根据共轭复数的定义,原命题"若1z 与2z 互为共轭复数,则2121z z z =”是真命题;其逆命题是:“若2121z z z =,则1z 与2z 互为共轭复数”,例10z =,23z =,满足条件,但是1z 与2z 不是共轭复数,原命题的逆命题是假命题;根据原命题与其逆否命题同真同假,否命题与逆命题互为逆否命题,同真同假,原命题的否命题是假命题逆否命题是真命题. 故答案为: 1 【点睛】本题考查原命题, 逆命题,否命题,逆否命题的真假,是基础题.原命题与其逆否命题同真同假,否命题与逆命题互为逆否命题,同真同假,原命题的否命题是假命题逆否命题是真命题.20.【详解】解:是的充分而不必要条件等价于的解为或故答案为: 解析:5a >【详解】 解:p 是q 的充分而不必要条件,p q ∴⇒,20x x a+<-等价于(2)()0x x a +-<,(2)()0x x a +-=的解为2x =-,或x a =, 5a ∴>,故答案为:(5,)+∞.三、解答题21.(1)(][)1,13,6-;(2)(,6][2,)-∞-⋃+∞.【分析】(1)分别解二次不等式求出命题p 、q 为真命题时x 的范围,由已知条件可得p ,q 一真一假,讨论p 真q 假、p 假q 真即可求解;(2)若p 是q 的充分不必要条件,可得不等式2760x x -+≤的解集是不等式22230x ax a --≤解集的真子集,讨论0a ≥和0a <时22230x ax a --≤的解集,借助数轴即可求解. 【详解】(1)由276(1)(6)0x x x x -+=-≤-,解得16x ≤≤.当1a =时,由223(3)(1)0x x x x --=-≤+,解得13x -≤≤. 因为“p q ∨”为真命题,“p q ∧”为假命题,所以p ,q 一真一假. 当p 真q 假时,[]1,6x ∈且(,1)(3,)x ∈-∞-⋃+∞,所以(]3,6x ∈; 当p 假q 真时,()(,6,1)x ∈-∞+∞且[]13,x ∈-,所以[)1,1x ∈-.故实数x 的取值范围为(][)1,13,6-.(2)根据(1)知,:16p x ≤≤.因为22:23(3)()0q x ax a x a x a -=-+≤-,且p 是q 的充分不必要条件,所以当0a ≥时,:3q a x a -≤≤,则136a a -≤⎧⎨≥⎩,解得2a ≥;当0a <时,:3q a x a ≤≤-, 则31,6a a ≤⎧⎨-≥⎩,解得6a ≤-. 综上,实数a 的取值范围为(,6][2,)-∞-⋃+∞. 【点睛】结论点睛:用集合的观点看充分不必要条件:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含. 22.(1){}12x x <<;(2)2m ≥ 【分析】(1)分别求两个集合,再求交集;(2)根据条件转化为A B ,列不等式求解. 【详解】 (1)1110022x x x -+<⇔<--,解得:12x <<, {}12A x x ∴=<<,()()22210110,0x x m x m x m m -+-<⇔-+--<>,解得:11m x m -<<+,{}11B x m x m ∴=-<<+;当2m =时,{}13B x x =-<<,{}12A B x x ∴⋂=<<;(2)若x ∈A 是x ∈B 的充分不必要条件,则A B , 1112m m -≤⎧∴⎨+≥⎩,解得:2m ≥. 【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集;(3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.23.(1){}11x x -<≤;(2)(],4-∞-.【分析】(1)先求出集合A ,B 和B R ,再利用交集运算即得结果; (2)先根据充分不必要条件得到集合A ,B 的包含关系,再列关系计算即可. 【详解】(1)∵{|1B x x =<-或}5x >,∴{}15R B x x =-≤≤, 当2a =-时,{}1A x x =<,因此,{}11R A B x x =-≤<;(2)∵x A ∈是x B ∈的充分不必要条件,∴A B ⊆,且A B ≠,又{}3A x x a =<+,{|1B x x =<-或}5x >.∴31a +≤-,解得4a ≤-.因此,实数a 的取值范围是(],4-∞-.24.()10,1,2⎛⎤+∞ ⎥⎝⎦.【分析】由p q ∨是真命题,p q ∧是假命题,得到,p q 一真一假,分两种情况,求出c 的范围.【详解】解:∵p q ∨是真命题,p q ∧是假命题,∴p ,q 中一个是真命题,一个是假命题.若p 真q 假,则有01,120,c c <<⎧⎨-≥⎩解得012c <≤; 若p 假q 真,则有1,120,c c >⎧⎨-<⎩解得1c >. 综上可知,满足条件的c 的取值范围是()10,1,2⎛⎤+∞ ⎥⎝⎦.本题考查了命题真假的应用,逻辑连结词的理解与应用,还考查转化与化归思想,分类讨论思想,属于中档题.25.(1)见解析;(2)见解析.【分析】(1)直线方程与抛物线方程联立,消去x 后利用韦达定理判断2121212121()4OA OB x x y y y y y y ⋅=+=+的值是否为3,从而确定此命题是否为真命题; (2)根据四种命题之间的关系写出该命题的逆命题,然后再利用直线与抛物线的位置关系知识来判断其真假.【详解】(1)证明:设过点(,)30T 的直线l 交抛物线22y x =于点1122(,),(,)A x y B x y ,当直线l 的斜率不存在时,直线l 的方程为3x =,此时,直线l 与抛物线相交于(3,A B ,所以963OA OB ⋅=-=,当直线l 的斜率存在时,设直线l 的方程为(3)y k x =-,其中0k ≠,22(3)y x y k x ⎧=⎨=-⎩,得2260ky y k --=, 则126y y =-, 又因为22112211,22x y x y ==, 所以212121212136()6344OA OB x x y y y y y y ⋅=+=+=-=, 综上所述,命题“如果直线l 过点T (3,0),那么OA OB ⋅=3”是真命题;(2)逆命题是:“设直线l 与抛物线2y =2x 相交于A 、B 两点,如果OA OB ⋅=3,那么该直线过点2(1)3y x =+”,该命题是假命题, 例如:取抛物线上的点1(2,2),(,1)2A B ,此时OA OB ⋅=3,直线AB 的方程为2(1)3y x =+,而T (3,0)不在直线AB 上. 【点睛】该题考查的是有关判断命题真假的问题,涉及到的知识点有四种命题之间的关系,直线与抛物线的位置关系,向量的数量积,属于简单题目.26.(1)112a >;(2)11124a <<.(1)分0a =和0a ≠两种情况讨论即可;(2)因为p q ∨为真命题,且q q ∧为假命题,所以分p 真q 假或p 假q 真两种情况,分别解出即可.【详解】(1)当0a =时,30x -+>不恒成立,不符合题意;当0a ≠时,01120a a >⎧⎨∆=-<⎩,解得112a > 综上所述,112a >. (2)[]1,2x ∃∈,21x a ⋅≥,则14a ≥. 因为q ρ∨为真命题,且p q ∧为假命题,所以p 真q 假或p 假q 真,当p 真q 假时,有11214a a ⎧>⎪⎪⎨⎪<⎪⎩即11124a <<; 当p 假q 真时,有11214a a ⎧≤⎪⎪⎨⎪>⎪⎩则a 无解. 综上所述11124a <<. 【点睛】 由简单命题和逻辑连接词构成的复合命题的真假可以用真值表来判断,反之根据复合命题的真假也可以判断简单命题的真假.可把“p 或q”为真命题转化为并集的运算;把“p 且q”为真命题转化为交集的运算.。
高二数学第一章 常用逻辑用语测试题及答案

高二数学(选修1-1 第一章 常用逻辑用语)姓名:_________班级:________ 得分:________一:选择题1、判断下列语句是真命题的为( ). (供题)A .若整数a是素数,则a是奇数B .指数函数是增函数吗?C .若平面上两条直线不相交,则这两条直线平行D .x>151.已知P :A ∩¢=¢,Q: A ∪¢=A,则下列判断错误的是( )(铁一中 张爱丽 供题)A.“P 或Q ”为真,“非Q ”为假;B.“P 且Q ”为假,“非P ”为真 ;C.“P 且Q ”为假,“非P ”为假 ;D.“P 且Q ”为假,“P 或Q ”为真1.已知P :2+2=5,Q:3>2,则下列判断错误的是( )(十二厂 闫春亮 供题)A.“P 或Q ”为真,“非Q ”为假;B.“P 且Q ”为假,“非P ”为真 ;C.“P 且Q ”为假,“非P ”为假 ;D.“P 且Q ”为假,“P 或Q ”为真3、对于两个命题:①,1sin 1x R x ∀∈-≤≤,②22,sin cos 1x R x x ∃∈+>,下列判断正确的是( )。
( 金台中学 唐宁 供题 两个数学符号教材未涉及,可以换为文字语言)A. ① 假 ② 真B. ① 真 ② 假C. ① ② 都假D. ① ② 都真2.在下列命题中,真命题是( )(十二厂 闫春亮 供题)A. “x=2时,x 2-3x+2=0”的否命题;B.“若b=3,则b 2=9”的逆命题;C.若ac>bc,则a>b;D.“相似三角形的对应角相等”的逆否命题2.在下列命题中,真命题是( )(铁一中 张爱丽 供题)A. “x=2时,x 2-3x+2=0”的否命题;B.“若b=3,则b 2=9”的逆命题;C.若ac>bc,则a>b;D.“相似三角形的对应角相等”的逆否命题2. “2x >”是“24x >”的( ). (斗鸡中学 张永春 供题)A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件3.已知P:(2x -3)2<1, Q:x(x -3)<0, 则P 是Q 的( )(铁一中 张爱丽 供题)A.充分不必要条件;B.必要不充分条件 ;C.充要条件 ;D.既不充分也不必要条件2、设,,l m n 均为直线,其中,m n 在平面a 内,则“”l α⊥是“l m ⊥且”l n ⊥的( )( 金台中学 唐宁 供题)A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 3.条件210p x ->:,条件2q x <-:,则p ⌝是q ⌝的( ). (斗鸡中学 张永春 供题)A. 充分但不必要条件B. 必要但不充分条件C. 充分且必要条件D. 既不充分也不必要条件3.已知P:|2x -3|<1, Q:x(x -3)<0, 则P 是Q 的( )(十二厂 闫春亮 供题)A.充分不必要条件;B.必要不充分条件 ;C.充要条件 ;D.既不充分也不必要条件二:填空题11.在下列四个命题中,①若A 是B 的必要不充分条件,则非B 也是非A 的必要不充分条件②“⎩⎨⎧≤-=∆>04,02ac b a ”是“一元二次不等式20ax bx c ++≥的解集为R 的充要条件③“1x ≠”是“21x ≠”的充分不必要条件④“0x ≠”是“0x x +>”的必要不充分条件正确的有________.(填序号)(斗鸡中学 张永春 供题)11、已知命题p :x ∀∈R ,sin x x >,则p ⌝形式的命题是__ ( 金台中学 唐宁 供题)三:解答题15.已知集合{}{}22320,20A x x x B x x x m =-+==-+=且AB A =,求m 的取值范围.(斗鸡中学 张永春 供题)17.(命题甲:“方程x 2+mx+1=0有两个相异负根”,命题乙:“方程4x 2+4(m -2)x+1=0无实根”,这两个命题有且只有一个成立,试求实数m 的取值范围。
常用逻辑用语测试题

选修2-1常用逻辑用语测试题一.选择题(每小题5分,共60分)1.一个命题与他们的逆命题、否命题、逆否命题这4个命题中( )A 真命题与假命题的个数相同B 真命题的个数一定是奇数C 真命题的个数一定是偶数D 真命题的个数可能是奇数,也可能是偶数 2.(06天津)设集合M={x|0<x ≤3},N={x|0<x ≤2},那么“a ∈M”是“a ∈N”的( ) A 充分而不必要条件 B 必要而不充分条件 C 充要条件 D 既不充分又不必要条件 3.下列命题中正确的是( )①“若x 2+y 2≠0,则x ,y 不全为零”的否命题②“正多边形都相似”的逆命题③“若m>0,则x 2+x -m=0有实根”的逆否命题④“若3-x 是有理数,则x 是无理数”的逆否命题 A ①②③④ B ①③④ C ②③④ D ①④ 4.(05北京)“m=21”是“直线(m+2)x+3my+1=0与直线(m-2)x+(m+2)y-3=0相互垂直”的( ) A 充分而不必要条件 B 必要而不充分条件 C 充要条件 D 既不充分又不必要条件 5.“a ≠1或b ≠2”是“a +b ≠3”的() A 充分不必要条件 B 必要不充分条件 C 充要条件 D 既不充分也不必要 6.“若x ≠a 且x ≠b ,则x 2-(a +b )x +ab ≠0”的否命题( ) A 若x =a 且x =b ,则x 2-(a +b )x +ab =0B 若x =a 或x =b ,则x 2-(a +b )x +ab ≠0 C 若x =a 且x =b ,则x 2-(a +b )x +ab ≠0D 若x =a 或x =b ,则x 2-(a +b )x +ab =07.(06北京)若a 与b -c 都是非零向量,则“a ·b =a•c ”是“a ⊥(b -c )”的( )A 充分而不必要条件B 必要而不充分条件C 充要条件D 既不充分又不必要条件8.(07山东)命题“对任意的R x ∈, 0123≤+-x x ”的否定是( ) A 不存在R x ∈,0123≤+-x x B 存在R x ∈,0123≤+-x xC 存在R x ∈, 0123>+-x xD 对任意的R x ∈,0123>+-x x9.(04天津)已知数列{a n },那么“对任意的n ∈N *,点P n (n,a n )都在直线y=2x+1上”是“{a n }为等差数列”的( )A 充分而不必要条件B 必要而不充分条件C 充要条件D 既不充分又不必要条件10.数列{a n }的前n 项和S n =2•3n-a,“a=2”是“数列{a n }为公比等于3的等比数列”的( ) A 充分而不必要条件 B 必要而不充分条件 C 充要条件 D 既不充分又不必要条件 11.已知p :{}0⊆∅,q :∅⊆∅,则命题q p ∨, q p ∧和p ⌝形式的命题中,真命题个数为( )A0 B1 C2 D312.(07湖北)已知p 是r 的充分条件而不是必要条件,q 是r 的充分条件,s 是r 的必要条件,q 是s的必要条件,现有下列命题:①r 是q 的充要条件; ②p 是q 的充分条件而不是必要条件;③r 是q 的必要条件而不是充分条件;④┐p 是┑s 的必要条件而不是充分条件; ⑤r 是s 的充分条件而不是必要条件. 则正确命题的序号是 A ①④⑤ B ①②④ C ②③⑤ D ②④⑤ 二.填空题(每小题4分,共16分) 13.命题“若ab=0,则a 、b 至少有一个为0”的的逆否命题是14.用符号“∀”与“∃”表示含有量词的命题: (1)实数的平方大于等于0_____(2)存在一对实数,使2x +3y +3>0成立_________ 15.关于x 的方程062)1(22=++-+a x a x 有一正一负两实数根的充要条件是 16.集合}1{>=x x A ,}2{<=x x B ,则“B x A x ∈∈或 ”是“B A x ∈”的 条件 三.解答题(共74分) 17.写出命题:“若1<m ,则042=++m x x 有实数根”的逆否命题,并判断真假,给出理由18.若022>++bx ax 的充要条件是⎭⎬⎫⎩⎨⎧<<-3121x x ,试求a+b 的值19. 01,0200>-+∈∃x ax R x ,求a 的取值范围20.ABC ∆中A ,B 的对边分别是a ,b ,证明:A>B 的充要条件是sinA>sinB21.已知a>0且a ≠1,设p:函数y =a x在(-∞,+∞)上是减函数;q:方程0212=++x ax 有两个不等的实数根.若“p ∧q ”为假命题,“p ∨q ”为真命题,求a 的取值范围22.已知2311:≤--x p , 012:22≤-+-m x x q ,且p ⌝是q ⌝的必要不充分条件,求实数m 的取值范围答案CBBAB DCCACC CB13.若a ≠0且b ≠0,则ab ≠0 14.(1)∀R x ∈,02≥x(2) ∃(x,y)∈{(x,y)∣x ∈R ,y ∈R},2x+3y+3≥0 15.a<-316.必要不充分17.若042=++m x x 无实数根,则1≥m ,真命题18.-14 19.a>-1/4 20.略21.1/2≤a<122.m ≤-9,或m ≥9。
高中数学 第一章 常用逻辑用语单元测试(二)新人教A版高二选修2-1数学试题

word第一章 常用逻辑用语注意事项:1.答题前,先将自己的某某、某某号填写在试题卷和答题卡上,并将某某号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知原命题“若2a b +>,则a 、b 中至少有一个不小于1”,原命题与其逆命题的真假情况是( ) A .原命题为假,逆命题为真 B .原命题为真,逆命题为假 C .原命题与逆命题均为真命题D .原命题与逆命题均为假命题2.已知命题p :∀x ∈R ,0x a >(a >0且a ≠1),则( ) A .¬p :∀x ∈R ,0x a ≤ B .¬p :∀x ∈R ,0x a > C .¬p :0x ∃∈R ,00x a >D .¬p :0x ∃∈R ,00x a ≤3.若命题“p ∧q ”为假,且“¬p ”为假,则( ) A .p 或q 为假 B .q 为假C .q 为真D .不能判断q 的真假4.“a =-3”是“圆22=1x y +与圆()224x a y ++=相切”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件5.已知p 是R 的充分不必要条件,s 是R 的必要条件,q 是s 的必要条件,那么p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件6.设x 、y 、z ∈R ,则“lg y 为lg x ,lg z 的等差中项”是“y 是x ,z 的等比中项”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.已知命题p :对任意x ∈R ,总有20x >;q :“x >1”是“x >2”的充分不必要条件,则下列命题为真命题的是( ) A .p q ∧B .()()p q ⌝∧⌝C .()p q ⌝∧D .()p q ∧⌝8.命题“t a n x =0”是命题“co sx =1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件9.已知命题p :“对x ∀∈R ,m ∃∈R ,使4210x x m ++=”.若命题¬p 是假命题, 则实数m 的取值X 围是( ) A .-2≤m ≤2 B .m ≥2C .m ≤-2D .m ≤-2或m ≥210.下列命题中,错误的是( )A .命题“若2560x x -+=,则x =2”的逆否命题是“若x ≠2,则2560x x -+≠”B .已知x ,y ∈R ,则x =y 是22x y xy +⎛⎫≥ ⎪⎝⎭成立的充要条件C .命题p :x ∃∈R ,使得210x x ++<,则¬p :x ∀∈R ,则210x x ++≥D .已知命题p 和q ,若p q ∨为假命题,则命题p 与q 中必一真一假 11.已知下列三个命题:①若一个球的半径缩小到原来的12,则其体积缩小到原来的18;word②若两组数据的平均数相等,则它们的标准差也相等; ③直线x +y +1=0与圆2212x y +=相切. 其中真命题的序号是( ) A .①②③B .①②C .①③D .②③12.设a 、b ∈R ,现给出下列五个条件:①a +b =2;②a +b >2;③a +b >-2; ④ab >1;⑤log ab <0,其中能推出:“a ,b 中至少有一个大于1”的条件为( ) A .②③④ B .②③④⑤C .①②③⑤D .②⑤二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.命题“若|x |>1,则x >1”的否命题是__________________.(填“真”或“假”) 14.写出命题“若方程()200ax bx c a -+=≠的两根均大于0,则0ac >”的一个等价命题是______________________________________________.15.已知p (x ):220x x m +->,如果p (1)是假命题,p (2)是真命题,则实数m 的取值X 围是__________________.16.若p 的逆命题是r ,r 的否命题是s ,则s 是p 的否命题的__________________.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)命题:已知a 、b 为实数,若关于x 的不等式20x ax b ++≤有非空解集,则240a b -≥,写出命题的逆命题、否命题、逆否命题,并判断这些命题的真假.18.(12分)写出下列命题的否定,并判断其真假: (1)p :∀m ∈R ,方程20x x m +-=必有实数根; (2)q :∃x ∈R ,使得210x x ++≤.word19.(12分)已知P ={x |a -4<x <a +4},{}2430Q x x x =-+<,且x P ∈是x Q ∈的必要条件,某某数a 的取值X 围.20.(12分)已知命题p :1,[]1m -∀∈,不等式253a a --≥;命题q :∃x ,使不等式220x ax ++<.若p 或q 是真命题,¬q 是真命题,求a 的取值X 围.word21.(12分)求使函数()()()2245413f x a a x a x +---+=的图象全在x 轴上方成立的充要条件.22.(12分)已知命题p :方程2220x ax a +-=在[-1,1]上有解;命题q :只有一个实数0x 满足不等式200220x ax a ++≤,若命题“p 或q ”是假命题,求a 的取值X 围.word2018-2019学年选修2-1第一章训练卷常用逻辑用语(二)答案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.【答案】B【解析】逆否命题为:a ,b 都小于1,则a +b ≤2是真命题,所以原命题是真命题, 逆命题为:若a 、b 中至少有一个不小于1,则2a b +>,例如,当a =2,b =﹣2时,满足条件,当()220a b +=+-=,这与2a b +>矛盾,故为假命题.故选B . 2.【答案】D【解析】∵命题p 为全称命题,∴¬p 为特称命题,由命题的否定只否定结论知0x a >的否定为0xa ≤,∴故选D . 3.【答案】B【解析】∵“¬p ”为假,∴p 为真,又∵p ∧q 为假,∴q 为假,p 或q 为真.故选B . 4.【答案】A【解析】当3a =-时,圆()2234x y -+=的圆心为()3,0,半径12R =, 与圆221x y +=相外切,当两圆相内切时,a =±1,故选A . 5.【答案】A【解析】图示法/p R s q⇒⇐⇒⇒,故/q p ⇒,否则q ⇒p ⇒R ⇒q ⇒p ,则R ⇒p ,故选A . 6.【答案】A【解析】由题意得,“lg y 为lg x ,lg z 的等差中项”,则22lg lg lg y x z y xz =+⇒=,则“y 是x ,z 的等比中项”;而当2y xz =时,如1x z ==,1y =-时,“lg y 为lg x ,lg z 的等差中项”不成立, 所以“lg y 为lg x ,lg z 的等差中项”是“y 是x ,z 的等比中项”的充分不必要条件, 故选A . 7.【答案】D【解析】命题p 是真命题,命题q 是假命题,所以选项D 正确.判断复合命题的真假,要先判断每一个命题的真假,然后做出判断. 8.【答案】B【解析】x =π时,t a n x =0,但co sx =-1;co sx =1时,s in x =0,故t a n x =0. 所以“t a n x =0”是“co sx =1”的必要不充分条件. 9.【答案】C【解析】由题意可知命题p 为真,即方程4210x x m ++=有解,∴4122x x m +=-≤--,当且仅当0x =时取等号,所以m ≤-2.10.【答案】D【解析】由逆否命题的定义知A 正确;当x =y 时,22x y xy +⎛⎫≥ ⎪⎝⎭成立;22x y xy +⎛⎫≥ ⎪⎝⎭||2x y +≥,故x =y ,∴B 为真命题;由特称命题的否定为全称命题知C 为真命题;∵p q ∨为假,∴p 假且q 假,∴D 为假命题. 11.【答案】C【解析】对于①,设球半径为R ,则34π3V R =,12R R =, ∴33141π1π3268R V R V ⎛⎫=⨯== ⎪⎝⎭,故①正确; 对于②,两组数据的平均数相等,标准差一般不相等; 对于③,圆心()0,0,圆心()0,0到直线的距离d =,故直线和圆相切,故①,③正确. 12.【答案】D【解析】①2a b +=可能有1a b ==;word②a +b >2时,假设a ≤1,b ≤1,则a +b ≤2矛盾; ③a +b >-2可能a <0,b <0; ④ab >1,可能a <0,b <0;⑤log ab <0,∴0<a <1,b >1或a >1,0<b <1,故②⑤能推出.二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.【答案】真【解析】原命题的否命题为“若|x |≤1,则x ≤1”, ∵|x |<1,∴-1<x <1,故原命题的否命题为真命题.14.【答案】若a c≤0,则方程()200ax bx c a -+=≠的两根不全大于0. 【解析】根据原命题与它的逆否命题是等价命题可直接写出. 15.【答案】3≤m <8【解析】∵p (1)是假命题,p (2)是真命题,∴3080m m -≤⎧⎨->⎩,解得3≤m <8.16.【答案】逆命题【解析】解法1:依据四种命题的关系图解.由图示可知?处应为互逆关系. 解法2:用特殊命题探究p :若x >2,则x >1,r :若x >1,则x >2,s :若x ≤1,则x ≤2,p 的否命题:若x ≤2,则x ≤1,故s 是p 的否命题的逆命题.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.【答案】见解析.【解析】逆命题,已知a 、b 为实数,若240a b -≥,则关于x 的不等式20x ax b ++≤有非空解集.否命题:已知a 、b 为实数,若关于x 的不等式20x ax b ++≤没有非空解集, 则240a b -<.逆否命题:已知a 、b 为实数,若240a b -<,则关于x 的不等式20x ax b ++≤没有非空解集.原命题、逆命题、否命题、逆否命题均为真命题. 18.【答案】(1)见解析;(2)见解析.【解析】(1)¬p :∃m ∈R ,使方程20x x m +-=无实数根.若方程20x x m +-=无实数根,则140Δ=m +<,∴14m <-,∴¬p 为真.(2)¬q :∀x ∈R ,使得210x x ++>.∵22131024x x x ⎛⎫++=++> ⎪⎝⎭,∴¬q 为真.19.【答案】-1≤a ≤5.【解析】P ={x |a -4<x <a +4},Q ={x |1<x <3}.∵x P ∈是x Q ∈的必要条件,∴x Q ∈⇒x P ∈,即Q ⊆P . ∴4143a a -≤⎧⎨+≥⎩,51a a ≤⎧⎨≥-⎩,∴-1≤a ≤5.20.【答案】221a -≤≤-.【解析】根据p 或q 是真命题,¬q 是真命题,得p 是真命题,q 是假命题.∵,1[]1m ∈-2822,3m ⎡⎤+⎣⎦. 因为1,[]1m -∀∈,不等式22538a a m --=+2533a a --≥,∴a ≥6或a ≤-1.故命题p 为真命题时,a ≥6或a ≤-1.又命题q :∃x ,使不等式220x ax ++<,∴280Δ=a ->,∴22a >22a <- 从而命题q 为假命题时,2222a -≤word所以命题p 为真命题,q 为假命题时,a 的取值X 围为1a -≤≤-. 21.【答案】1≤a <19.【解析】∵函数()f x 的图象全在x 轴上方,∴()()22245016144530a a Δa a a ⎧+->⎪⎨=--+-⨯<⎪⎩,或245010a a a ⎧+-=⎨-=⎩, 解得1<a <19或a =1,故1≤a <19.所以使函数()f x 的图象全在x 轴的上方的充要条件是1≤a <19. 22.【答案】{a |a >2或a <-2}.【解析】由2220x ax a +-=得(2x -a )(x +a )=0,∴2ax =或x =-a , ∴当命题p 为真命题时12a≤或|-a |≤1,∴|a |≤2. 又“只有一个实数0x 满足200220x ax a ++≤”,即抛物线222y x ax a =++与x 轴只有一个交点,∴2480Δ=a a -=,∴a =0或a =2. ∴当命题q 为真命题时,a =0或a =2. ∴命题“p 或q ”为真命题时,|a |≤2. ∵命题“p 或q ”为假命题,∴a >2或a <-2. 即a 的取值X 围为{a |a >2或a <-2}.。
完整版)集合与常用逻辑用语测试题及详解

完整版)集合与常用逻辑用语测试题及详解本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间为120分钟。
第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项符合题目要求。
)1.(文)(2011·巢湖市质检)设U={1,2,3,4,5},A={1,2,3},B={2,3,4},则下列结论中正确的是()。
A。
A⊆BB。
A∩B={2}C。
A∪B={1,2,3,4,5}D。
A∩(∁U B)={1}答案:C解析:由集合的定义可知,XXX表示A是B的子集,即A中的每个元素都在B中出现。
显然,A不是B的子集,排除A选项。
XXX表示A和B的交集,即A和B中都出现的元素构成的集合。
根据A和B的定义可知,它们的交集为{2,3},因此排除B选项。
A∪B表示A和B的并集,即A和B中所有元素构成的集合。
根据A和B的定义可知,它们的并集为{1,2,3,4,5},因此选C。
A∩(∁U B)表示A和B的补集的交集,即除去B中所有元素后,A中剩余的元素构成的集合。
根据A和B的定义可知,它们的补集分别为{4,5}和{1},因此A∩(∁U B)={1},排除D选项。
2.(2011·安徽百校联考)已知集合M={-1,0,1},N={x|x=ab,a,b∈M且a≠b},则集合M与集合N的关系是()。
A。
M=NB。
MNC。
NMD。
M∩N=∅答案:C解析:根据集合N的定义可知,N中的元素是由M中的元素相乘得到的,其中a≠b。
因此,当a=-1时,b为0或1,x 为-1或0;当a=0时,x为0;当a=1时,b为-1或0,x为-1或0.综上所述,N={-1,0},因此M和N的关系是NM。
3.(2011·福州期末)已知p:|x|<2;q:x^2-x-2<0,则綈p是綈q的()。
A。
充分不必要条件B。
必要不充分条件C。
充要条件D。
高中数学必修第一册,第1章 集合与常用逻辑用语单元测试题(2)

第一章集合与常用逻辑用语单元测试题总分:120分时间:120分钟一、单选题(总分48分,每题4分)1.已知集合M={x|1≤x<3},N={1,2},则M∩N=()A.B.C.D.2.下列元素与集合的关系表示正确的是()①N*;②∉Z;③∈Q;④π∈QA.①②B.②③C.①③D.③④3.设命题,则为().A.B.C.D.M=()4.已知全集U=R,集合M={x|-1≤x≤3},则∁UA.{x|-1<x<3}B.{x|-1≤x≤3}C.{x|x<-1或x>3}D.{x|x≤-1或x≥3}5.是的_________条件;()A.必要不充分B.充要C.充分不必要D.既不充分也不必要6.设全集,,,则()A.B.C.D.7.下列各式中,正确的个数是:①;②;③;④;⑤;⑥.A.1B.2C.3D.48.已知集合A={x|y,x∈Z},则集合A的真子集个数为()A.32B.4C.5D.319.已知M,N都是U的子集,则图中的阴影部分表示()A.M∪N B.∁U (M∪N)C.(∁U M)∩N D.∁U (M∩N)10.设M ,P 是两个非空集合,定义M 与P 的差集M -P ={x |x ∈M 且x ∉P },则M -(M -P )等于()A.PB.MC.M ∩PD.M ∪P11.已知集合M 满足{1,2}⊆M ⊆{1,2,3,4,5},那么这样的集合M 的个数为()A.5B.6C.7D.812.对于实数,“”是“”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件二、填空题(总分16分,每题4分)13.若,且,则的可能取值组成的集合中元素的个数为_____.14.已知集合,则A 中元素的个数为_____.15.已知集合,,且,则实数的取值范围是_________。
16.有下列命题:①“若,则”的否命题;②“矩形的对角线相等”的否命题;③“若,则的解集是”的逆命题;④“若是无理数,则是无理数”的逆否命题.其中正确命题的序号是____________三、解答题(总分56分,17、18、19每题8分,20、21题10分,22每题12分.)17.已知集合,或.(1)若,求;(2)若,求实数的取值范围.18.若A={3,5},B={x|x2+mx+n=0},A∪B=A,A∩B={5},求m,n的值.19.已知全集,集合,.(1)求;(2)若,求实数的取值范围.20.已知集合,.(1)当时,求,;(2)若,求实数a的取值范围.21.已知集合,集合.(1)当时,求;(2)设,若“”是“”的必要不充分条件,求实数的取值范围.22.求证:方程有两个同号且不相等的实根的充要条件是.第一章集合与常用逻辑用语(答案与解析)总分:120分时间:120分钟一、单选题(总分48分,每题4分)1.已知集合M={x|1≤x<3},N={1,2},则M∩N=()A.B.C.D.【答案】B【解析】∵,∴.故选B.2.下列元素与集合的关系表示正确的是()①N*;②∉Z;③∈Q;④π∈QA.①②B.②③C.①③D.③④【答案】B【解析】①不是正整数,∴N*错误;②是无理数,∴正确;③是有理数,∴正确;④π是无理数,∴π∈Q错误;∴表示正确的为②③.故选:B.3.设命题,则为().A.B.C.D.【答案】C【解析】命题,则为:,故选C.M=()4.已知全集U=R,集合M={x|-1≤x≤3},则∁UA.{x|-1<x<3}B.{x|-1≤x≤3}C.{x|x<-1或x>3}D.{x|x≤-1或x≥3}【答案】C【解析】由题意,全集,集合,所以或,故选C.5.是的_________条件;()A.必要不充分B.充要C.充分不必要D.既不充分也不必要【答案】C【解析】因为,但是,所以,是的充分不必要条件,故选C。
常用逻辑用语(单元测试卷)-2020-2021高中数学新教材训练(人教A版必修第一册)(解析版)

《常用逻辑用语》单元测试卷一、单选题1.(2019·山东济宁·高一月考)命题“2,220x x x ∃∈++≤R ”的否定是( )A .2,220x x x ∀∈++>RB .2,220x R x x ∀∈++≤C .2,220x x x ∃∈++>RD .2,220x x x ∃∈++≥R【答案】A【解析】 特称命题的否定是全称命题,注意到要否定结论,故A 选项正确.故选A.2.(2020·安徽省六安中学高二期中(文))设p :x<3,q :-1<x<3,则p 是q 成立的( )A .充分必要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件【答案】C【解析】∵:3p x <,:13q x -<<∴q p ⇒,但,∴p 是q 成立的必要不充分条件,故选C. 3.(2020·湖南怀化·高三二模(文))除夕夜,万家团圆之时,中国人民解放军陆、海、空三军医疗队驰援武汉.“在疫情面前,我们中国人民解放军誓死不退!不获胜利决不收兵!”这里“获取胜利”是“收兵”的( ). A .充分条件B .必要条件C .充要条件D .既不充分也不必要条件【答案】B【解析】由题意可得,“获取胜利”是“收兵”的必要条件故选:B4.(2020·湖南天心·长郡中学高三其他(文))已知命题:p x R ∃∈,2230x x ++<,则命题p 的否定是( )A .x R ∃∈,2230x x ++>B .x R ∀∈,2230x x ++≤C .x R ∀∈,2230x x ++≥D .x R ∀∈,2230x x ++>【答案】C【解析】命题p 为特称命题,其否定为:p x R ⌝∀∈,2230x x ++≥.故选:C.5.(2020·全国高一课时练习)下列说法正确的是( )A .命题“直角相等”的条件和结论分别是“直角”和“相等”B .语句“最高气温30℃时我就开空调”不是命题C .命题“对角线互相垂直的四边形是菱形”是真命题D .语句“当a >4时,方程x 2-4x +a =0有实根”是假命题【答案】D【解析】对于A ,改写成“若p ,则q ”的形式应为“若两个角都是直角,则这两个角相等”,则A 错误;对于B ,所给语句是命题,则B 错误;对于C ,边长为3的等边三角形与底边为3,腰为2的等腰三角形拼成的四边形,对角线相互垂直,但不是菱形,则C 错误;对于D ,当5a =时,16450∆=-⨯<,方程x 2-4x +a =0无实根,则D 正确;故选:D6.(2020·全国高一课时练习)下列语句:①32>;②作射线AB ;③sin 3012=;④210x -=有一个根是-1;⑤1x <. 其中是命题的是( )A .①②③B .①③④C .③D .②⑤ 【答案】B【解析】解析②是祈使句,故不是命题,⑤无法判断真假,故不是命题.①③④符合命题的定义,故选:B.7.(2020·全国高一课时练习)已知不等式x +3≥0的解集是A ,若a ∈A 是假命题,则a 的取值范围是( ) A .a ≥-3 B .a >-3C .a ≤-3D .a <-3【答案】D【解析】∵x +3≥0,∴A ={x |x ≥3-},又∵a ∈A 是假命题,即a ∉A ,∴a <3-.故选:D 8.(2020·湖南雨花·雅礼中学高三其他(理))设集合{}1,2M =,{}2N a=,则“1a =-”是“N M ⊆”的( )A .充分不必要条件B .必要不充分条件.C .充分必要条件D .既不充分又不必要条件 【答案】A【解析】当1a =-时,{}1N =,满足N M ⊆,故充分性成立; 当N M ⊆时,{}1N =或{}2N =,所以a 不一定满足1a =-,故必要性不成立.故选:A.9.(2019·内蒙古集宁一中高三月考)命题“存在实数x,,使x > 1”的否定是( )A .对任意实数x, 都有x > 1B .不存在实数x ,使x ≤1C .对任意实数x, 都有x ≤1D .存在实数x ,使x ≤1【答案】C【解析】特称命题的否定是全称命题,否定结论的同时需要改变量词.∵命题“存在实数x ,使x >1”的否定是“对任意实数x ,都有x ≤1”故选C .10.(2019·浙江湖州·高二期中)已知a R ∈,那么“1a >”是“21a >”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】A【解析】当1a >时,21a >成立,取2a =-,此时21a >成立,但是1a >不成立,“1a >”是“21a >”的充分不必要条件,故选:A.二、多选题11.(2020·浙江高一单元测试)下列不等式中可以作为21x <的一个充分不必要条件的有( ) A .1x <B .01x <<C .10x -<<D .11x -<<【答案】BC【解析】解不等式21x <,可得11x -<<, {}11x x -<< {}1x x <,{}11x x -<< {}01x x <<,{}11x x -<< {}10x x -<<,因此,使得21x <的成立一个充分不必要条件的有:01x <<,10x -<<.故选:BC.12.(2020·迁西县第一中学高二期中)下列命题的否定中,是全称命题且是真命题的是( )A .21,04x R x x ∃∈-+<B .所有正方形都是矩形C .2,220x R x x ∃∈++=D .至少有一个实数x ,使310x += 【答案】AC【解析】由题意可知:原命题为特称命题且为假命题. 选项A. 原命题为特称命题,2211042x x x ⎛⎫-+=-≥ ⎪⎝⎭,所以原命题为假命题,所以选项A 满足条件. 选项B. 原命题是全称命题,所以选项B 不满足条件.选项C. 原命题为特称命题,在方程2220x x ++=中4420∆=-⨯<,所以方程无实数根,所以原命题为假命题,所以选项C 满足条件.选项D. 当1x =-时,命题成立. 所以原命题为真命题,所以选项D 不满足条件.故选:AC13.(2020·山东省桓台第一中学高二期中)(多选)对任意实数a ,b ,c ,给出下列命题:①“a b =”是“ac bc =”的充要条件;②“5a +是无理数”是“a 是无理数”的充要条件;③“4a <”是“3a <”的必要条件;④“a b >”是“22a b >”的充分条件.其中真命题是( ).A .①B .②C .③D .④【答案】BC【解析】①由“a b =”可得ac bc =,但当ac bc =时,不能得到a b =,故“a b =”是“ac bc =”的充分不必要条件,故①错误;②因为5是有理数,所以当5a +是无理数时,a 必为无理数,反之也成立,故②正确;③当4a <时,不能推出3a <;当3a <时,有4a <成立,故“4a <”是“3a <”的必要不充分条件,故③正确.④取1a =,2b =-,此时22a b <,故④错误;故答案为:BC14.(2020·全国高一单元测试)下列命题中,是全称量词命题的有( )A .至少有一个x 使2210x x ++=成立B .对任意的x 都有2210x x ++=成立C .对任意的x 都有2210x x ++=不成立D .存在x 使2210x x ++=成立 E.矩形的对角线垂直平分【答案】BCE【解析】A 和D 中用的是存在量词“至少有一个”“存在”,属存在量词命题;B 和C 用的是全称量词“任意的”,属全称量词命题,所以B 、C 是全称量词命题;E 中命题“矩形的对角线垂直平分”省略量词“任意”,是全称量词命题.故选:BCE三、填空题15.(2020·全国高一课时练习)把命题“当x =2时,x 2-3x +2=0”改写成“若p ,则q ”的形式:____________________________.【答案】若x =2,则x 2-3x +2=0【解析】命题“当x =2时,x 2-3x +2=0”可以改写成“若x =2,则x 2-3x +2=0”故答案为:若x =2,则x 2-3x +2=016.(2020·安徽金安·六安一中高二期中(文))命题“0,210x x ∃>-≤”的否定是________. 【答案】0,210x x ∀>->【解析】命题为特称命题,则命题的否定为“0x ∀>,210x ”.故答案为:0x ∀>,210x .17.(2020·浙江高一单元测试)已知命题:1p x <-或3x >,命题:31q x m <+或2x m >+,若p 是q 的充分非必要条件,则实数m 的取值范围是________ 【答案】21,32⎡⎤-⎢⎥⎣⎦ 【解析】因为p 是q 的充分非必要条件,所以()(),13,-∞-⋃+∞是()(),312,m m -∞+⋃++∞的真子集,故31123m m +≥-⎧⎨+≤⎩解得:2-13m ≤≤,又因为312m m +≤+,所以12m ≤,综上可知21-32m ≤≤,故填21,32⎡⎤-⎢⎥⎣⎦. 四、双空题18.(2020·全国高一课时练习)已知命题:弦的垂直平分线经过圆心并且平分弦所对的弧,若把上述命题改为“若p ,则q ”的形式,则p 是____________________,q 是__________________.【答案】一条直线是弦的垂直平分线 这条直线经过圆心且平分弦所对的弧【解析】已知中的命题改为“若p ,则q ”的形式为“若一条直线是弦的垂直平分线,则这条直线经过圆心且平分弦所对的弧”,p :一条直线是弦的垂直平分线;q :这条直线经过圆心且平分弦所对的弧.故答案为:一条直线是弦的垂直平分线;这条直线经过圆心且平分弦所对的弧19.(2020·上海)“0x >”的一个充分非必要条件可以为________;一个必要非充分条件可以为________.【答案】2x =(答案不唯一) 1x >-(答案不唯一)【解析】“0x >”的充分非必要条件可以为2x =;一个必要非充分条件可以为1x >-;故答案为:2x =(答案不唯一);1x >-(答案不唯一)20.(2019·宁波中学高二期中)下列语句是命题的有______,其中是假命题的有______.(只填序号) ①等边三角形是等腰三角形吗?②作三角形的一个内角平分线③若x y +为有理数,则x ,y 也都是有理数.④8x >.【答案】③ ③【解析】①②不是陈述句,④不能判断真假,均不符合命题定义,不是命题③是可以判断真假的陈述句,是命题;当x =y =时,x y +为有理数,但,x y 不是有理数 ∴③是假命题本题正确结果:③;③21.(2020·广东中山·高二期末)命题p :0x R ∃∈,200250x x ++=是__________(填“全称命题”或“特称命题”),它是_________命题(填“真”或“假”).【答案】特称命题 假【解析】由题知命题p :0x R ∃∈,200250x x ++=中条件为0x R ∃∈,故命题为特称命题,又因为方程2250x x ++=中2245160∆=-⨯=-<,故方程2250x x ++=没有根,所以命题为假命题.故答案为:特称命题;假.五、解答题22.(2020·全国高一课时练习)将下列命题改写成“若p ,则q ”的形式,并判断命题的真假.(1)6是12和18的公约数;(2)当1a >-时,方程2210ax x 有两个不等实根;(3)平行四边形的对角线互相平分;(4)已知,x y 为非零自然数,当2y x -=时,4,2y x ==.【答案】答案见解析.【解析】(1)若一个数是6,则它是12和18的公约数,是真命题.(2)若1a >-,则方程2210ax x 有两个不等实根,因为当0a =时,原方程只有一解,所以原命题是假命题.(3)若一个四边形是平行四边形,则它的对角线互相平分,是真命题.(4)已知,x y 是非零自然数,若2y x -=,则4,2y x ==,是假命题.23.(2020·浙江)判断下列命题的真假.(1)2,560x R x x ∀∈-+=.(2)2,10x x ∃∈+=R .(3)*22,,20a b N a b ∃∈+=.【答案】(1)假命题;(2)假命题;(3)真命题.【解析】(1)假命题,因为只有2x =或3x =时满足2560x x -+=.(2)假命题,因为不存在实数x ,使210x +=成立.(3)真命题,因为存在正整数2和4,使222420+=.24.(2020·全国高一)指出下列命题是全称量词命题还是存在量词命题,并判断它们的真假.(1)∀x ∈N ,2x +1是奇数;(2)存在一个x ∈R ,使11x -=0; (3)对任意实数a ,|a |>0;【答案】(1)是全称量词命题;是真命题;(2)是存在量词命题;是假命题;(3)是全称量词命题;是假命题.【解析】(1)是全称量词命题.因为,21x N x ∀∈+都是奇数,所以该命题是真命题.(2)是存在量词命题.因为不存在x ∈R ,使101x =-成立,所以该命题是假命题.(3)是全称量词命题.因为00=,所以||0a >不都成立,因此,该命题是假命题.25.(2020·全国高一)判断下列存在量词命题的真假:(1)存在一个四边形,它的两条对角线互相垂直; (2)至少有一个整数n ,使得2n n +为奇数;(3){|x y y ∃∈是无理数},2x 是无理数.【答案】(1)真命题;(2)假命题;(3)真命题【解析】(1)真命题,因为正方形的两条对角线互相垂直;(2)假命题,因为若n 为整数,则(1)n n +必为偶数;(3)真命题,因为π是无理数,2π是无理数.26.(2020·全国高一)写出下列命题的否定:(1)所有人都晨练;(2)2,10x x x ∀∈++>R ;(3)平行四边形的对边相等;(4)2,10x x x ∃∈-+=R .【答案】(1)有的人不晨练;(2)2,10x x x ∃∈++≤R ;(3)存在平行四边形,它的对边不相等;(4);2,10x x x ∀∈-+≠R【解析】(1)因为命题“所有人都晨练”是全称命题,所以其否定是“有的人不晨练”.(2)因为命题“2,10x x x ∀∈++>R ”是全称命题,所以其否定是“2,10x x x ∃∈++≤R ”.(3)因为命题“平行四边形的对边相等”是指任意一个平行四边形的对边相等,是一个全称命题, 所以它的否定是“存在平行四边形,它的对边不相等”.(4)因为命题“2,10x x x ∃∈-+=R ”是特称命题,所以其否定是“2,10x x x ∀∈-+≠R ”.27.(2020·浙江)写出下列命题的否定并判断真假.(1)不论m 取何实数,方程20x x m ++=必有实数根.(2)所有末位数是0或5的整数都能被5整除.(3)某些梯形的对角线互相平分.(4)被8整除的数能被4整除.【答案】(1)答案见解析;(2)答案见解析;(3)答案见解析;(4)答案见解析.【解析】(1)这一命题可以表述为“对所有的实数m ,方程20x x m ++=都有实数根”, 其否定为“存在实数m ,使得20x x m ++=没有实数根”,注意到当140m ∆=-<, 即14m >时,一元二次方程没有实根,因此其否定是真命题; (2)命题的否定是“存在末位数字是0或5的整数不能被5整除”,是假命题; (3)命题的否定是“任何一个梯形的对角线都不互相平分”,是真命题; (4)命題的否定是“存在一个数能被8整除,但不能被4整除”,是假命题.。
常用逻辑用语练习题

常用逻辑用语练习题逻辑用语是数学和哲学中非常重要的工具,它帮助我们清晰地表达思想和论证。
以下是一些常用的逻辑用语练习题,旨在帮助学生熟悉和掌握这些基础概念。
# 练习题1:命题逻辑1. 给出命题P:今天是星期三。
命题Q:明天是星期四。
写出这两个命题的逻辑表达式。
2. 判断命题P和Q的逻辑关系,是互斥的、等价的还是既不互斥也不等价?3. 写出命题P或Q的逻辑表达式。
4. 写出命题P且Q的逻辑表达式。
5. 写出命题非P的逻辑表达式。
# 练习题2:条件语句1. 将“如果今天是星期三,那么明天是星期四”这个条件语句转化为逻辑表达式。
2. 给出一个条件语句的例子,并说明其真假条件。
3. 判断以下条件语句的真假:如果今天是星期一,那么明天是星期二。
# 练习题3:逻辑等价1. 证明以下两个逻辑表达式是等价的:(P → Q) ≡ ¬P ∨ Q。
2. 给出一个逻辑表达式,并找出它的逻辑等价表达式。
3. 使用逻辑等价规则简化以下表达式:(P ∨ Q) ∧ (¬P ∨ ¬Q)。
# 练习题4:逻辑推理1. 已知命题P:如果下雨,我就不去跑步。
命题Q:今天下雨了。
请使用逻辑推理判断我今天是否去跑步。
2. 给出一个包含两个前提的逻辑推理问题,并解答它。
3. 使用逻辑推理证明以下命题:如果所有的人都是动物,那么苏格拉底是动物。
# 练习题5:逻辑运算1. 给出命题P:今天是晴天。
命题R:我会去公园。
写出命题P且R的逻辑表达式。
2. 写出命题P或R的逻辑表达式。
3. 使用逻辑运算符,将命题P和R组合成一个复合命题,并判断其真假。
# 练习题6:逻辑谬误1. 识别并解释以下论证中的逻辑谬误:所有的鸟都会飞,企鹅是鸟,所以企鹅会飞。
2. 给出一个常见的逻辑谬误的例子,并解释为什么它是谬误。
3. 判断以下论证是否包含逻辑谬误:如果一个学生学习努力,他就会取得好成绩。
小明学习努力,所以小明会取得好成绩。
# 练习题7:量化逻辑1. 将“有些学生喜欢数学”这个命题转化为量化逻辑表达式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常用逻辑用语单元测试题
一、选择题
1、下列语句中是命题的个数是( )
①空集是任何集合的真子集; ②求0432=--x x 的根; ③满足023>-x 的整数有哪些? ④把门关上; ⑤垂直于同一条直线的两条直线一定平行吗? ⑥自然数是偶数。
A 、1个
B 、2个
C 、3个
D 、4个
2、对于实数c b a ,,有下列命题:其中真命题的个数是( )
①若b a >,则bc ac >; ②若22bc ac >,则b a >;
③若220b ab a b a >><<,则; ④若0011<>>>b a b
a b a ,,则,。
A 、1 B 、2 C 、3 C 、4
3、命题“若3662==a a ,则”与其逆命题、否命题和逆否命题这四个命题中,真命题的个数是( ) A 、0 B 、2 C 、3 C 、4
4、已知”的”是“,则“、00≠≠∈mn m R n m ( )
A 、充分不必要条件
B 、必要不充分条件
C 、充要条件
D 、既不充分也不必要条件
5、设5<∈x R x ,那么成立的一个必要不充分条件是( )
A 、5<x
B 、4<x
C 、252<x
D 、40<<x
6、已知命题{}{}00)3)(2(|1=<-+∈φ:,命题:
q x x x p ,下列判断正确的是( ) A 、p 假q 真 B 、”“q p ∨为真 C 、”“q p ∧为真 D 、p ⌝为真
7、由”:,:“31678>=+πq p 构成的复合命题,下列判断正确的是( )
A 、”“q p ∨为真,”“q p ∧为假,“p ⌝”为真
B 、”“q p ∨为假,”“q p ∧为假,“p ⌝”为真
C 、”“q p ∨为真,”“q p ∧为假,“p ⌝”为假
D 、”“q p ∨为假,”“q p ∧为真,“p ⌝”为真
8、,:若;命题全为、,则满足、:若实数已知命题b a q y x y x y x p >=+0022b
a 11<则。
给出下列四个复合命题:①;q p ∧②q p ∨③p ⌝④q ⌝。
其中真命题的个数为( )
A 、1
B 、2
C 、3 C 、4
9、给出以下命题:其中正确的有( )
①24x x R x >∈∀,有; ②αααsin 33sin =∈∃,使得R ;③022<++∈∀a x x R x ,使对。
A 、0
B 、1
C 、2 C 、3
二、填空题
”的逆否命题是”,则“且、若“00011≤+≤≤n m n m _______________________________。
”的否定是,、命题“对任意的011223≤+-∈x x R x ________________________________。
13、下列命题中_______________为真命题。
①“0022全为、,则若y x y x =+”的否命题;②“全等三角形是相似三角形”的逆命题; ③“圆内接四边形对角互补”的逆否命题。
14、(填“充要条件”、“充分不必要条件”、“必要不充分条件”、“既不充分也不必要条件”)
(1)”的”是“都是实数,那么“、已知b a b a b a >>22__________________。
(2)”的”是命题乙“命题甲“6
21sin παα≠≠_________________________。
15、若命题:“0122>++∈∀x ax R x ,”是真命题,则实数a 的取值范围是___________________________。
常用逻辑用语单元测试题2
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题4分,共40分)。
1、命题“若B A A B A ⊆=⋂则,”的逆否命题是( )
A 、若
B A A B A ⊇≠⋃则, B 、若B A A B A ⊆≠⋂则,
C 、若A B A B A ≠⋂⊄则
D 、若A B A B A ≠⋂⊇则
2、下列命题中正确的是( )
①“若不全为零则y x y x ,,022≠+”的否命题; ②“正三角形都相似”的逆命题; ③“有实根则若0,02=-+>m x x m ”的逆否命题;
④“若是无理数是有理数,则x x 2-”的逆否命题
A 、①②③④
B 、①③④
C 、①④
D 、②③④
3、命题:“存在数列{}n a 既是等差数列又是等比数列” ( ).
A 、是特称命题并且是真命题
B 、是特称命题并且是假命题
C 、是全称命题并且是真命题
D 、是全称命题并且是假命题
4、命题p :012,2>+∈∀x R x ,则﹁p 是( )
A 、012,2≤+∈∀x R x
B 、012,200>+∈∃x R x
C 、012,200<+∈∃x R x
D 、012,2
00≤+∈∃x R x
5、用a,b,c 表示三条不同的直线,γ表示平面,给出下列命题是真命题的序号是( )
①若c a c b b a ||,||,||则 ②若c a c b b a ⊥⊥⊥则,,
③若b a b a ||,||,||则γγ ④若b a b a ||,,则γγ⊥⊥
A 、①②
B 、②③
C 、①④
D 、③④
6、命题p:“x>0”是“x 2>0”的必要不充分条件;q:在△ABC 中“A>B ”是“sinA>sinB ”的充要条件,则( )
A 、p 真q 假
B 、p ∧q 为真
C 、p ∨q 为假
D 、p 假 q 真
7、“m=2
1”是“直线(m+2)x+3my+1=0与直线(m-2)x+(m+2)y-3=0相互垂直”的( )条件。
A 、充分不必要
B 、必要不充分
C 、充要
D 、既不充分也不必要
8、下列说法正确的是( )
A 、命题“若21x =,则1x =”的否命题为:“若21x =,则1x ≠”
B 、“1x =-”是“2560x x --=”的必要不充分条件
C 、
命题“存在x R ∈,使得210x x ++<”的否定是:“对任意x R ∈, 均 有210x x ++<” D 、命题“若x y =,则sin sin x y =”的逆否命题为真命题
9、函数1)(2++=mx x x f 的图象关于直线x=1对称的充要条件是( )
A 、m=-2
B 、m=2
C 、m=-1
D 、m=1
二、填空题(每小题4分,共16分)
11、如果“p q ∨”和“p ⌝”都是真命题,则命题q 为 命题;如果“p q Λ”及“p ⌝”
都是假命题,则命题q 为 命题。
12、给出下列命题:①命题“若1xy =,则,x y 互为倒数”的逆命题;②“x R ∃∈,2230x x ++<”;
③命题“面积相等的三角形全等”的否命题;④若p 是q 的充分不必要条件,则p ⌝是q ⌝的充分不必要条件.其中是真命题的是 。
(填写序号)
13、已知}30|{≤<=x x M ,}20|{≤<=x x N ,那么“M a ∈”是“N a ∈”的_____________条件。
三、解答题(共44分)
15、(8分)写出下列命题的否定,并判断真假:
(1)所有自然数的平方是正数。
(2)任何实数x 都是方程5x-12=0的根。
(3)对于任意实数x ,存在实数y ,使x +y>0。
(4)有些质数是奇数。