上海市高中数学竞赛

合集下载

上海高一高中数学竞赛题目

上海高一高中数学竞赛题目

上海高一高中数学竞赛题目上海高一高中数学竞赛一直是广大学生们备受关注的盛事。

每年都有无数的学生为了参加这场盛会而日夜苦学,奋发拼搏。

在竞赛中,学生们需要解答一系列高难度的数学题目,考验他们的数学思维能力和解题技巧。

今年的竞赛题目也不例外,以下是其中几道代表性的题目。

题目一:概率论某班级的学生进行了一次数学竞赛,共有60人参赛,其中45人擅长代数,30人擅长几何,18人既擅长代数又擅长几何。

随机选择一名参赛学生,请计算以下概率:a) 该学生至少擅长一门学科;b) 该学生只擅长代数或者只擅长几何;c) 该学生既不擅长代数也不擅长几何。

题目二:函数与方程已知函数 f(x) 的定义域为实数集,且满足 f(x+1) + f(x-1) = 3x + 2,其中 x 为实数。

请问:a) 函数 f(x) 的表达式是什么?b) 函数 f(x) 在定义域内的最大值是多少?题目三:三角函数已知正弦函数 f(x)=a*sin(kx+b),其中 a>0,0<b<π,且 a、k、b 都是常数。

已知f(π/4) = 1 和f(π/6) = 1/2,请计算以下值:a) 常数 a 和 k 的值;b) 常数 b 的取值范围。

题目四:几何问题设 AB 和 CD 是平行线段,E 是 AB 上的一点,F 是 CD 上的一点,且 AE:EB = 2:1,CF:FD = 1:3。

连接 AF 和 BE,交于点 G。

请证明:AG=GB。

题目五:数列与级数已知数列 {an} 的通项公式为 an = n^2 + 3n,n∈N。

请计算以下级数的和:S = a1 + a2 + a3 + ... + a100以上是今年上海高一高中数学竞赛的一些典型题目。

这些题目涵盖了概率论、函数与方程、三角函数、几何问题以及数列与级数等多个数学知识点。

学生们需要在有限的时间内灵活运用各种解题方法,迅速找到解题思路,并给出准确的答案。

这不仅要求学生们有坚实的数学基础,还需要他们具备良好的逻辑思维和分析问题的能力。

上海市中学生数学知识应用竞赛获奖名单

上海市中学生数学知识应用竞赛获奖名单

上海市中学生数学知识应用竞赛获奖名单(高中组)团体奖第一名:嘉定一中第二名:上外附中第三名:上师大附中第四名:位育中学第五名:育才中学第六名:市西中学第七名:民立中学第八名:闵行中学一等奖姚烨嘉定一中谢恺上海中学朱嘉珉格致中学郭浩民立中学陈濡青育才中学郑钢上外附中二等奖朱远骋大同中学吴源旻市西中学屠天惟交大附中陈俊彦格致中学顾文强南汇中学沈仁豪格致中学李亦承上师大附中倪庆洋上外附中韩笑纯上师大附中王明圣育才中学张尚骏位育中学宋晨华师大二附中张灏上师大附中吴源昊民立中学黄海上师大附中付博上师大附中邓彦桢上外附中李庚上师大附中胡嘉裕杨浦高级中学朱弘邑市西中学邵禹铭大境中学周斯桐交大附中李梅昕嘉定一中祁祺上师大附中陆冰嘉定一中钱昊向明中学李景上外附中孙彦潇嘉定一中顾理一上外附中姜宇龙上师大附中桑佳骏上外附中吴洁琼位育中学三等奖陆瑶崇明中学陈政晓杨浦高级中学陈天蛟交大附中李萌嘉定一中黄龙隆民立中学杨伟宁南模中学曹睿闵行中学郑龙七宝中学陈杰上外附中王辰杰七宝中学黄天怿上外附中樊菁华上师大附中李尔盛市西中学唐梦上外附中赵旖漪向明中学林佳昀上外附中姜凌霄育才中学王能市西中学汪杰华师大二附中潘力萌位育中学曹超阳上师大附中刘竹珺位育中学吴维阳位育中学陈鲁君育才中学王朱辰杨浦高级中学张钱奉贤中学金哲凡育才中学叶畋宇华师大二附中陈阵上外附中顾侃华师大二附中周天厦建平中学林玮嘉定一中盛浙湘交大附中刘紫辉嘉定一中林云翔七宝中学吕敏之建平中学江鋆晨上海中学王超建平中学龚鸣上外附中莫品西交大附中王幸一嘉定一中杨念禾进才中学强文华嘉定一中张天进才中学钱浩祺七宝中学朱惠进才中学董全位育中学程一舟晋元中学韩楚育才中学李赟闵行中学昌利圆华师大二附中丁晓峰南汇中学张琦嘉定一中周笛南汇中学万祎杰敬业中学陆风峰青浦高级中学应思缘位育中学杨威上大附中王睿博新中中学徐萍萍上南中学吴笑萦大同中学明捷上外附中李意天嘉定一中丁梦婕上外附中徐晨交大附中李天原市北中学武亦文上海中学徐楚市三女中刘晓勇上师大附中田纪原松江二中沈俊彦市西中学唐伊纳位育中学李佩易位育中学王云程吴淞中学盛文钦南模中学孙正弘西南位育丁霄云上师大附中吕睿杨浦高级中学林航向明中学王易育才中学严国辰中国中学2006年上海市中学生数学知识应用竞赛夏令营获奖名单最佳论文奖交大附中唐晓瞳孙峥诸玄麟华师大二附中毛亦鸥尤逸之昌利圆上外附中王骏旻张卓骏邓彦桢优秀论文奖晋元中学张颖斐程一舟江凌冰大境中学邵禹铭曹阳沈博文交大附中徐晨隋少龙唐希凡上师大附中付博王庶张灏南模中学刘翊杨伟宁盛文钦闵行中学曹睿陈枭扬赵辰新中中学华伟栋王睿博陈晓华民立中学黄龙隆王子卿顾远上外附中过昕怡林澍坤吕舒婷进才中学张鑫冯汇杰陈妍盼嘉定一中姚烨宋伟华杭炎菲论文奖中国中学严国辰李华蔡悯恺南汇中学顾文强曹纯灵金丽丽上师大附中祁祺薛雨辰邹天一上师大附中竺斌全庄咏文姚璐上师大附中吴梦佳蔡霖腾暴一鸣上大附中徐晓承杨威成磊育才中学姜凌霄刘家瑞黄文莹闵行中学李赟钱威邵已航市西中学黄永兴宋坤骏吴源旻杨浦高级中学陈政晓胡嘉裕张英华新中中学庄旭邹亚光吴磊七宝中学林云翔郑龙王辰杰民立中学周桢郭浩胡怡童位育中学唐伊纳张茜茜沈忱忱位育中学董全吴洁琼刘竹珺上外附中丁梦婕明捷郑敏峰上外附中唐梦陈维扬进才中学袁野倪崇智李睿哲嘉定一中马陆郁悦朱晓燕2006年上海市中学生数学知识应用小论文竞赛获奖名单优秀论文奖关于小区探头安装的最优化研究(嘉定一中:姚烨)(指导教师:谢锡林、方云萍)何时服药问题(闵行中学:李赟、王敏)数学与金鱼(嘉定一中:王云嘉、林玮)(指导教师:方云萍、曹慧莉)关于再生纸的废纸回收率的研究(上外附中:丁梦婕、明捷)大型停车规划的研究(嘉定一中:孙彦潇)(指导教师:徐李叶)公交车线路重复循环(进才中学:朱惠)信息传播与市场预测(上海中学:谢恺)(指导教师:柯新立)化学中的多面体结构(大同中学:郁飞、周嘉琳)论文奖随机儿童歌曲旋律生成器的研究(上师大附中:祁祺)(指导教师:胡志敏)电梯对重最优质量与节能问题(嘉定一中:姚雍飞)应用数学解析太空移民的可行性(市北中学:李天原)(指导教师:周晓东)客运铁路沿线设站的讨论(育才中学:王易)斐波那契和鲁卡斯数列(华师大二附中:顾侃)关于季节性商品问题的研究(建平中学:吕敏之)(指导教师:杨建华)关于控制疾病与安排措施的简单研究(上师大附中:姜宇龙)(指导教师:胡志敏)空调+电扇=价廉物美度过夏季(闵行中学:徐若愚)世博地图(闵行中学:杨霄)便利店选址问题(位育中学:唐伊纳)(指导教师:左双奇)关于电脑组装机最省时的组装顺序(市西中学:吴源旻、胡宇航、黄永兴)(指导教师:李文璋、苏华)上海市中学生数学知识应用竞赛获奖名单(初中组)市区组一等奖阮史玮市西初级刘章章位育初级中学李泱市西初级张宸元立达陈浩进华中学奚方舟立达赵冠澜卢湾中学赵玮泽延安初中吴圣融进华中学田子俊位育初级中学王恺上海市实验学校张扬上外附中二等奖姜贇烨市西初级严箴劼立达卫佳文立达朱建坤兰生复旦谈平平立达丁淑艳华初赵沛舟立达曹晋其华初陈明悦上海市实验学校吴殷哲华育中学邓予安建平西校戴碧玥世外中学陆昕清进华中学徐乾炜华育中学管扬明珠黄粟立达吴天齐中远实验学校程智浩进华中学朱元明向明中学柯雨田立达乐嘉文晋元附校李韵青华初沈怡昕进华中学周士杰西延安何笑添华初何立博进华中学卢金原进华中学汪之洲格致初级虞博雅东格致吴翔宇华初姚磊东格致三等奖张易文市西初级陈秉杰曹杨二中附校王祖元市西初级陶威华初胡家唯曹杨中学樊上华中远实验学校郭婧怡位育初级中学张思嫄复兴初级中学徐昊鹏风华初级中学周旖旎新北郊学校陈前进才实验李志强建平实验吴佳俊延安初中朱震华上海市实验学校罗亦文中远实验学校葛彦彬卢湾中学王云占上外附中邵朕君向明中学乔桑羽上海市实验学校杨晨凯复旦初中金冲复旦初中何译民办梅陇中学林之雨延安初中余俊豪久隆模范中学顾昱昊进华中学王佳玮久隆模范中学夏嘉程明珠蒋书奇闸北实验中学钱瀛卿明珠王逸宁东光明中学许翔华初何润泽复旦二附中方颖依华初胡冰吟沪东外国语施展翔位育初级中学顾佳琦教科院附中分校黄梦元位育初级中学傅天叶上外双语学校包一川浦华中学刘音翔华初陆逸波立达陈志炜世外中学郑俊洋华初李柯岑位育初级中学桑容延安初中卫毅超西南模(汇成)阮丰延安初中姚克成西南位育中学徐慧文民办梅陇中学高毅安建平西校严奕立达邬欣雷上海市实验学校洪文琍华初施天健竹园中学房屹东位育初级中学姜浩建平西校张泽宇位育初级中学赵思轶建平实验卢涛位育初级中学王斯捷建平实验冯仕立培佳双语奚晓君华夏西校董轶婷存志中学王翔凯慧中学程霖上外双语学校罗嘉玺五四中学郊区组一等奖王昊伟行知二中蔡怡磊行知二中高云天第一少年宫王朱彦桃李园实验唐卓开南汇二中谈静金盟中学顾申尧大公中学韩方航上宝中学二等奖王睿和衷中学郭伟健宝山实验学校张硕平行知二中石恺师大实验中学赵震行知二中杨钦元第一少年宫胡英杰行知二中徐佳豪和衷中学王渊上宝中学张立诚和衷中学柴逸飞金盟中学罗冠骅七宝二中王利博上宝中学王袆桃李园实验张任佶文绮中学钟容南汇二中黄逸凌文来中学成启昀金盟中学孙彬平乐中学龚驿梨民一中学三等奖寿时通和衷中学沈冠华怀少学校俞嘉卿和衷中学严天吉南汇二中沙朦和衷中学韩硕南汇一中徐灏金盟中学金唯一罗星中学谢超培师大实验中学袁陆罗星中学董杨交大二附中沈佚斐罗星中学张逸峰文来中学顾敏杰金盟中学王纬臻文来中学张忆玲平乐中学冯云平文来中学王瑜琼东门中学徐珂昂宝山实验学校蔡龚丹民一中学马丞砾凇谊中学茅宇杰民一中学沈依伟金盟中学顾明源复旦万科魏智勇航华中学高文庆闵行三中王家欣和衷中学施维舟七宝二中胡安妮虎林中学黄呈昱文来中学汪立健金盟中学朱鹏雄万祥学校程聪磊嘉一联中郁彦青南汇二中王珏和衷中学黄美凤亭新中学许昊文师大实验中学张皓枫泾中学黄佳宸堡镇中学沈欣颖中华中学冯家乐实验中学范嘉伟东门中学徐靓上宝中学倪春桦新河中学陆佳琦上宝中学陆秋宇民一中学刘心华师大实验中学金少也中华中学钱思瑶桃李园实验余欢莘松中学优秀组织奖黄浦区青少年活动中心宝山区青少年科技指导站闵行区青少年科技指导站五四中学优秀组织教师奖徐汇区青少年活动中心周平普陀区青少年中心叶仪琳浦东新区中小学科技指导站杨卫红宝山区青少年科技指导站周卫平崇明县青少年活动中心刘建平闵行区青少年科技指导站胡艳杨浦区青少年科技指导站周建军。

上海市全国高中数学联赛上海赛区得奖公示(三等奖)

上海市全国高中数学联赛上海赛区得奖公示(三等奖)

学校 上海市上海中学 上海市大同中学 上海市上海中学 上海市上海中学 复旦大学附属中学 上海市上海中学 上海市七宝中学 华东师范大学第二附属中学 上海交通大学附属中学闵行分校 华东师范大学第二附属中学 上海师范大学附属中学 上海市实验学校 上海市市北中学 上海外国语大学附属外国语学校 上海市曹杨第二中学 上海交通大学附属中学嘉定分校 上海市市北初级中学 上海市市北初级中学 上海市向明中学 上海市位育中学 上海市市北中学 上海市市北中学 上海外国语大学附属外国语学校 上海市实验学校 华东师范大学第二附属中学 上海市实验学校 上海市南洋模范中学 华东师范大学第二附属中学紫竹 校区 上海市七宝中学 上海市实验学校 上海市市北中学 上海市格致中学 上海市闵行中学 华东师范大学第二附属中学紫竹 校区 上海市七宝中学 上海市上海中学东校 上海市洋泾中学 上海市进才中学 上海市市北中学 上海交通大学附属中学嘉定分校 上海市曹杨第二中学 上海市上海中学 复旦大学附属中学 上海交通大学附属中学 上海交通大学附属中学
年级 高三 高三 高一 高三 高三 高二 高三 高三 高三 高二 高三 高二 高三 高二 高三 高三 初二 初二 高三 高三 高三 高三 高一 高二 高三 高二 高二 高三 高三 高二 高三 高三 高三 高三 高二 高二 高三 高二 高三 高三 高三 高一 高三 高二 高二
性别 男 男 男 男 女 男 男 男 女 男 男 男 男 男 男 男 男 男 男 男 男 女 男 男 女 男 男 男 男 男 男 男 男 男 男 男 男 男 男 男 男 男 男 女 男
获奖
三等奖 三等奖 三等奖 三等奖 三等奖 三等奖 三等奖 三等奖 三等奖 三等奖 三等奖 三等奖 三等奖 三等奖 三等奖 三等奖 三等奖 三等奖 三等奖 三等奖 三等奖 三等奖 三等奖 三等奖 三等奖 三等奖 三等奖 三等奖 三等奖 三等奖 三等奖 三等奖 三等奖 三等奖 三等奖 三等奖 三等奖 三等奖 三等奖 三等奖 三等奖 三等奖 三等奖 三等奖 三等奖

上海市高中数学竞赛试题及参考答案

上海市高中数学竞赛试题及参考答案

上海市高中数学竞赛一、填空题(本题满分60分,前4小题每小题7分,后4小题每小题8分) 1.如图,正六边形111111A B C D E F 的边长为1,它的6条对角线又围成一个正六边形222222A B C D E F ,如此继续下去,则所有这些六边形的面积和是 .2.已知正整数1210,,,a a a 满足:3,1102>≤<≤ji a i j a ,则10a 的最小可能值是 .3.若17tan tan tan 6αβγ++=,4cot cot cot 5αβγ++=-,cot cot αβ17cot cot cot cot 5βγγα++=-,则()tan αβγ++= .4.已知关于x 的方程()()lg 2lg 1=+kx x 仅有一个实数解,则实数k 的取值范围是 .5.如图,∆AEF 是边长为x 的正方形ABCD 的内接三角形,已知90∠=︒AEF ,,,==>AE a EF b a b ,则=x .6.方程1233213+⋅-+=m n n m 的非负整数解(),=m n .7.一个口袋里有5个大小一样的小球,其中两个是红色的,两个是白色的,一个是黑色的,依次从中摸出5个小球,相邻两个小球的颜色均不相同的概率是 .(用数字作答)8.数列{}n a 定义如下:()1221211,2,,1,2,22+++===-=++n n n n na a a a a n n n .若201122012>+m a ,则正整数m 的最小值为 .E1C D 1二、解答题 9.(本题满分14分)如图,在平行四边形ABCD 中,AB x =,1BC =,对角线AC 与BD 的夹角45BOC ∠=︒,记直线AB 与CD 的距离为()h x .求()h x 的表达式,并写出x 的取值范围.10.(本题满分14分)给定实数1a >,求函数(sin )(4sin )()1sin a x x f x x++=+的最小值.11.(本题满分16分)正实数,,x y z 满足94xyz xy yz zx +++=,求证:(1)43xy yz zx ++≥; (2)2x y z ++≥.ODCBA12.(本题满分16分)给定整数(3)n ≥,记()f n 为集合{}1,2,,21n -的满足如下两个条件的子集A 的元素个数的最小值:(a ) 1,21n A A ∈-∈;(b ) A 中的元素(除1外)均为A 中的另两个(可以相同)元素的和. (1)求(3)f 的值; (2)求证:(100)108f ≤.上海市高中数学竞赛答案1、42、923、114、(){},04-∞526、()()3,0,2,27、258、40259.解 由平行四边形对角线平方和等于四条边的平方和得2222211()(1)22OB OC AB BC x +=+=+. ①…………………(2分)在△OBC 中,由余弦定理2222cos BC OB OC OB OC BOC =+-⋅∠,所以 221OB OC OC +⋅=, ②由①,②得 2OB OC ⋅=. ③…………………(5分)所以 144s i n 2A B C D O B C S S O B O C B O C ∆==⋅⋅∠OC =⋅212x -=, 故 ()AB h x ⋅212x -=,所以 21()2x h x x-=. …………………(10分)由③可得,210x ->,故1x >.因为222OB OC OB OC +≥⋅,结合②,③可得221(1)22x +≥解得(结合1x >)11x <+.综上所述,21()2x h x x-=,11x <≤. …………………(14分)10.解 (sin )(4sin )3(1)()1sin 21sin 1sin a x x a f x x a x x++-==++++++.当713a <≤时,02≤,此时3(1)()1sin 221sin a f x x a a x-=++++≥++,且当(]()sin 11,1x =∈-时不等式等号成立,故min ()2f x a =+. …………………(6分)当73a >2>,此时“耐克”函数3(1)a y t t -=+在(0,内是递减,故此时min 3(1)5(1)()(1)2222a a f x f a -+==+++=.综上所述,min 72,1;3()5(1)7,.23a a f x a a ⎧+<≤⎪⎪=⎨+⎪>⎪⎩ …………………(14分)11.证 (1)记t =)33223xy yz zx xyz ++⎛⎫=≤ ⎪⎝⎭.…………………(4分) 于是 324993xyz xy yz zx t t =+++≤+,所以 ()()2323320t t t -++≥,而23320t t ++>,所以320t -≥,即23t ≥,从而 43x y y zz x ++≥. …………………(10分) (2)又因为2()3()x y z xy yz zx ++≥++,所以 2()4x y z ++≥,故 2x y z ++≥. …………………(16分)12.解 (1)设集合{}31,2,,21A ⊆-,且A 满足(a ),(b ).则1,7A A ∈∈.由于{}()1,,72,3,,6m m =不满足(b ),故3A >. 又 {}{}{}{}{}{}{}1,2,3,7,1,2,4,7,1,2,5,7,1,2,6,7,1,3,4,7,1,3,5,7,1,3,6,7, {}{}{}1,4,5,7,1,4,6,7,1,5,6,7都不满足 (b ),故4A >. 而集合{}1,2,4,6,7满足(a ),(b ),所以(3)5f =.…………………(6分) (2)首先证明(1)()2,3,4,f n f n n +≤+=. ①事实上,若{}1,2,,21n A ⊆-,满足(a ),(b ),且A 的元素个数为()f n .令{}1122,21n n B A++=--,由于12221n n +->-,故()2B f n =+.又111222(21),211(22)n n n n +++-=--=+-,所以,集合{}11,2,,21n B +⊆-,且B 满足(a ),(b ).从而(1)()2f n B f n +≤=+. …………………(10分)其次证明:(2)()1,3,4,f n f n n n ≤++=. ②事实上,设{}1,2,,21n A ⊆-满足(a ),(b ),且A 的元素个数为()f n .令{}222(21),2(21),,2(21),21nn n n n B A=----,由于 222(21)2(21)2(21)21n n n n n -<-<<-<-,所以{}21,2,,21n B ⊆-,且()1B f n n =++.而12(21)2(21)2(21),0,1,,1k n k n k n k n +-=-+-=-,2212(21)(21)n n n n -=-+-,从而B 满足(a ),(b ),于是(2)()1f n B f n n ≤=++. …………………(14分) 由①,②得 (21)()3f n f n n +≤++. ③ 反复利用②,③可得(100)(50)501(25)25151f f f ≤++≤+++(12)12377(6)6192f f ≤+++≤+++(3)3199108f ≤+++=. …………………(16分)。

上海高二数学竞赛试题

上海高二数学竞赛试题

上海高二数学竞赛试题上海高二数学竞赛是一项旨在提高学生数学素养和解决问题能力的重要赛事。

本次竞赛试题涵盖了高中数学的多个领域,包括代数、几何、概率统计等,题目设计旨在考察学生的逻辑推理、抽象思维和创新能力。

一、选择题(每题3分,共15分)1. 若\( a \), \( b \)为正整数,且\( a^2 + b^2 = 100 \),求\( a + b \)的可能值。

A. 10B. 12C. 14D. 162. 已知函数\( f(x) = 2x^3 - 3x^2 + x - 5 \),求\( f(-1) \)的值。

A. -8B. -7C. -6D. -53. 某班有30名学生,其中男生和女生的比例为3:2。

若随机抽取一名学生,求抽到女生的概率。

A. 0.4B. 0.5C. 0.6D. 0.74. 已知圆的方程为\( (x-2)^2 + (y-3)^2 = 25 \),求圆心到直线\( 2x + 3y - 7 = 0 \)的距离。

A. 2B. 3C. 4D. 55. 若\( \sin\theta + \cos\theta = \sqrt{2} \),求\( \sin\theta \cdot \cos\theta \)的值。

A. \( \frac{\sqrt{2}}{2} \)B. 1C. \( \frac{1}{2} \)D. 0二、填空题(每题4分,共20分)6. 计算定积分 \(\int_{0}^{1} x^2 dx\) 的值。

7. 已知等差数列的首项为2,公差为3,求第10项的值。

8. 求椭圆 \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\)(其中\(a > b > 0\))与直线 \(y = mx + c\) 相切的条件。

9. 若复数 \(z = 1 - i\),求 \(|z|^2\) 的值。

10. 已知向量 \(\vec{a} = (2, -1)\) 和 \(\vec{b} = (-3, 4)\),求向量 \(\vec{a} \times \vec{b}\) 的值。

上海中学数学竞赛课程、

上海中学数学竞赛课程、

上海中学数学竞赛课程、摘要:一、上海中学数学竞赛课程的概述二、上海中学数学竞赛课程的目标和意义三、上海中学数学竞赛课程的教学内容和教学方法四、上海中学数学竞赛课程的选拔和培养机制五、上海中学数学竞赛课程的成果和影响正文:上海中学数学竞赛课程是我国中学数学教育领域的一项重要课程,旨在培养具有数学特长和兴趣的学生,激发他们学习数学的热情,提高他们的数学素养和能力,为他们今后在数学领域的发展奠定坚实的基础。

一、上海中学数学竞赛课程的概述上海中学数学竞赛课程是在我国中学数学课程的基础上,针对数学特长生开设的一种特殊课程。

该课程以数学竞赛为主要教学内容,以提高学生的数学思维能力和解决问题的能力为目标。

课程的设计和教学都紧密结合数学竞赛的特点和要求,注重培养学生的独立思考和创新能力。

二、上海中学数学竞赛课程的目标和意义上海中学数学竞赛课程的主要目标是培养学生的数学兴趣和特长,提高他们的数学素养和能力,使他们能够在数学竞赛中取得优异成绩。

此外,该课程还有助于激发学生的学习兴趣,培养他们的学习习惯和自主学习能力,提高他们的综合素质。

三、上海中学数学竞赛课程的教学内容和教学方法上海中学数学竞赛课程的教学内容涵盖了数学竞赛的主要领域,如代数、几何、组合、数论等。

教学方法注重启发式教学,引导学生通过自主学习和探究来理解和掌握数学知识,培养他们的独立思考和创新能力。

四、上海中学数学竞赛课程的选拔和培养机制上海中学数学竞赛课程的选拔机制主要是通过选拔考试来选拔具有数学特长的学生。

对于选拔出的学生,学校会安排专门的数学竞赛教练进行培训和指导,帮助他们提高数学竞赛水平。

五、上海中学数学竞赛课程的成果和影响上海中学数学竞赛课程自开设以来,已经取得了丰硕的成果。

许多学生在课程的学习中取得了显著的进步,他们在各类数学竞赛中取得了优异的成绩,为我国数学教育事业做出了贡献。

上海市全国高中数学联赛上海赛区得奖公示(二等奖)

上海市全国高中数学联赛上海赛区得奖公示(二等奖)

46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
M217200046 M217200047 M217200048 M217200049 M217200050 M217200051 M217200052 M217200053 M217200054 M217200055 M217200056 M217200057 M217200058 M217200059 M217200060 M217200061 M217200062 M217200063 M217200064 M217200065 M217200066 M217200067 M217200068 M217200069 M217200070 M217200071 M217200072 M217200073 M217200074 M217200075 M217200076 M217200077 M217200078 M217200079 M217200080 M217200081 M217200082 M217200083 M217200084 M217200085 M217200086 M217200087 M217200088 M217200089 M217200090 M217200091
黄宸昊 章辰皓 刘嘉源 李心诺 张博洋 唐迪炀 刘欣洋 李翰昶 蔡哲飚 孙致远 施力文 韩家乐 唐国栋 戎昉杰 严帆 边嘉晖 王瑞辰 张佳诚 黄天洋 肖旖萱 朱嘉骏 孙蒙 张柏舟 刘欣宇 柳雍华 宋逸云 何文阳 谢司南 厉茗 瞿天雍 杨海辰 张仕学 徐嘉澄 应蕴涵 李晔伟 朱则然 葛方哲 范歆远 邵翌阳 王朝扬 沈达为 张逸凡 陆雪松 张开元 任丁 尤铭浠

上海高一高中数学竞赛题目

上海高一高中数学竞赛题目

上海高一高中数学竞赛题目近年来,数学竞赛在中国的中小学生中越来越受欢迎。

数学竞赛不仅能够提高学生的数学水平,还能培养他们的逻辑思维和解决问题的能力。

上海作为中国数学教育的重要城市,每年都会举办高一高中数学竞赛,吸引了众多学生的参与。

下面是一些上海高一高中数学竞赛的题目,让我们一起来挑战一下吧!题目一:已知函数f(x) = x^2 + 2x + 1,求f(3)的值。

解析:将x=3代入函数f(x)中,得到f(3) = 3^2 + 2×3 + 1 = 9 + 6 + 1 = 16。

题目二:已知等差数列的前n项和为Sn = 3n^2 + 2n,求该等差数列的第n项。

解析:设等差数列的首项为a,公差为d,第n项为an。

根据等差数列的性质,有Sn = n/2 × (2a + (n-1)d)。

将Sn = 3n^2 + 2n代入,得到3n^2 + 2n = n/2 × (2a + (n-1)d)。

整理得到3n^2 + 2n = an^2 + (a-d)n + ad。

由此可得an = 3n^2 + 2n - an^2 - (a-d)n - ad。

整理得到an = 2n^2 + (2d-a)n + ad。

因此,该等差数列的第n项为an = 2n^2 + (2d-a)n + ad。

题目三:已知函数f(x) = 2x^3 - 3x^2 + 4x - 1,求f'(x)的值。

解析:函数f(x)的导数f'(x)表示函数f(x)的斜率。

对于多项式函数,求导的方法是将每一项的指数乘以系数,并降低指数1。

根据这个规则,对于函数f(x) = 2x^3 - 3x^2 + 4x - 1,求导得到f'(x) = 6x^2 - 6x + 4。

题目四:已知函数f(x) = x^3 - 3x^2 + 2x,求f(-1)的值。

解析:将x=-1代入函数f(x)中,得到f(-1) = (-1)^3 - 3(-1)^2 + 2(-1)= -1 - 3 + (-2) = -6。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上海市高中数学竞赛
说明:解答本试题不得使用计算器
一、填空题(本题满分60分,前4小题每题7分,后4小题每题8分)
1.方程组2
71211x x y x y ++⎧=⎪⎨+=⎪⎩的解集为 . 2.在平面直角坐标系中,长度为1的线段AB 在x 轴上移动(点A 在点B 的左边),点P 、Q 的坐标分别为(0,1)、(1,2),则直线AP 与直线BQ 交点R 轨迹的普通方程为 .
3.已知M 是椭圆x 216+y 29=1在第一象限弧上的一点,MN ⊥y 轴,垂足为N ,当△OMN 的面积最大时,它的内切圆的半径r =
4.已知△ABC 外接圆半径为1,角A 、B 、C 的平分线分别交△ABC 外接圆于A 1、B 1、C 1,则
AA 1cos A 2+BB 1cos B 2+CC 1cos C 2sin A +sin B +sin C
的值为 . 5.设f (x )=a sin[(x +1) π]+b 3x -1+2,其中a 、b 为实常数,若f (lg5)=5,则f (lg20)的值为 .
6.在平面直角坐标系中,O 为坐标原点,点A (3,a ),B (3,b )使∠AOB =45°,其中a 、b 均为整数,且a b >,则满足条件的数对(a ,b )共有 组.
7.已知圆C 的方程为x 2+y 2-4x -2y +1=0(圆心为C ),直线y =(tan10°)x +2与圆C 交于A 、B 两点,则直线AC ,BC 倾斜角之和为 .
8.甲、乙两运动员乒乓球比赛在进行中,甲必须再胜2局才最后获胜;乙必须再胜3局才最后获
胜.若甲、乙两人每局取胜的概率都为12,则甲最后获胜的概率是 .
二、解答题:
9.(本题满分为14分)对于两个实数a 、b ,min{a ,b }表示a 、b 中较小的数,求所有非零实数x ,
使min{x +4x ,4}≥8·min{x ,1x }.
10. (本题满分为14分)如图,在△ABC ,Q 为BC 中点,点M ,N 分别在边AB ,AC 上,且
AM =6,MB =4,AN =4,NC =3,∠MQN =90°.求∠A 的大小.
11. (本题满分为16分)对整数k ,定义集合S k ={n |50k ≤n ≤50(k +1),n ∈Z },问S 0,S 1,S 2,……,S 599这600个集合中,有多少个集合不含完全平方数?
12. (本题满分为16分)求所有大于1的正整数n ,使得对任意正实数x 1,x 2,…,x n ,都有不等式 (x 1+x 2+…+x n )2≥n (x 1x 2 +x 2x 3+…+x n -1x n +x n x 1).
A
Q M C B N。

相关文档
最新文档