重力勘探在地热勘探中的应用总结归纳

合集下载

重力勘探在石油勘探中的应用

重力勘探在石油勘探中的应用

重力勘探在石油勘探中的应用重力勘探是一种重要的地球物理勘探方法,它在石油勘探中发挥着重要的作用。

通过测量地球重力场的变化,可以揭示地下构造、岩性、储层性质等信息,为石油勘探和开发提供重要的参考。

本文将探讨重力勘探在石油勘探中的应用。

一、重力勘探原理重力勘探利用地球重力场的变化来推断地下的构造和岩石性质。

地球重力场是指地球表面上任意一点的重力加速度大小和方向。

地表下的不同密度分布会引起地球重力场的变化,从而反映出地下的构造。

重力勘探的关键是通过测量地球重力场的变化来推断地下构造。

在重力勘探中,测量的基本单位是重力加速度的变化量,通常以重力异常值表示。

地下不同密度的岩石会引起重力异常,密度越大的岩石引起的重力异常越大。

二、重力勘探在石油勘探中的应用1. 揭示油气圈闭重力勘探可以揭示油气圈闭的存在和分布情况。

油气圈闭是指地下成藏岩石中形成的油气聚集空间,是石油勘探的关键目标。

由于油气圈闭的密度通常较低,所以在地球重力场中会引起重力异常。

通过重力勘探可以识别出油气圈闭的位置和形态,为油气勘探提供重要线索。

2. 确定构造形态重力勘探可以帮助准确揭示地下的构造形态,包括断层、隆起、坳陷等。

地下构造形态与油气的分布关系密切,通过重力勘探可以分析不同构造形态下的油气聚集规律。

例如,在坳陷区域往往会形成有利的油气聚集条件,重力勘探可以帮助确定坳陷的边界和内部构造。

3. 识别储层性质重力勘探可以帮助识别地下储层的性质,包括厚度、密度和孔隙度等。

储层是油气聚集的重要储存空间,了解储层的性质对勘探和开发具有重要意义。

通过重力勘探可以推断出储层的厚度、密度和孔隙度,为储层评价和开发提供重要依据。

4. 辅助勘探决策重力勘探可以为勘探决策提供重要的辅助信息。

通过分析重力异常的分布规律,可以评价勘探的前景和风险,判断勘探区域的可行性。

重力勘探还可以为选择钻井点位和确定钻探方案提供参考,提高勘探效率和成功率。

三、重力勘探的局限性及发展趋势尽管重力勘探在石油勘探中具有重要的应用价值,但也存在一定的局限性。

地球物理勘探在地热勘查中的应用分析

地球物理勘探在地热勘查中的应用分析

地球物理勘探在地热勘查中的应用分析地球物理勘探是以物理方法探测地下物质分布与性质的一种方法。

地球物理勘探在地热勘查中广泛应用,可以探测地质结构、岩石性质和流体分布,为地热资源的开发提供了关键的技术支持。

一、地球物理勘探方法1、地震勘探地震勘探是通过人工或天然产生的震动在不同深度处的反射或折射来获取地下信息。

地震勘探可以确定地下岩层厚度、岩石性质、孔隙度、介质饱和度等参数。

2、重力勘探重力勘探是基于地球的引力场不均匀性原理,利用重力计测量地球引力场在不同位置的变化,进而推断地下物质的密度、厚度和形态。

3、电磁法勘探电磁法勘探是利用电磁场在不同介质中的传播速度与方向差异来推测地下岩石的性质、含水情况、空隙率等参数。

常用的电磁法勘探方法包括磁法、电法和电磁法等。

地热勘探是利用地热能源的物理特性,如温度、温度梯度、热导率等参数来推断地下岩石热传输性质,反映地下地热组成、分布等情况。

地震勘探是获取地下地质结构、岩石性质和流体分布信息的重要手段。

在地热勘查中,地震勘探可以用于探测地下岩层结构、岩性、厚度等参数,通过地下地震波速度与频率的变化来推测地下岩层的性质及成因,从而判断地热资源的质量与分布。

重力勘探利用重力场的不均匀性推断地下岩石的密度、厚度和形态,可以为寻找地热地区提供宝贵的信息。

在地热勘查中,重力勘探可以用于判断地下水体的分布、深度和厚度,同时结合地震勘探结果,对地下热源的类型、规模及分布范围等进行研究。

电磁法勘探可以根据地下岩石的电性质来推测地下介质的分布情况,其中磁法常用于检测矿床、电法常用于检测地下水等。

在地热勘查中,电磁法可以用于探测地下含水层的覆盖情况、地下流体的分布等,为地热发电提供可靠的数据支撑。

地热勘探可以通过检测地下温度、温度梯度、热流密度等参数来推测地下热源的类型、规模及分布范围等。

在地热勘查中,地热勘探可以用于确定地热能够利用的区域范围、估算地热资源量及储量等数据。

三、总结地球物理勘探在地热勘查中的应用,可以获取地下物质的分布、性质及规模等信息,为开发利用地热资源提供了基础数据与理论支持。

重力勘探地球物理教程

重力勘探地球物理教程



自从牛顿发现了万有引力定律之后,一切物体之间的相互吸引作用已
被认为是普遍的现象。这个现象还说明一个众所周知的事实,即在地球附近
空间落向地球的物体将以逐渐增加的速度降落,下降速度的递增率就是重力 加速度,简称重力,用g来表示。伽里略首先证明了地球上的某一固定点,所 有物体的重力加速度都是一样的。 假定地球是一个均匀的并具有同心层状结构的理想球体,则地球对位于 地球表面上的物体的吸引力应当到处相同,且重力应当有唯一的恒定值。事 实上,地球是非球形的并且是旋转的,内部构造与物质成分是不均匀的,其 表面也是起伏不平的。所有这些实际情况都使地球表面上的重力值发生变化 。但是,这种变化是很微小的,只有借助于非常灵敏的仪器,才能对它作出 精确的测定。
LOGO
勘探地球物理教程
——重力勘探
授课人:孟令顺
1
主要内容
1


2
3
重力勘探的理论基础 重力测量与资料整理 地质体参数的计算
4
5 6
重力异常的划分 重力勘探的应用
2

重力勘探是地球物理勘探中的一个主要分支。它是通过测量地面上 各点的重力场值以及岩矿石的密度差异来研究和寻找地质构造、金属矿体 以及与之有关的各类问题。
8
二个长期变 化分量
引力场强度:占地球重力场的99.9%,起决 定性作用 离心力场强度,最大只有0.0339m/s2,只占 重力场的1/300
地球重力 场的组成
一个时间变 化分量
重力固体潮:日、月等天体对地面物质 最大吸引力平均只有0.24×10-5 m/s2
9
三、重力位
由物理学可知,在保守力场中,还可用位函数来研究场的特征。 重力位的物理意义可以理解为场力所做的功。假设在质点的质量为m 的引力 场中,引力位的定义为,移动单位质量从无穷远到该点场力所做的功。可以证明 ,质点引力位 。如果一个质量为M 的物体所产生的引力位应为各质

石油勘探中的重力测量技术与解释

石油勘探中的重力测量技术与解释

石油勘探中的重力测量技术与解释石油勘探是一项复杂而精密的过程,其中重力测量技术被广泛应用。

通过对地球重力场的测量和解释,石油勘探人员可以了解地下油气资源的分布情况、油藏的形状和特征等重要信息。

本文将就石油勘探中的重力测量技术与解释进行详细探讨。

一、重力测量技术概述重力测量技术是利用地球重力场的变化来推断地下物质的分布情况和构造特征的一种方法。

通过测量某个地点的重力加速度值,并与参照点进行比较,可以揭示地下物质分布的差异并推断可能的油气储集区域。

常用的重力测量设备包括重力仪器、测量系统和数据处理软件。

二、重力测量在石油勘探中的应用1. 地质构造解释重力测量可以帮助石油勘探人员对地下构造进行解释和预测。

根据地下岩石密度的变化,可以绘制出重力异常图像,用于判断构造的深度和类型。

在勘探过程中,重力异常图像可以辅助识别断层、褶皱和构造块状变形等地质构造,为油气勘探提供重要参考。

2. 沉积盆地勘探在沉积盆地勘探中,重力测量技术可以确定盆地的边界、补给渠道和沉积源区等重要信息。

重力测量可以揭示盆地内部的密度差异,根据不同岩石的密度变化规律,推断沉积物的类型和厚度,评估石油勘探的潜力。

此外,在盆地勘探过程中,重力测量还可以用于判断断陷带、隆起带和盆地侧限等构造特征。

3. 油气储集区预测重力测量技术在油气储集区预测中起着重要作用。

通过重力测量获得的地下密度差异数据,可以推断潜在的油气储集区位置。

油气的储藏通常具有较高的密度,通过观测重力加速度的变化,可以辨别出潜在的油气富集区域。

这对于勘探人员确定钻探目标和优化资源开发具有重要意义。

三、重力测量数据处理与解释重力测量数据处理是重力测量技术中不可或缺的环节。

数据处理的目标是从原始数据中提取出地下油气储集区的信息。

常用的数据处理方法包括重力异常分析、滤波、当前分解和重力反演等。

通过这些处理方法,可以得到重力异常的分布图像,并配合其他地质和地球物理数据进行综合解释,从而辅助决策和勘探工作。

地球物理勘探核心知识点

地球物理勘探核心知识点

地球物理勘探核心知识点地球物理勘探是一种利用地球物理现象和规律来探测地下结构和资源的方法。

它在能源勘探、地质工程和环境监测等领域起着重要作用。

本文将介绍地球物理勘探的核心知识点,以帮助读者更好地理解和应用这一技术。

1.地震勘探地震勘探是利用地震波在地下传播的原理来探测地下结构和地质特征的一种方法。

它包括记录地震波传播速度和传播路径的地震仪器,以及分析和解释地震波数据的方法。

地震勘探可用于勘探石油、天然气、矿产资源和地下水等。

2.重力勘探重力勘探是利用重力场的变化来推断地下物质分布和地质构造的一种方法。

重力勘探需要测量地球表面上的重力值,并通过计算和建模来确定地下物质的密度分布。

重力勘探广泛应用于勘探矿产资源、地下水和地下岩体等。

3.磁力勘探磁力勘探是利用地球磁场的变化来推断地下物质分布和地质构造的一种方法。

磁力勘探需要测量地球表面上的磁场强度,并通过计算和建模来确定地下物质的磁性特征。

磁力勘探可用于勘探矿产资源、地下水和地下岩体等。

4.电磁勘探电磁勘探是利用地下电磁场的变化来推断地下物质分布和地质构造的一种方法。

电磁勘探包括测量地球表面上的电磁场强度和频率,以及通过计算和建模来确定地下物质的电性特征。

电磁勘探可用于勘探矿产资源、地下水和地下岩体等。

5.雷达勘探雷达勘探是利用地下电磁波的反射和散射特性来推断地下物质分布和地质构造的一种方法。

雷达勘探需要发射电磁波并接收反射信号,通过分析和解释信号来确定地下物质的性质和分布。

雷达勘探可用于勘探地下水、地下管线和地下洞穴等。

6.地热勘探地热勘探是利用地下热流的分布和变化来推断地下热体和地热资源的一种方法。

地热勘探需要测量地下的温度和热流,并通过计算和建模来确定地下热体的分布和性质。

地热勘探可用于勘探地热能资源和地下热体的分布。

7.孔隙流体勘探孔隙流体勘探是利用地下孔隙介质中流体的物理性质来推断地下流体分布和流动状态的一种方法。

孔隙流体勘探需要测量地下孔隙介质中的流体压力、渗透率和孔隙度等参数,并通过计算和建模来确定地下流体的分布和运动规律。

地质勘查中的物探技术应用

地质勘查中的物探技术应用

地质勘查中的物探技术应用在当今的地质勘查领域,物探技术发挥着至关重要的作用。

它犹如地质学家的“透视眼”,能够帮助我们深入了解地球内部的结构和物质分布,为资源勘探、工程建设、环境保护等提供关键的信息支持。

物探技术,简单来说,就是通过观测和分析各种物理场的分布和变化,来推断地下地质情况的一种勘查方法。

常见的物理场包括重力场、磁场、电场、地震波场等。

不同的物探技术基于不同的物理原理,具有各自的特点和适用范围。

重力勘探是一种古老而有效的物探方法。

它基于地球重力场的变化来研究地质构造和矿产分布。

在重力勘探中,测量仪器会精确地测量重力加速度的微小变化。

当地下存在密度不均匀的地质体时,比如大型的金属矿体或者岩石密度差异较大的地层,就会引起重力异常。

通过对这些重力异常的分析和解释,地质学家可以推测地下地质体的形状、大小和位置。

这种方法在寻找深部隐伏矿体、研究区域地质构造等方面有着广泛的应用。

磁法勘探则是利用地球磁场的变化来探测地下磁性物质的分布。

许多金属矿床,如磁铁矿,具有较强的磁性,会引起局部磁场的异常。

通过测量磁场的强度和方向,并对磁异常进行分析,能够有效地圈定磁性矿体的范围,为进一步的勘查工作提供依据。

此外,磁法勘探还可以用于研究地质构造,如断裂带、岩浆岩的分布等。

电法勘探是基于地下介质电学性质差异的一种物探技术。

常见的有电测深法、电剖面法和激发极化法等。

电测深法通过测量不同深度的电阻率来了解地下地层的垂向分布情况;电剖面法则用于探测地层的横向变化。

激发极化法可以有效地探测金属硫化物矿床,因为这类矿床在电流作用下会产生明显的激发极化效应。

电法勘探在寻找地下水、解决工程地质问题等方面发挥着重要作用。

地震勘探是目前应用最为广泛的物探技术之一。

它通过人工激发地震波,并接收和分析地震波在地下传播过程中的反射和折射信号,来构建地下地质结构的图像。

地震勘探能够提供高精度的地下地层和构造信息,对于油气勘探、煤炭资源勘查等具有重要意义。

地球物理勘探在地热勘查中的应用分析

地球物理勘探在地热勘查中的应用分析

地球物理勘探在地热勘查中的应用分析地球物理勘探是一种利用地球物理方法来探测地下岩石和矿产资源的技术。

它通过观测和分析地球内部的物理现象和参数,从而获取地下构造、地质特征以及资源分布等信息。

在地热勘查中,地球物理勘探具有重要的应用价值。

地热能是一种可再生能源,具有丰富、持久、稳定的特点。

地热勘查的目的是找到地壳内部的高温地热资源,为热能利用提供依据。

传统上,地热勘查主要借助于地质勘探和钻探等方法。

而地球物理方法在近年来成为地热勘查的重要手段之一。

主要的地球物理方法有地震勘探、电磁勘探、重力勘探和磁力勘探等。

地震勘探是利用地震波在地下的传播特性,通过记录地震波在地下不同介质中的传播时间和传播速度,来推测地下构造和地质层序。

地震勘探在地热勘查中的应用主要有两个方面。

地震勘探可以测量地下岩石的物理参数,如密度、泊松比等。

通过这些参数的测量,可以推测地下岩石的热导率、热容和导热系数等。

这些参数对地热资源的分布和热流量的计算非常重要。

地震勘探也可以用来探测地下水体的存在和分布,这对地热资源的利用也具有指导意义。

地震勘探可以测量地下介质的波速和阻尼等特性。

地热勘查中,地震勘探可以通过测量地震波的传播速度和振幅来获得地下温度的信息。

地下温度是判断地下地热资源的重要指标。

地震勘探还可以通过测量地震波的反射和折射等现象,来推测地下构造和裂缝等特征,进一步指导地热勘查工作。

重力勘探是通过测量地下岩石和地下水的密度差异,来推测地下构造和地热资源分布的方法。

重力勘探是利用地球物理仪器测量地方重力场的变化,通过地质信息的解译和数据的处理,得到地下介质的密度分布。

这对勘探地下岩石和判断地下流体分布具有重要的指导作用。

磁力勘探是利用地下岩石中的磁性物质对磁场的响应,来推测地下构造、地下岩石的磁性特征和地热资源的特点的一种方法。

地热勘查中,磁力勘探可以用来探测地下的热液循环系统以及判断地下岩石中的矿物成分。

这些信息对勘查地热系统的充分利用具有重要的意义。

地球物理勘探方法简介

地球物理勘探方法简介

地球物理勘探方法简介地球物理勘探作为地球科学领域中的重要分支,通过测量地球的物理特征,以及地下介质的物理属性,来获取地下资源的信息。

本文将对地球物理勘探方法进行简要介绍。

一、重力勘探法重力勘探法是利用地球重力场的变化来推测地下物质的分布情况。

勘探人员通过测量不同地点的重力值,分析地球物质的密度分布。

这种方法在石油、地质灾害等领域有较广泛应用。

二、磁法勘探法磁法勘探法是测量地球表面垂直指向的磁场强度和方向,推测地下物质的磁性变化。

勘探人员通过磁力仪器测量地磁场的强度和方向变化,进而得出地下磁性物质的大致分布情况。

磁法勘探法在寻找矿藏、勘探地下管道等方面具有重要意义。

三、电法勘探法电法勘探法是利用电磁场的特性来推断地下物质的电性变化。

勘探人员通过在地下埋设电极,在地表上施加电流,测量地下电势分布和电阻率变化,从而推测地下物质的导电性差异。

电法勘探法在矿产资源勘探和地下水资源调查中具有广泛应用。

四、地震勘探法地震勘探法是通过分析地震波在地下介质传播的速度和幅度变化,来推断地下介质的结构和组成。

勘探人员通过放置震源和接收器,记录地震波传播的信息,并进行数据处理和解释。

地震勘探法在石油勘探、地质灾害预测等领域有着重要应用。

五、测井技术测井技术是通过在钻井过程中使用各种物理测量手段,获取地下岩石的物理特性和储量分布信息。

测井仪器可以测量地层电阻率、自然伽马辐射、声波速度等参数,帮助勘探人员判断地层岩性、含油气性质等重要信息。

六、地电磁勘探法地电磁勘探法是通过测量地下介质中电磁场的变化,推测地下物质的分布情况。

勘探人员通过放置电磁发射器和接收器,记录电磁场的变化情况。

地电磁勘探法在矿产资源调查、地质工程勘察等方面起到了重要作用。

七、地热勘探法地热勘探法是通过测量地壳中的温度分布,推测地下热流和地热资源的分布情况。

测温井、测温孔等技术手段可以帮助勘探人员获取地温数据,并进行数据处理与解释。

地热勘探法在地热能利用和环境地质研究中有着重要应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精心整理 WORD文档,可下载修改学院:地球物理与空间信息学院班级:064082-27姓名:李煜学号:200810034380引言地热能的开发是全球经济.能源.环境可持续发展的重要组成部分。

随着地热开发浪潮的日趋高涨,地热旅游业的持续升温,绿色能源的深入开发利用,深层地热开发利用成为地热开发的主流。

物探技术是深部矿产勘探的主要技术。

近年来,物探技术飞速发展,新兴技术不断涌现,为深部地热勘探提供了技术前提。

地热能是一种在开采利用时间上可人为控制的可再生资源,在现代种植业、水产养殖业、浴疗、供暖、旅游、皮革、酿造、干燥、发电等方面的应用价值和经济价值已逐步被人们理解和产生兴趣,地热能的开发是全球经济一能源一环境可持续发展的重要组成部分(宾德智,2000;阎敦实,2000)。

目前,国外的地热资源开发与应用技术发展迅速,日本、美国和意大利等国家的热储温度已接近或超过300℃,并有专门的机构研究地热的开发和利用(周篁,2001)。

我国的地热资源储量丰富,占全球热能活力的7.9%,发展前景广阔,但目前的开采量仅为可开采量的5.82%,开发我国的地热资源任重而道远(王秉忱,2001)。

最近,随着大多数城市的缺水危机日趋严重、浅层地下水的限量开采以及旅游休闲热的持续增温,一股新的地热浪潮逐步席卷全国,在这股浪潮中,深层地热勘探已成为主角,这为地热勘探的发展带来了机遇,同时对地热勘探技术提出了更高的要求。

本文主要介绍重力勘探在城市地热勘探中的应用。

1方法与原理重力勘探表明 , 随着地质年代的变老 , 地层、岩石密度有逐渐增大的普遍规律。

布格重力异常正值与负值相间分布 , 基岩面起伏较大 , 其分布具有一定的规律: 在凸起区表现为正异常 , 在凹陷区则表现为负异常 , 并与两坳一隆的构造格局相一致。

在重力异常密集线性带 , 一般都反映出断裂的位置。

重力勘探工程布置考虑到测区的地质构造和地形地物布置了三条精测剖面,其中一条剖面向西加长延升至测区外围曾做过直流电测深的地方,点距 50m、100m 不等。

重力观测使用加拿大SCINTREX公司产CG-3M型全自动微加重力仪,为了克服城市区及其附近车辆、人员等人文活动带来的振动对观测数据质量的影响,采集使用 1秒钟采样 1 分钟60个样值平均的形式记录,每个测点多次重复观测。

城市区交通便利,基点只选一个,设在便于到达而且人文干扰较少相对稳定的地点,省去了布设基点网的工作。

重力数据的处理分预处理和目标处理两步进行,预处理包括基点改正、正常场!纬度&改正、布格改正。

由于测区地形平坦且没有足够大比例的地形图,没进行专门的地形改正工作。

预处理后得到重力布格异常,接着进行更深一步的处理—解释目标处理。

解释目标处理包括以下几个方面:异常场的水平及垂向各阶导数的求取、趋势分析、频率域的局部场与区域场的分离、区域场场源体深度的提取和结合直流电测深的基岩顶界面的反演解释。

作为寻找新生界地层全覆盖的基岩中凹中凸构造的目标处理,最为重要的是场源体深度的提取和基岩顶界面的反演,其它的处理只是一些辅助手段。

1.1 场分离及场源体深度的提取勘探得到的位场是由局部场和基岩顶界面起伏引起的区域场两部分叠加合成的,一般地,区域场功率谱具有aExp(-2wH)的形式,而局部场具有bExp(-2wh)的形式。

假设区域场与局部场是不相关的,根据最佳滤波器的设计原则有提取区域场的滤波响应为:其中k=b/a。

上面的介绍说明场分离的关键是参数 k、H、h 的求取,其中参数H也称为区域场的视深度,称为基岩顶界面的平均深度,它通过得到的功率谱低频段的曲线拟合得到。

1.2 基岩顶界面的反演界面的反演使用迭代技术并选用Gernard提出的方法,先选择一个参考平面Z o区域场(视深度H),界面相对参考面的偏差Z d与重力场的关系用下式表示:式中g是重力异常场,V zz是重力异常场的一阶垂向导数。

Z D向上为正Z O向下为负。

用重力观测值及其一阶垂向导数代入上式可得初值界面:求取初值界面的重力异常,用它去减原始重力异常得到剩余值,将它代入(2)式求下一次的偏差Z D和界面深度。

重复上面的步骤,判断上下两次的修正偏差是否满足精度要求,若满足要求输出界面值。

为了判断反演界面是否正确,将它与已知的直流电测深解释界面比较,两种方法得到的界面一致说明反演终止。

如果重力反演的界面相差较大,改变初始密度差δ再进行迭代反演。

反演的界面模糊了界面的尖锐变化,对断层的判断解释不是最好的方法,借助重力异常场的水平、垂向导数和场的下延进行辅助解释得到了满意的效果。

1.3 重力影像技术重力勘探技术是一项较为成熟的勘探技术广泛应用于资源勘探、基础地质调查、工程地质调查等领域。

近年的理论研究和实践表明,重力资料在解译断裂构造巾可发挥很大的作用,对于3000米探度上30米断距的断层.利用50微伽精度的重力资料完全可以解泽出来.显然,对于埋藏深度较小的断层,高精度重力资料解译断层的能力会更强。

对于断裂掏造勘探,重力勘探有吼下优势:是理论研究表明,重力勘探作为体积勘探技术,当断层切割多套密度层时,其重力效应等效于一条断层的新距拶大了其所切割地层数的相同倍数,因此,在常规的地球物理勘探方法技术中,重力勘探对断层构造的灵敏度最高;二是重力资料处理解释技术的进步,能够十分有效地提取出断裂构造的异常信息,现代信号处理中的边缘增强技术、模式识别技术、图像处理技术可以形象地将断裂构造的信息直观地展现在我们的面前,供我们分析和解释;三是利用重力勘探技术既可研究大的、深部的断裂构造,也可研究小的浅部的断裂构遗,只是后者的测阿密度应大些;四是在城区部署勘探,重力勘探受人文干扰影响的程度较小,从而使得我们能够在人文干扰严重的地区能够取得台格的第一手资料。

在获取信息的诸多方式中,人们70%的信息来源于图像.图像以其形象、直观的方式将多种信息展现出来.供人们进行分析、判断、解释。

重力影像技术就是在重力教据处理技术上发展起来一类成像技术。

在资料处理过程中为了突出异常.最大限度地挖掘解释信息。

重力影像技术是将异常场(即位场)数据按较为合理的阿格密度转化为亮度(灰度)值,再以图像的方式显示出来.并在灰度圉的基础上,利用数据图像独有的处理方法如彩色罔、立体阴影图及褶积滤波等增强技术,通过对位场资料的图像增强处理,提取出原来难雎识别的信息,从而达到在资料处理过程中为了突出异常,最大限度地挖掘解释信息,深化资料解释的目的。

重力影像技术的核心技术有:①伪彩色处理图像的伪彩色处理是图像增强的一种有效方法,因为人眼对彩色的色调和强度的分辨力比黑白的灰度级要强的多,伪彩色处理就是给不同的灰级值的像元赋予不同的颜色,得到一幅彩色图像,因而把人眼不易区分的微小的灰度差别,显示为明显的色彩差异,从而更易于信息的提取、识别和解释。

②立体阴影处理立体阴影技术最早用于地形地貌图的增强。

对于位场图像,其黑白灰级随场值而定构成一个曲面,类似于地形,在假想光源的照射下,表现出像卫片那样具有起伏、明暗变化的立体效果,尤其当场值有某种变化趋势(例如重力上的梯度带)时,这种趋势会以一种形似山谷或山峰一样的影像显示出来,更便于资料的解释。

2效果与应用图1是中间测线重力异常曲线,图中不带标记的实线是预处理后的布格重力异常,曲线比较平滑,而且与地形起伏不相关,对布格重力异常进行了多种半径的切割滤波处理,它们与处理前没有很大的变化,说明不经过专门的地改工作是确实可行的。

图中虚线是切割半径为100m的奇异滤波处理前后的变化值,最大不超过400μgal,与地形相关度不大,它与重力异常相对应,变化剧烈处经其它处理(包括水平和垂向导数)表明它是断层的反映。

三条测线重力异常场的区域场与局部场的分离处理知道它们的基岩顶界面的平均深度由南到北逐渐增大,分别是 880m、852m 和 831m,与测区地质特征符合。

用它们作为界面反演的参考面深度Z o对三条测线数据进行了基岩顶界面的反演,反演对多个密度差进行了选择,最后得到使用352km/m3时反演界面与直流电测深结果一致。

图2是反演得到的与图 1相同测线基岩顶界面形态图。

图中可以看出元古界基岩埋藏深度表现为由西向东浅—深—浅的凹陷特征,凹陷位于 3000m~12000m 间的9000m 范围,它的盖层厚度大,约850m,是储热的有利条件之一。

凹陷东部有一断层隆起带,突起的位置是距离10000m附近,它是地热形成的又一个有利条件。

因此图2中F2 和F3间的断隆是利用重力勘探寻找到的形成地下热水的最佳地段。

尽管距离13000m~15000m是测区一个比较大的突起,但由于盖层厚度较薄,仅500m左右,不能成为贮藏地热的有利部位。

测区仅布置了有限的三条勘探线,都作了相同的处理和解释,利用有限的三条测线反演得到的基岩顶界深度可以大致绘制出测区基岩顶界面等高线图(图3)。

等高线图中可以看出元古界基岩顶界面成中间低两侧高的凹陷特征,构造走向北北东,基岩最浅处位于测区西北部。

综合各条测线的其它参数共解释出五条断层和一个断点,与勘探前的F1附近和F4附近两条断层的地质构造相差较大,丰富了对基岩隐伏构造的了解。

图中给出了贮藏地下热水的有利位置———凹陷中的突起,它位于F3和F4断层之间。

受计算机绘图的影响平面图中不是很明显,单条测线的成果图中就非常清晰(图2)。

勘探成果已经得到了验证,北部测线和中间测线F2 和F3断层间的两个地热孔见基岩顶界面的深度分别是940m 和935m,受F2和F3断层的影响基岩中裂隙发育,水量丰富,两个孔都得到了开发。

3结论随着地热勘探进程的不断探人,深部地热勘探难题会变得越来越复杂,新兴地球物理勘探手段的引入将成为必然。

大功率可控源技术、大功率建场测深技术具有高信噪比、高分辨率的特征,适合于深部地热勘探的目标勘探。

重力影像技术作为重力勘探领域新兴技术具有直观、快速的特征.对线性异常和圈用构造反应灵敏,是深部地热勘探的重要手段之一。

重力和电法具有各自优势,它们综台将引颁综合地热勘探的技术主流。

重力勘探方法作为一种传统的物探手段,主要用于区域地质调查中,也曾有使用重力勘探查明局部构造的个别实例。

这次地热调查的工作表明借助高精度的重力勘探仪器和从低信噪比数据中提取弱信号的数字技术进行多参数的重力资料处理和反演解释是非常有价值的,它可以勘探城市区等施工条件恶劣地区的局部构造,特别为近年来国内方兴未艾的开发地下热水服务。

参考文献:[1]张永光,物探综合方法在地热勘探中应用的探讨,广东省地质勘查局水文工程地质一大队。

[2]王晓凡,何兰芳等,物探新技术在深层地热勘探中的应用,中石油东方地球物理公司综合物化探事业部。

[3]罗国平,重力勘探在城市地热调查中的应用,中国煤田地质总局地球物理勘探研究所。

相关文档
最新文档