SMM Keywords
SCRIPTA MATERIALIA

SCRIPTAMATERIALIAPublished on behalf of Acta Materialia Inc.Guide for AuthorsContent list:IntroductionGeneral guidelines for online submissionManuscript Preparation:Limitations on length of papersCalculating the length of the manuscriptAbstractKeywordsTitle and headingsUnitsFiguresColourIllustrationsReferencesSpellcheckingPaper submissions by mailOther:CopyrightNotificationPDF ProofsAuthor BenefitsOnline paper trackingEnquiriesUseful LinksIntroduction:Short, timely and cutting-edge reports will be consideredfor rapid publication in Scripta Materialia. Papers shouldbe directed to those aspects of the science of materialsdefined in the scope presented on the inside front cover.Manuscripts must be prepared in a letters format that flowsfrom introduction, to experimental details or approach,results, discussion and summary, without headings.Manuscripts not written in proper English and according tothe following instructions will be returned to authorswithout review.Manuscript Submission.Papers should be submitted electronically through/smm/. Prior to submitting your paper, please followthe instructions given below.Back to the contents listGeneral guidelines for online submission:The preferred format for submission is Microsoft Word.Graphics should be high-resolution and in either TIFF orJPEG format. For further information on the preparation ofelectronic artwork, refer to the following website:/artworkinstruction. All online submissions must beaccompanied by a cover letter detailing the most importantfindings in your manuscript. This letter should includecontact information (address, telephone/fax numbers ande-mail address) for all authors and clearly indicate the author to whom correspondence should be addressed. The cover letter must also include a statement of the originality of the work and affirmation that all authors have read the paper and agree to this statement of originality. Authors should include details of any previous or concurrent submissions; if the manuscript is the revision of a previous submission, cite the previous manuscript number. Note that when a manuscript is received at Elsevier, it is considered to be in its final form. Therefore authors need to check the manuscript carefully before submitting it online.Back to the contents listLimitations on length of papers:The maximum length of manuscripts is 4 journal pages with not more than 4 figures. To conform to this page limit, please refer to the following guidelines:Back to the contents listEstimating the length of a manuscript:To meet the four journal page limit, an article must not exceed 3700 words, including text, title, abstract, figure captions, references. When figures, tables or equations are used, the equivalent number of words must be determined using the following: One column wide (7.5 cm)figures/tables: 20 words per cm height; Two column wide (15 cm) figures/tables: 40 words per cm height; Equations: 20 words for each equation. For example, the total number of text words available for a manuscript with one figure, one table and one equation would be as follows: Figure: 10 cm x 15 cm (double column width) = 400 words; Table: 8 cm x 7.5 cm (single column width) = 160 words; Equation: 20 words; Words available for text: 3700 - (400+160+20) = 3120 words Back to the contents listTitle:The title should be concise but informative. Avoid using abbreviations and nomenclature of specific materials and alloys in the title.Back to the contents listAbstract:The abstract must not be longer than 80 words. Non-standard abbreviations and specific nomenclature of materials must be avoided. Only atomic symbols and chemical formulae can be used without definition.Back to the contents listKeywords:Authors should list a maximum of five keywords whichappropriately represent the contents of their manuscripts. The list of keywords should appear on the title page of each paper, following the title, author names and author affiliations, and abstract. Four keywords must be selected from the Keywords List in the most recently published issue of the journal (also available on-line); however, authors may provide one keyword which is not listed in the Keywords List.Back to the contents listUnits:Use only SI units and abbreviations in manuscripts.Back to the contents listFigures:The maximum number of figures is 4. For electronic submission, all figures must be in digital form (minimum 600 dpi). Legible scale marks should be printed on all micrographs. Please see /artworkinstructions for more information.Back to the contents listColour:Color figures will be reproduced in pdf files downloadable from ScienceDirect regardless of whether or not these illustrations are reproduced in color in the printed version. There is a charge for color reproduction in print. Authors will receive information on this cost from Elsevier after the acceptance of an article.Back to the contents listReferences:References should be indicated by number(s) in square brackets in line with the text. The actual authors can be referred to, but the reference number(s) must always be given. Example: ''.. as demonstrated [3,6]. Barnaby and Jones [8] obtained a different result?''Referenceto a journal publication:[1] J. van der Geer, J.A.J. Hanraads, R.A. Lupton, J. Sci. Communc. 163 (2000) 51.Reference to a book:[2] W. Strunk Jr., E.B. White, The Elements of Style, third ed., Macmillan, New York, 1979.Reference to a chapter in an edited book:[3] G.R. Mettam, L.B. Adams, in: B.S. Jones, R.Z. Smith (Eds.), Introduction to the Electronic Age, E-PublishingInc., New York, 1999, pp. 281-304.Spellchecking:Be sure that your manuscripts are free of spelling errors. If you wish to check the technical spelling of your manuscript, please refer to . SCIPROOF offers a product called Scientific Dictionary Package(SDP) 2.0 that contains over 1.8 million entries and is the only spellchecking software that specifically includes materials science terms, plus chemical and biomedical terms (for biomaterials), and journal titles and abbreviations. This program is an add-on for Microsoft Office and augments the native Office spell checker.Back to the contents listPreparation of Supplementary data:Elsevier accepts supplementary material to support and enhance your scientific research. Supplementary files offer the Author additional possibilities to publish supporting applications, movies, animation sequences, high-resolution images, background datasets, sound clips and more. Supplementary files supplied will be published online alongside the electronic version of your article in Elsevier Web products, including ScienceDirect: . In order to ensure that your submitted material is directly usable, please ensure that data is provided in one of our recommended file formats. Authors should submit the material in electronic format together with the article and supply a concise and descriptive caption for each file. For more detailed instructions please visit our artwork instruction pages at /artworkinstructions.Back to the contents listCopyright:It is a condition of publication that manuscripts submitted to this journal have not been published and have not been simultaneously submitted or published elsewhere. By submitting a manuscript, the authors agree that the copyright for their article is transferred to Acta Materialia Inc. if and when the article is accepted for publication. However, assignment of copyright is not required from authors who work for organizations which do not permit such assignment. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints, photographic reproductions, microform or any other reproductions of similar nature, andtranslations. Authors are responsible for obtaining from the copyright holder permission to reproduce any figures for which copyright exists.For more information please go to our copyright page /copyright.Back to the contents listNotification:Inquiries on manuscript status to editors are strongly discouraged, as the status of papers can be monitored through the Elsevier Electronic Submission system. Authors will be notified of the decision on their paper by the editor. The publisher will also send a notification of receipt of accepted papers in production. Upon acceptance of an article, authors will be asked to transfer copyright (for more information on copyright see /copyright. Back to the contents listPDF Proofs:PDF proofs and query sheets will be sent to the corresponding author by e-mail. All proofs should be returned within 48 hours of receipt. Corrections should be restricted to typesetting errors; any others may be charged to the author. Any queries should be answered in full. Please note that authors are urged to check their proofs carefully before return, since the inclusion of late corrections cannot be accepted. If the manuscript exceeds the 4 page limit in the proof stage, the authors will be required to shorten their manuscript. For more information on proofreading, go to Elsevier's proofreading page /locate/guidepublication. Note that once your paper has been proofed, Elsevier publishes the identical paper online as in print.Back to the contents listAuthor Benefits:No page charges: Publication in this journal is free of charge. Free Offprints: Twenty-five offprints will be supplied free of charge. Corresponding authors will be given the choice to buy extra offprints before printing of the article. Authors who pay for color illustrations will receive an extra fifty offprints free of charge.Author Discount:Contributors to Elsevier journals are entitled to a 30% discount on all Elsevier books. See/bookauthors for more information.Back to the contents listOnline Paper Tracking:AAuthors can track the status of their accepted paper online at /trackarticle using the reference supplied by thePublisher.Back to the contents listAuthor enquiries:All author enquiries should be made to: authorsupport@elsevier.ieUseful links:•A submissions checklist can be found at/locate/guidepublication•Register for free to receive email updates from the article tracking service at /trackarticle•If you are interested in submitting a book in this area, go to /bookauthors。
NAF体系架构框架研究

NAF体系架构框架研究作者:孙毓肖桃顺来源:《数码设计》2020年第03期摘要:首先,介绍了北约NAF框架的发展历程,目前最新版本是2019年10月正式发布的NAF4.0。
然后,分析了NAF4.0视角与UAF1.1视图矩阵的映射关系及简化元模型。
最后,总结了NAF框架的作用和未来发展。
关键词:NAF;框架;元模型;SMM中图分类号:G321文献标识码:A文章编号:1672-9129(2020)03-0027-01Abstract:Firstofall,thedevelopmentprocessofNATONAFframeworkisintroduced.ThelatestversionisNAF4.0,whichwasofficiallyreleasedinOctober2019.Then,themappingrelationshipbetweenNAF4.0perspectiveandUAF1.1viewmatrixandthesimplifiedmetamodel areanalyzed.Finally,theroleandfuturedevelopmentofNAFframeworkaresummarized.Keywords:NAF;Framework;Metamodel;SMM1NAF框架发展为了提升欧洲盟军司令部与大西洋盟军司令部之间以及北约各成员国之间C3系统的互操作性,北约开始规范其体系结构设计方法。
2000年11月,北约C3委员会在其第11次会议上通过了《北约C3系统体系结构框架》(NC3SAF)1.0版。
该框架不仅规范了开发C3系统体系结构的指导原则,还描述了北约C3系统顶层体系结构、参考体系结构和目标体系结构的开发过程和批准过程。
随后,北约继续完善其体系结构设计方法,在《北约C3系统体系结构框架》1.0版的基础上,从2002年到2004年开发《北约C3系统体系结构框架》2.0版,并于2004年8月批准该框架。
利用PDMA制造的MEMS直立平面线圈式感应器的发展现状通信类外文翻译、中英文翻译

Development of MEMS Vertical Planar Coil Inductors Through Plastic Deformation Magnetic Assembly (PDMA) Jinghong Chen*, Jun Zou**, Chang Liu** and Sung-Mo (Steve) Kang***Agere Systems, Holmdel, NJ 07733Department of Electrical and Computer Engineering,University of Illinois at Urbana-Champaign, Urbana, IL 61801 Jack Baskin School of Engineering, University of California, Santa Cruz ABSTRACTThis paper presents the results of the development of a vertical planar coil inductor. The planar coil inductor is first fabricated on silicon substrate and then assembled to the vertical position by using a novel 3-Dimensional bathscale self-assembly process (Plastic Deformation Magnetic Assembly (PDMA)). Inductors of different dimensions are fabricated and tested. The S-parameters of the inductors before and after PDMA are measured and compared,demonstrating superior performance due to reduced substrate effects and also increased substrate space savings for the vertical planar coil inductors.Keywords: MEMS, planar coil inductor, quality factor,PDMA, resonance frequency.1 INTRODUCTIONWith the development of integrated wireless communication systems, on-chip inductors with satisfactory performance (enough quality factor and selfresonant frequency) are required. However, the conventional planar coil inductor suffers from substrate losses and parasitics since it is directly fabricated onto conductive substrate over a very thin dielectric layer [1].In recent years, much effort has been made to improve the performance of planar coil inductors. Metal materials with higher conductivity or thicker metal layers are utilized to decrease the resistance of the coil. Meanwhile,different methods are proposed to reduce the substrate loss and parasitics, including removing the substrate underneath the inductor [2], applying a thick polymide layer to separate the inductor farther away from thesubstrate [3], etc. More recently, planar coil inductors levitated above the substrate are realized using a sacrificial metallic mode (SMM) process [4]. 3-Dimensional solenoid on-chip inductors developed by using 3-D laser lithography or surface micromachining technology have also been demonstrated [5,6]. This paper reports vertical planar coil inductors developed by using a novel 3-D self-assembly process-Plastic Deformation Magnetic Assembly (PDMA).Experimental results show that the vertical planar coil inductor suffers less substrate loss and parasitics than the conventional horizontal counterparts, and thus can achieve a higher quality (Q) factor and self-resonant frequency. Another major advantage of the vertical inductors is that they have almost zero footprints and thus occupy much smaller substrate space.2 PLASTIC DEFORMATION MAGNETIC ASSEMBLY (PDMA)Fig. 1 A schematic illustration of a Plastic DeformationMagnetic Assembly process (PDMA)PDMA is the key technology to realize the vertical planar coil inductors. A detailed discussion of this assembly process will be presented in other publications. A brief introduction of PDMA is given below by using acantilever beam as an example. Note that the region near the fixed end is intentionally made more flexible. First, a cantilever beam with a piece of magnetic materialattached to its top surface is released from the substrate by etching away the sacrificial layer underneath (Fig. 1(a)). Next, amagnetic field Hext is applied, the magnetic material piece is magnetized and the cantilever beam will be rotated off the substrate by the magnetic torque generated in the magnetic material piece (Fig. 1(b)). If the structure is designed properly, this bending will create a plastic deformation in the flexible region. The cantilever beam will then be able to remain at a certain rest angle ( φ) above the substrate even after Hext is removed (Figure 1(c)). By using ductile metal (e.g. gold) in the flexible region, a good electrical connection between the assembled structure and the substrate can be easily achieved, which is suitable for RF applications. After the vertical assembly, the structures can be further strengthened and the magnetic material can be removed if necessary. If the magnetic field is applied globally, thenall the structures on one substrate can be assembled in parallel.3 DESIGN AND FABRICATIONThe core structure of the vertical planar coil inductor is identical to the conventional horizontal one, which consists of two metal layers and one dielectric layer between. As a general rule, high conductivity metal andlow loss dielectric material should be used. In addition to this requirement, the structure of the inductor should facilitate the implementation of PDMA.The vertical planar coil inductor utilizes one-port coplanar waveguide (CPW) configuration with 3 test pads (Ground-Signal-Ground) with a pitch of 150μm. The three test pads also serve as the anchor of the vertical inductors on the substrate.3.1 Material ConsiderationGold is used as the material for the bottom conductor (the coil). Gold is a ductile material with high conductivity. It is an ideal plastic deformation material for the implementation of PDMA. Copper is selected as the material of the top conductor (the bridge). Copper is also a high conductivity metal and its processing is compatible with the gold bottom conductor during the fabrication. Silicon oxide and nitride are good dielectric materials available in silicon IC process. However, they are not suitable for vertical planar coil inductors due to high internal stress and poor adhesion on metalsurface. CYTOP amorphous flurocarbon polymer is selected as the dielectric spacer of the vertical inductors. The electrical properties of CYTOP film are similar to those of Polyimide and Telfon . However, it has a better adhesion on metal surfaces and chemical stability. In order to implement PDMA, Permalloy (NiFe) is electroplated onto the surface of the gold and copper structures. The Permalloy layer will provide the magnetic force necessary for PDMA and enough stiffness to the inductor structure in the vertica position.Fig. 2 A schematic illustration of thefabrication andPDMA assembly of vertical planarcoil inductors.3.2 Fabrication ProcessA brief illustration of the entirefabrication and assembly process is shownin Fig. 2. The substrate is a silicon waferwith a 0.6μm-thick nitride layer on top.The fabrication is conducted in thefollowing steps:(a) A 0.5μm-thick silicon oxide layeris deposited and patterned to serve as thesacrificial layer for PDMA.(b) A 0.5μm-thick gold layer isdeposited onto the substrate (withsacrificial layer underneath) and patternedto make the bottom conductor (coil) of theinductor.(c) A 2.5μm-thick CYTOP film isspun onto the gold layer and patterned to make the dielectric spacer.(d) A 1.5μm-thick copper layer is deposited and patterned to make the upper conductor (bridge) of the inductor.(e) A 5μm-thick Permalloy layer is electroplated onto the copper and gold surface.(f) The oxide sacrificial layer is etched and the inductor structure is released from the substrate.(g) The entire inductor structure is assembled into vertical position using PDMA.4 TESTING AND MEASUREMENT RESULTSThe S11parameter of the fabricated vertical planar coil inductors is measured from 50 MHz to 4GHz using an 851℃ network analyzer. The S11 parameter is first measured while the inductors are on the silicon substratebefore PDMA. Next, the inductors are assembled to the vertical position using PDMA and the S11 measurement is repeated. The S11 parameter of inductors with identical designs fabricated on Pyrex glass substrate is also measured for comparison.Fig. 3 (a) A Smith chart showing the simulated and measured S11 parameter results of the planar coil inductor shown in Fig. 3 before and after PDMA. (b) A Smith chart showing the simulated and measured S11 parameter results of an inductor with identical design fabricated on glass substrate. The inductance of both inductors is 4.5nH.Fig.3(a) shows the simulated and measured S11 parameter results of the planar coil inductor shown in Fig. 3. The test pads feeding the inductors on which probing occurs are de-embedded. Fig. 3(b) shows the simulatedand measured S11 parameter results of an inductor with identical design inductor fabricated on Pyrex glass substrate. The test pads are not de-embedded since the inductor is on glass substrate and the de-embedment has little effect. The simulateddata is obtained by using a compact circuit model for planar coil inductor presented in [1]. The quality factor (Q) as a function of frequency extracted from both the simulated and the measured S11 parameter results is plotted in Fig. 5. When the planar coil inductor is on the silicon substrate, it has a peak Q factor of 3.5 and self-resonant frequency of 1GHz. When the inductor is in the vertical position after the PDMA assembly, the peak Q factor increases to 12 and the selfresonant frequency goes well above 4GHz, which are close to those of the inductor on glass substrate. For the planar coil inductors fabricated on silicon (before assembly), a large insulator capacitance and the substrate resistance dominate at higher frequencies, which leads to a self resonate frequency of about 1GHz. Once the inductors are assembled into the vertical position, the substrate loss and capacitance are effectively removed,which leads to the improvement in the inductor performance. Furthermore, for frequencies far below 1 GHz (where substrate effects are negligible), the glass and silicon inductor measurements correspond exactly, as expected.5 DISCUSSIONS1) In this work, oxide is used as the sacrificial material for PDMA. Sometimes, oxide is used as the dielectric for IC devices on the same substrate and thus cannot be removed. In this case, the oxide sacrificial layer can be substituted by other materials,e.g. photo resist.2) In order to facilitate the measurement, the vertical planar coil inductors tested are not strengthened after PDMA.However, the inductor structure can be strengthened after PDMA by using different methods (e.g. Parylene coating) to achieve the necessary stiffness and robustness.3) While the Q factor of vertical planar coil inductors can be improved by depositing thicker metal layers during the fabrication, experiments are also being conducted to explore various methods to thicken and strengthen the metal layers of the planar coil inductors while they are in the vertical position after the PDMA assembly.6 CONCLUSIONSVertical planar coil inductors have been achieved by using a novel 3-Dassembly-Plastic Deformation Magnetic Assembly (PDMA). Vertical planar coil inductors offer two major advantages over conventional on-substrate ones:they occupy much smaller substrate space and suffer less substrate loss and parasitics. The proposed fabrication and assembly process of the vertical planar coil inductor is compatible with the standard IC fabrication process, and is therefore suitable for various RF ICs.REFERENCES[1] C. P. Yue and S. S. Wong, “Physical modeling of spiral inductors on silicon,” IEEE Trans. On Electron Devices, vol. 47, no. 3, March, 2000, pp. 560-568.[2] M. Ozgur, M. Zaghloul, and M Gaitan, “High Q backside Micr omachined CMOS inductors,”ISCAS'99. Proceedings of the 1999 IEEE International Symposium on Circuits and Systems,vol.2, 1999, pp.577-80.[3] B. K. Kim, B. K. Ko, and K. Lee, “Monolithic planar RF inductor and waveguide structures on silicon with performance comparable to those in GaAsMMIC,” IEDM Tech. Dig., 1995, pp. 717-720.[4] J. B. Yoon, C. H, Han, E. Yoon and C. K. Kim,“High-performance three-dimensional on-chip inductors fabricated by novel micromachining technology for RF MMIC,” IEEE MTT-S Digest,1999, pp 1523-26.[5] D. Young, V. Malba, J. Ou, A. Bernhardt, and B.Boser, “Monolithic high-performance threedimensional coil inductors for wireless communication applications”, IEDM Tech. Dig.,1997, pp. 67-70.[6] J. B. Yoon, B. K. Kim, C. H. Han, E. Yoon, K. Lee and C. K. Kim, “High-performance electroplated solenoid-type integrated inductor (SI2) for RF applications using simple 3D Surface micromachining technology,” IEDM Tech. Dig., 1998, pp.544-547.利用PDMA制造的MEMS直立平面线圈式感应器的发展现状摘要这篇文章主要介绍了直立平面线圈感应器的发展现状。
MXconfig系列工业网络配置工具说明书

MXconfig SeriesIndustrial network configuration toolFeatures and Benefits•Mass managed function configuration increases deployment efficiency andreduces setup time•Mass configuration duplication reduces installation costs•Link sequence detection eliminates manual setting errors•Configuration overview and documentation for easy status review andmanagement•Three user privilege levels enhance security and management flexibility1IntroductionMoxa’s MXconfig is a comprehensive Windows-based utility that is used to install,configure,and maintain multiple Moxa devices on industrial networks.This suite of useful tools helps users set the IP addresses of multiple devices with one click,configure the redundant protocols and VLAN settings,modify multiple network configurations of multiple Moxa devices,upload firmware to multiple devices,export or import configuration files,copy configuration settings across devices,easily link to web and Telnet consoles,and test device connectivity.MXconfig gives device installers and control engineers a powerful and easy way to mass configure devices,and it effectively reduces the setup and maintenance cost.Device Discovery and Fast Group Configuration•Easy broadcast search of the network for all supported Moxamanaged Ethernet devices•Mass network setting(such as IP addresses,gateway,and DNS)deployment reduces setup time•Deployment of mass managed functions increases configurationefficiency•Security wizard for convenient setup of security-related parameters•Multiple grouping for easy classification1•User-friendly port selection panel provides physical portdescriptions1•VLAN Quick-Add Panel speeds up setup time1•Deploy multiple devices with one click using CLI executionFast Configuration Deployment•Quick configuration:copies a specific setting to multiple devices and changes IP addresses with one clickLink Sequence Detection•Link sequence detection eliminates manual configuration errorsand avoids disconnections,especially when configuringredundancy protocols,VLAN settings,or firmware upgrades for anetwork in a daisy-chain topology (line topology).•Link Sequence IP setting (LSIP)prioritizes devices and configuresIP addresses by link sequence to enhance deployment efficiency,especially in a daisy-chain topology (linetopology).Unlock Devices and User Privileges•Mass device unlocking and password file export for quick unlocks.•Three user privilege levels to enhance management flexibility and security:Admin,Supervisor,and Operator.2Configuration Overview and Documentation•Useful mass status overview and configuration check for eachmanaged function.•Generate reports on each managed function for multiple devices inthe network.2•Export multiple configuration files with flexible filenames and import multiple configuration files to multiple devices.•Export device list for easy backup,and import device list for quick searching2SpecificationsHardware RequirementsRAM2GB Hardware Disk Space10GB OSWindows 7(32/64-bit),Windows 10(32-64-bit),Windows Server 2012(32/64-bit)CPU 2GHz or faster dual-core CPUSupported DevicesAWK Products MXconfig Java Version:AWK-1121Series(v1.4or higher)AWK-1127Series(v1.4or higher)AWK-1131A Series(v1.11or higher)AWK-1137C Series(v1.3or higher)AWK-3121Series(v1.10or higher)AWK-3121-SSC-RTG Series(v1.4or higher)AWK-3121-M12-RTG Series(v1.4or higher)AWK-3131Series(v1.2or higher)AWK-3131-M12-RCC Series(v1.0or higher)AWK-3131A Series(v1.3or higher)AWK-3131A-RTG Series(v1.8or higher)AWK-4121Series(v1.10or higher)AWK-4131Series(v1.2or higher)AWK-4131A Series(v1.3or higher)AWK-5222Series(v1.7or higher)AWK-5232Series(v1.3or higher)AWK-6222Series(v1.7or higher)AWK-6232Series(v1.3or higher)EDR Products MXconfig Java Version:EDR-810Series(v3.2or higher)EDR-G902Series(v4.2or higher)EDR-G903Series(v4.2or higher)MXconfig Non-Java Version:EDR-810Series(v3.2or higher)EDR-G902Series(v4.2or higher)EDR-G903Series(v4.2or higher)EDR-G9010Series(v1.0or higher)EDS Products MXconfig Java Version:EDS-405A/408A Series(v3.1or higher)EDS-405A/408A-EIP Series(v3.1or higher)EDS-405A/408A-PN Series(v3.1or higher)EDS-405A-PTP Series(v3.3or higher)EDS-505A/508A/516A Series(v3.1or higher)EDS-510A Series(v3.1or higher)EDS-518A Series(v3.1or higher)EDS-510E/518E Series(v4.0or higher)EDS-528E Series(v5.0or higher)EDS-G508E/G512E/G516E Series(v4.0or higher)EDS-G512E-8PoE Series(v4.0or higher)EDS-608/611/616/619Series(v3.1or higher)EDS-728Series(v3.1or higher)EDS-828Series(v3.1or higher)EDS-G509Series(v3.1or higher)EDS-P510Series(v3.1or higher)EDS-P510A-8PoE Series(v3.1or higher)EDS-P506A-4PoE Series(v3.1or higher)EDS-P506E-4PoE Series(v5.5or higher)MXconfig Non-Java Version:EDS-405A/408A Series(v3.1or higher)EDS-405A/408A-EIP Series(v3.1or higher)EDS-405A/408A-PN Series(v3.1or higher)EDS-405A-PTP Series(v3.3or higher)EDS-505A/508A/516A Series(v3.1or higher)EDS-510A Series(v3.1or higher)EDS-518A Series(v3.1or higher)EDS-510E/518E Series(v4.0or higher)EDS-528E Series(v5.0or higher)EDS-G508E/G512E/G516E Series(v4.0or higher)EDS-G512E-8PoE Series(v4.0or higher)EDS-608/611/616/619Series(v3.1or higher)EDS-728Series(v3.1or higher)EDS-828Series(v3.1or higher)EDS-G509Series(v3.1or higher)EDS-P510Series(v3.1or higher)EDS-P510A-8PoE Series(v3.1or higher)EDS-P506A-4PoE Series(v3.1or higher)EDS-P506E-4PoE Series(v5.5or higher)ICS Products MXconfig Java Version:ICS-G7526/G7528Series(v3.1or higher)ICS-G7826/G7828Series(v3.1or higher)ICS-G7748/G7750/G7752Series(v3.1or higher)ICS-G7848/G7850/G7852Series(v3.1or higher)ICS-G7526A/G7528A Series(v4.0or higher)ICS-G7826A/G7828A Series(v4.0or higher)ICS-G7748A/G7750A/G7752A Series(v4.0or higher)ICS-G7848A/G7850A/G7852A Series(v4.0or higher)MXconfig Non-Java Version:ICS-G7826/G7828Series(v3.1or higher)ICS-G7748/G7750/G7752Series(v3.1or higher)ICS-G7848/G7850/G7852Series(v3.1or higher)ICS-G7526A/G7528A Series(v4.0or higher)ICS-G7826A/G7828A Series(v4.0or higher)ICS-G7748A/G7750A/G7752A Series(v4.0or higher)ICS-G7848A/G7850A/G7852A Series(v4.0or higher) IEX Products MXconfig Java Version:IEX-402Series(v1.0or higher)IEX-408E Series(v4.0or higher)MXconfig Non-Java Version:IEX-402Series(v1.0or higher)IEX-408E Series(v4.0or higher)IKS Products MXconfig Java Version:IKS-6726/6728Series(v3.1or higher)IKS-G6524Series(v3.1or higher)IKS-G6824Series(v3.1or higher)IKS-6728-8PoE Series(v3.1or higher)IKS-6726A/6728A Series(v4.0or higher)IKS-G6524A Series(v4.0or higher)IKS-G6824A Series(v4.0or higher)IKS-6728A-8PoE Series(v4.0or higher)MXconfig Non-Java Version:IKS-6726/6728Series(v3.1or higher)IKS-G6524Series(v3.1or higher)IKS-G6824Series(v3.1or higher)IKS-6728-8PoE Series(v3.1or higher)IKS-6726A/6728A Series(v4.0or higher)IKS-G6524A Series(v4.0or higher)IKS-G6824A Series(v4.0or higher)IKS-6728A-8PoE Series(v4.0or higher)ioLogik Products MXconfig Java Version:ioLogik E1200Series(v3.2or higher)ioThinx Products MXconfig Java Version:ioThinx4510Series(v1.3or higher)MDS Products MXconfig Java Version:MDS-G4012Series(v1.1or higher)MDS-G4020Series(v1.1or higher)MDS-G4028Series(v1.1or higher)MXconfig Non-Java Version:MDS-G4012Series(v1.1or higher)MDS-G4020Series(v1.1or higher)MDS-G4028Series(v1.1or higher)MDS-G4012-L3Series(v2.0or higher)MDS-G4020-L3Series(v2.0or higher)MDS-G4028-L3Series(v2.0or higher)MGate Products MXconfig Java Version:MGate MB3170/MB3270Series(v4.2or higher)MGate MB3180Series(v2.2or higher)MGate MB3280Series(v4.1or higher)MGate MB3480Series(v3.2or higher)MGate MB3660Series(v2.5or higher)MGate EIP3270Series(v2.0or higher)MGate5101-PBM-MN Series(v2.2or higher)MGate5102-PBM-PN Series(v2.3or higher)MGate5103Series(v2.2or higher)MGate5105-MB-EIP Series(v4.3or higher)MGate5108Series(v2.4or higher)MGate5208Series(v2.4or higher)MGate5109Series(v2.3or higher)MGate5111Series(v1.3or higher)MGate5114Series(v1.3or higher)MGate5118Series(v2.2or higher)MGate5217Series(v1.0or higher)NPort Products MXconfig Java Version:NPort S8000Series(v1.3or higher)NPort S9000Series(v1.0or higher)NPort5110Series(v3.8or higher)NPort5130/5150Series(v3.8or higher)NPort5000AI-M12Series(v1.4or higher)NPort5200Series(v2.10or higher)NPort5400Series(v3.13or higher)NPort5600Series(v3.9or higher)NPort5100A Series(v1.5or higher)NPort5200A Series(v1.5or higher)NPort5610-8-DT/5610-8-DT-J/5650-8-DT/5650I-8-DT/5650-8-DT-J Series(v2.6orhigher)NPort5610-8-DTL/5650-8-DTL/5650I-8-DTL Series(v1.5or higher)NPort IA5000Series(v1.6or higher)NPort IA5150A/IA5150AI/IA5250A/IA5250AI Series(v1.4or higher)NPort IA5450A/IA5450AI Series(v1.6or higher)NPort6000Series(v1.21or higher)PT Products MXconfig Java Version:PT-7528Series(v3.1or higher)PT-7710Series(v3.1or higher)PT-7728Series(v3.1or higher)PT-7828/7828-PTP Series(v3.1or higher)PT-G7509Series(v3.1or higher)PT-508/510Series(v3.1or higher)PT-G7728Series(v5.4or higher)PT-G7828Series(v5.4or higher)MXconfig Non-Java Version:PT-7528Series(v3.1or higher)PT-7710Series(v3.1or higher)PT-7728Series(v3.1or higher)PT-7828/7828-PTP Series(v3.1or higher)PT-G7509Series(v3.1or higher)PT-508/510Series(v3.1or higher)PT-G7728Series(v5.4or higher)PT-G7828Series(v5.4or higher)TAP Products MXconfig Java Version:TAP-213Series(v1.2or higher)TAP-323Series(v1.8or higher)TN Products MXconfig Java Version:TN-4500A Series(v3.5or higher)TN-5508/5510Series(v3.1or higher)TN-5516/5518Series(v3.1or higher)TN-5916Series(v1.2or higher)MXconfig Non-Java Version:TN-4500A Series(v3.5or higher)TN-4908Series(v1.0or higher)TN-5508/5510Series(v3.1or higher)TN-5516/5518Series(v3.1or higher)TN-5916Series(v1.2or higher)TN-G6500Series(v5.0or higher)VPort Products MXconfig Java Version:VPort26A-1MP Series(v1.2or higher)VPort36-1MP Series(v1.1or higher)VPort P06-1MP-M12Series(v2.2or higher)WAC Products MXconfig Java Version:WAC-1001Series(v2.1or higher)WAC-2004Series(v1.6or higher)©Moxa Inc.All rights reserved.Updated Jul30,2021.This document and any portion thereof may not be reproduced or used in any manner whatsoever without the express written permission of Moxa Inc.Product specifications subject to change without notice.Visit our website for the most up-to-date product information.。
数字营销和数据分析技术

数字营销和数据分析技术Chapter 1: Introduction to Digital Marketing and Data Analysis TechnologyThe rise of digital technology has drastically revolutionized the way businesses operate, especially when it comes to marketing. Digital marketing refers to the use of digital channels such as search engines, social media platforms, email, and websites to promote a company's products or services. This method of marketing has become increasingly popular in recent years, mainly because it provides companies with affordable and effective ways of reaching their target audience.Data analysis technology, on the other hand, is the process of collecting and analyzing large sets of data to uncover patterns, trends, and insights that can be used to improve business decisions. Digital marketing and data analysis technology go hand in hand, with the latter providing the necessary information needed to make informed marketing decisions.Chapter 2: Benefits of Digital MarketingOne of the main advantages of digital marketing is that it allows companies to reach a wider audience than traditional marketing methods. With social media platforms such as Facebook and Instagram having billions of active users monthly, companies can use theseplatforms to reach potential customers who are interested in their product or service.Digital marketing is also relatively inexpensive compared to traditional marketing methods such as print and television advertising. This makes it accessible to small businesses that may not have the budget to invest heavily in advertising.Another benefit is that digital marketing allows for real-time feedback and measurement of the effectiveness of marketing campaigns. This feedback allows companies to quickly refine their marketing strategies and adapt to changes in the market.Chapter 3: Common Digital Marketing TechniquesSearch Engine Optimization (SEO) is a digital marketing technique used to improve a website's visibility on search engine results pages. This method involves optimizing website content to include keywords that potential customers might search for.Pay-Per-Click (PPC) advertising involves paying for website traffic by placing ads in search engine results pages or on social media platforms. Companies only pay when a user clicks on the ad, making it a cost-effective advertising method.Social Media Marketing (SMM) involves leveraging social media platforms such as Facebook, Instagram, and Twitter to reach potential customers. Companies can use these platforms to build brandawareness, engage with their audience, and advertise their products or services.Chapter 4: Data Analysis TechniquesData analysis technology involves the use of a variety of techniques to analyze large datasets. These techniques include:Descriptive Analytics, which involves analyzing historical data to understand patterns and trends.Predictive Analytics, which uses machine learning algorithms to predict future outcomes based on historical data.Prescriptive Analytics, which recommends actions based on predictive analysis to optimize business decisions.Data analysis technology has become popular in recent years due to the increasing availability of data and the industry's focus on data-driven decision-making.Chapter 5: Benefits of Data AnalysisData analysis can provide valuable insights for businesses across a range of areas, including market trends, customer behavior, and business performance. This information can be used to inform marketing strategies, optimize operations, and improve customer experience.One of the primary benefits of data analysis is that it enables businesses to make evidence-based decisions. By analyzing data, businesses can identify trends and patterns and make informed choices about what strategies are most effective.Data analysis can also identify operational inefficiencies and help businesses optimize processes, which can lead to increased productivity and cost savings.Chapter 6: ConclusionDigital marketing and data analysis technology are critical components of modern business operations. By utilizing digital marketing techniques to reach a wider audience and data analysis techniques to analyze customer behavior, market trends, and business performance, companies can make informed decisions that drive growth and success. As technology continues to improve, digital marketing and data analysis will continue to evolve, enabling businesses to stay ahead of the curve and adapt to changing market conditions.。
体系结构论文-SMM浅析

Intel IA-32SMM浅析---==[Sync_Spar]==---摘要本文主要介绍了Intel IA-32体系结构SMM的基本概念和行为,包括SMM模式的切换、SMRAM结构、程序控制等,最后还简要介绍了SMM上的另类技术SMM Rootkit。
keywords:SMM,System Management Mode,SMI,SMRAM,Cache Poison,Rootkit,中断,系统管理模式,缓存投毒1、SMM简介SMM全称System Management Mode,中文名为系统管理模式,最初是Intel开发386SL、486SL笔记本计算机特别版本时引进的操作模式,一般台式机486并没有SMM,最后在Pentium以及后期的486处理器中列入标准规格。
其他兼容厂商(如AMD)也在后期486、K5处理器加入SMM模式,因此Intel、AMD在SMM完全兼容。
SMM是一种特殊的处理器操作模式,最主要用于高级电源管理、硬件控制和OEM代码的执行。
比如将空闲一段时间的显示器、磁盘甚至CPU关闭进入省电模式。
该模式只能被系统固件使用,而且它对操作系统是完全透明的,也就是说操作系统不会知道CPU何时进入或者离开SMM。
SMM模式是权限最高的模式,可以执行任何特权指令和IO操作。
如果说操作系统内核的权限等级是Ring0的话,SMM可以想象成Ring-2(硬件管理程序(HV)为Ring-1)。
只有收到系统管理终端SMI才能进入SMM,执行RSM指令退出SMM。
在SMM中没有地址映射,所有线性地址都对应物理地址,可以访问全部4G地址空间,而且物理地址扩展机制(PAE)也不再有效。
2、SMM内部机制2.1、SMM与其他模式的转换如上图,任何其它模式都能收到SMI中断进入SMM 并在SMM执行完成后返回被中断的模式。
2.2、进入SMM进入SMM是由中断信号SMI引起的,与所有中断一样,处理器在可中断点(通常是指令边界)检查到SMI ,等待所有指令执行和访存完成后将当前处理器上下文存入SMRAM 中然后切入SMM 执行SMI 处理程序。
润肠颗粒对小鼠便秘的改善作用及机制
2019年高考数学一轮复习:算法初步算法初步1.算法的概念及特点(1)算法的概念在数学中,算法通常是指按照一定______解决某一类问题的________和________的步骤.(2)算法的特点之一是具有______性,即算法中的每一步都应该是确定的,并能有效地执行,且得到确定的结果,而不应是模棱两可的;其二是具有______性,即算法步骤明确,前一步是后一步的前提,只有执行完前一步才能进行后一步,并且每一步都准确无误才能解决问题;其三是具有______性,即一个算法应该在有限步操作后停止,而不能是无限的;另外,算法还具有不唯一性和普遍性,即对某一个问题的解决不一定是唯一的,可以有不同的解法,一个好的算法应解决的是一类问题而不是一两个问题.2.程序框图(1)程序框图的概念程序框图又称流程图,是一种用、及来表示算法的图形.(2)构成程序框图的图形符号、名称及其功能3.算法的基本逻辑结构(1)顺序结构顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按__________的顺序进行的.它是由若干个__________的步骤组成的,它是任何一个算法都离不开的基本结构.顺序结构可用程序框图表示为如图所示的形式.(2)条件结构在一个算法中,经常会遇到一些条件的判断,算法的流程根据条件是否成立有不同的流向.常见的条件结构可以用程序框图表示为如图所示的两种形式.(3)循环结构在一些算法中,经常会出现从某处开始,按照一定的条件反复执行某些步骤的情况,这就是.反复执行的步骤称为.循环结构有如下两种形式:①如图1,这个循环结构有如下特征:在执行了一次循环体后,对条件进行判断,如果条件不满足,就继续执行循环体,直到条件满足时终止循环.因此,这种循环结构称为____________.②如图2表示的也是常见的循环结构,它有如下特征:在每次执行循环体前,对条件进行判断,当条件满足时,执行循环体,否则终止循环.因此,这种循环结构称为____________.4.输入(INPUT)语句输入语句的一般格式:.要求:(1)输入语句要求输入的值是具体的常量;(2)提示内容提示用户输入的是什么信息,必须加双引号,“提示内容”原原本本地在计算机屏幕上显示,提示内容与变量之间要用分号隔开;(3)一个输入语句可以给多个变量赋值,中间用“,”分隔.5.输出(PRINT)语句输出语句的一般格式:.功能:实现算法输出信息(表达式).要求:(1)表达式是指算法和程序要求输出的信息;(2)提示内容提示用户要输出的是什么信息,提示内容必须加双引号,提示内容要用分号和表达式分开;(3)如同输入语句一样,输出语句可以一次完成输出多个表达式的功能,不同的表达式之间可用“,”分隔.6.赋值语句赋值语句的一般格式:.赋值语句中的“=”叫做赋值号,它和数学中的等号不完全一样.作用:赋值语句的作用是将表达式所代表的值赋给变量.要求:(1)赋值语句左边只能是变量,而不是表达式,右边表达式可以是一个常量、变量或含变量的运算式.如:2=x是错误的.(2)赋值号的左右两边不能对换.赋值语句是将赋值号右边的表达式的值赋给赋值号左边的变量.如“A=B”“B=A”的含义和运行结果是不同的,如x=5是对的,5=x是错的,A+B=C是错的,C=A+B是对的.(3)不能利用赋值语句进行代数式的演算(如化简、因式分解、解方程等).7.条件语句(1)“IF—THEN”语句格式:____________________.说明:当计算机执行“IF—THEN”语句时,首先对IF后的条件进行判断,如果(IF)条件符合,那么(THEN)执行语句体,否则执行END IF之后的语句.(2)“IF—THEN—ELSE”语句格式:____________________.说明:当计算机执行“IF—THEN—ELSE”语句时,首先对IF后的条件进行判断,如果(IF)条件符合,那么(THEN)执行语句体1,否则(ELSE)执行语句体2.8.循环语句(1)直到型循环语句直到型(UNTIL型)语句的一般格式为:______________.(2)当型循环语句当型(WHILE型)语句的一般格式为:________________.自查自纠1.(1)规则明确有限(2)确定有序有穷2.(1)程序框 流程线 文字说明 (2)①终端框(起止框) ②输入、输出框③处理框(执行框) ④判断框 ⑤流程线 ⑥连接点 3.(1)从上到下 依次执行 (3)循环结构 循环体 ①直到型循环结构 ②当型循环结构 4.INPUT “提示内容”;变量 5.PRINT “提示内容”;表达式 6.变量=表达式7.(1)IF 条件 THEN语句体END IF(2)8. (1)DO 循环体LOOP UNTIL 条件 (2)WHILE 条件循环体WEND下列各式中的S 值不可以用算法求解的是( ) A .S =1+2+3+4B .S =12+22+32+…+1002C .S =1+12+13+…+110 000D .S =1+2+3+4+…解:由算法的有限性知,D 不正确,而A ,B ,C 都可以通过有限步骤操作,输出确定结果,故选D .下面程序运行后输出结果是3,则输入的x 值一定是( )INPUT x IF x>0 THEN y =x ELSE y =-xEND IFPRINT yENDA.3 B.-3 C.3或-3 D.0解:该程序语句是求函数y=|x|的函数值,因为y=3,所以x=±3.故选C.(2016·北京)执行如图所示的程序框图,输出的s的值为()A.8 B.9 C.27 D.36解:初始值k=0,s=0.第一次循环得s=0,k=1;第二次循环得s=1,k=2;第三次循环得s=9,k=3>2,退出循环,输出的s值为9.故选B.下面程序运行后输出的结果为________.N=5S=0WHILE S<15S=S+NN=N-1WENDPRINT NEND解:执行第一次后,S=5,N=4;执行第二次后,S=9,N=3;执行第三次后,S=12,N=2;执行第四次后,S=14,N=1;执行第五次后,S=15,N=0;跳出循环结构,输出N的值,N=0,故填0.(2016·山东)执行如图所示的程序框图,若输入的a,b的值分别为0和9,则输出的i的值为____________.解:输入a =0,b =9,第一次循环:a =0+1=1,b =9-1=8,i =1+1=2; 第二次循环:a =1+2=3,b =8-2=6,i =2+1=3;第三次循环:a =3+3=6,b =6-3=3,a >b 成立,故输出i 的值为3.故填3.类型一 算法的概念下列语句是算法的个数为( )①从济南到巴黎:先从济南坐火车到北京,再坐飞机到巴黎; ②统筹法中“烧水泡茶”的故事; ③测量某棵树的高度,判断其是否为大树;④已知三角形的两边及夹角,利用三角形的面积公式求出该三角形的面积. A .1 B .2 C .3 D .4解:①中勾画了从济南到巴黎的行程安排,完成了任务;②中节约时间,烧水泡茶完成了任务;③中对“树的大小”没有明确的标准,无法完成任务,不是有效的算法构造;④是纯数学问题,利用三角形的面积公式求出三角形的面积.故选C .【点拨】算法过程要做到一步一步地执行,每一步执行的操作必须确切,不能含糊不清,且在有限步后必须得到问题的结果.能设计算法计算下列各式中S 的值的是( )①S =12+14+18+…+12100②S =12+14+18+…+12100+…③S =12-14+18-…-122 018+122 019A .①②B .①③C .②③D .①②③解:因为算法的步骤是有限的,所以②不能设计算法求解,故选B .类型二顺序结构已知直角三角形两直角边长为a,b,求斜边长c的一个算法分下列三步:①计算c=a2+b2;②输入直角三角形两直角边长a,b的值;③输出斜边长c的值;其中正确的顺序是()A.①②③B.②③①C.①③②D.②①③解:第一步:输入直角三角形两直角边长a,b的值,第二步:计算c=a2+b2,第三步:输出斜边长c的值.故选D.【点拨】顺序结构是一种最简单、最基本的结构,可严格按照传统的解题思路写出算法步骤,画出程序框图.注意语句与语句之间,框与框之间是按从上到下的顺序进行的.阅读如图所示的程序框图,若输入的a,b,c的值分别是21,32,75,则输出的a,b,c分别是()A.75,21,32 B.21,32,75C.32,21,75 D.75,32,21解:该程序框图的执行过程是:输入21,32,75;x=21;a=75;c=32;b=21;输出75,21,32.故选A.类型三条件结构下面的程序框图能判断任意输入的整数x是奇数还是偶数.其中判断框内的条件是()A.m=0? B.m=1?C.x=0? D.x=1?解:由程序框图所体现的算法可知判断一个整数是奇数还是偶数,看这个数除以2的余数是1还是0.由图可知应该填m=1?.故选B.【点拨】条件结构的运用与数学的分类讨论有关.设计算法时,哪一步要分类讨论,哪一步就需要用条件结构.=()A.0 B.2 C.4 D.14解:执行该程序,输入a,b的值依次为a=14,b=18;a=14,b=4;a=10,b=4;a=6,b=4;a=2,b=4;a=b=2,此时退出循环,输出的a=2.故选B.类型四循环结构(2017·全国卷Ⅱ)执行下面的程序框图,如果输入的a=-1,则输出的S=()A .2B .3C .4D .5 解:S =0-1+2-3+4-5+6=3,故选B .【点拨】解决此类型问题时要注意:①要明确是当型循环结构,还是直到型循环结构,根据各自的特点执行循环体;②要明确图中的累计变量,明确每一次执行循环体前和执行循环体后,变量的值发生的变化;③要明确循环体终止的条件是什么,会判断什么时候终止循环体.(2016·全国卷Ⅰ)执行如图的程序框图,如果输入的x =0,y =1,n =1,则输出x ,y 的值满足( )A .y =2xB .y =3xC .y =4xD .y =5x解:当x =0,y =1,n =1时,x =0+1-12=0,y =1×1=1,不满足x 2+y 2≥36;n =2,x =0+2-12=12,y =2×1=2,不满足x 2+y 2≥36;n =3,x =12+3-12=32,y =3×2=6,满足x 2+y 2≥36,输出x =32,y =6,则输出的x ,y 的值满足y =4x .故选C .类型五输入、输出和赋值语句下列程序语句的算法功能是()INPUT a,b,cIF a<b THENa=bEND IFIF a<c THENa=cEND IFPRINT aENDA.输出a,b,c三个数中的最大数B.输出a,b,c三个数中的最小数C.将a,b,c从小到大排列D.将a,b,c从大到小排列解:由程序语句可知,当比较a,b的大小后,选择较大的数赋给a;当比较a,c的大小后,选择较大的数赋给a,最后输出a,所以此程序的作用是输出a,b,c中最大的数.故选A.【点拨】①将一个变量的值赋给另一个变量,前一个变量的值保持不变;②可先后给一个变量赋多个不同的值,但变量的取值总是最后被赋予的值.下列程序段执行后,变量a,b的值分别为()a=15b=20a=a+bb=a-ba=a-bPRINT a,bA.20,15 B.35,35C.5,5 D.-5,-5解:a=15,b=20,把a+b赋给a,因此得出a=35,再把a-b赋给b,即b=35-20=15.再把a-b赋给a,此时a=35-15=20,因此最后输出的a,b的值分别为20,15.故选A .类型六 条件语句已知函数y =⎩⎪⎨⎪⎧x 2-1,x ≥0,2x 2-5,x <0,编写一个程序,对每输入的一个x 值,都得到相应的函数值.解:程序如下:INPUT “x =”;x IF x>=0 THEN y =x^2-1 ELSEy =2*x^2-5 END IFPRINT “y =”;y END【点拨】条件语句:“IFTHEN ”及“IFTHENELSE ”的用法在“考点梳理”栏有说明,需要注意的是,若是三段或三段以上的分段函数,通常需用条件语句的嵌套结构.下列程序语句是求函数y =|x -4|+1的函数值,则①处为( )INPUT “x =”;x IF x>=4 THEN y =x -3 ELSE ① END IF PRINT y ENDA .y =3-xB .y =x -5C .y =5-xD .y =x +5 解:y =|x -4|+1=⎩⎪⎨⎪⎧x -3,x ≥4,5-x ,x <4,故选C .类型七 循环语句运行下面的程序,执行后输出的s 的值是( )i =1 WHILE i<6 i =i +2 s =2*i +1 WEND PRINT s ENDA .11B .15C .17D .19解:当i =3时,s =7,当i =5时,s =11,当i =7时,s =15,此时不满足“i <6”,所以输出s =15,故选B .【点拨】计算机执行此程序时,遇到WHILE 语句,先判断条件是否成立,如果成立,则执行WHILE 和WEND 之间的循环体,然后返回到WHILE 语句再判断上述条件是否成立,直至返回到WHILE 语句判断上述条件不成立为止,这时不再执行循环体,而执行WEND 后面的语句,这是当型循环.计算12+22+32+…+1002的值,分别用WHILE 型语句和UNTIL 型语句编写程序.解:WHILE 型:UNTIL 型: i =1 S =0WHILE i<=100 S =S +i^2 i =i +1 WEND PRINT S ENDi =1 S =0 DO S =S +i^2 i =i +1LOOP UNTIL i>100 PRINT S END1.设计算法时,要根据题目进行选择,以简单、程序短、易于在计算机上执行为原则. 2.画程序框图首先要进行结构选择,套用格式.若求只含有一个关系式的函数的函数值时,只用顺序结构就能够解决;若是分段函数或执行时需要先判断才能执行后继步骤的,就必须引入条件结构;如果问题涉及的运算进行了许多重复的步骤,有规律,就可引入变量,应用循环结构.当然,应用循环结构一定要用到顺序结构与条件结构.3.循环结构的循环控制通过累加变量记录循环次数,通过判断框决定循环终止与否.用循环结构来描述算法,在画出算法程序框图之前,需要确定的三件事是:(1)确定循环变量与初始条件;(2)确定循环体;(3)确定终止条件.注意直到型循环与当型循环的区别,二者判断框内的条件表述在解决同一问题时恰好相反.解决循环结构框图问题,当循环次数比较少时,可依次列出;当循环次数较多时,可先循环几次,找出规律.要特别注意最后输出的是什么,不要出现多一次或少一次循环的错误.4.在具体绘制程序框图时,要注意以下几点:(1)流程线上要标有执行顺序的箭头.(2)判断框后边的流程线应根据情况标注“是(Y)”或“否(N)”.(3)框图内的内容包括累加(积)变量初始值,计数变量初始值,累加值,前后两个变量的差值都要仔细斟酌,不能有丝毫差错.(4)判断框内条件常用“>”“≥”“<”“≤”“=”等符号,它们的含义是各不相同的,要根据所选循环结构的类型,正确地进行选择.5.当型循环与直到型循环的区别(1)WHILE型是先判断条件,后执行循环体,而UNTIL型则是先执行循环体,后判断条件;(2)WHILE型是当条件满足时执行循环体,不满足时结束循环,而UNTIL型则是条件不满足时执行循环体,条件满足时结束循环;(3)UNTIL型至少执行一次循环体,而WHILE型执行循环体的次数可能为0.1.下列叙述能称为算法的个数为()①植树需要运苗、挖坑、栽苗、浇水这些步骤;②顺序进行下列运算:1+1=2,2+1=3,3+1=4,…,99+1=100;③从宜昌乘火车到武汉,从武汉乘飞机到北京;④3x>x+1;⑤求所有能被3整除的正数,即3,6,9,12,….A.2 B.3 C.4 D.5解:①②③可称为算法,④⑤不是,故选B.2.结合下面的算法:第一步:输入x.第二步:判断x是否小于0,若是,则输出x+2,否则执行第三步.第三步:输出x-1.当输入的x的值为-1,0,1时,输出的结果分别为()A.-1,0,1 B.-1,1,0C.1,-1,0 D.0,-1,1解:根据x值与0的关系,选择执行不同的步骤,当x的值为-1,0,1时,输出的结果分别为1,-1,0,故选C.3.如图是一个算法的程序框图,已知a1=1,输出的b=3,则输入的a2等于() A.3 B.5 C.7 D.9解:由题意知该算法是计算a1+a22的值,则1+a22=3,解得a2=5.故选B.4.(教材练习改编)阅读下面的程序:INPUT xIF9<x ANDx<100THENa=x\10b=x MOD10x=10*b+aPRINT xEND IFEND如果上述程序输入的值是51,则运行结果是()A.51 B.15 C.105 D.501解:因为51÷10=5……1,所以a=5,b=1,x=10×1+5=15.故选B. 5.(2016·天津)阅读如图所示的程序框图,运行相应的程序,则输出S的值为()A .2B .4C .6D .8解:第一次循环,S =8,n =2;第二次循环,S =2,n =3;第三次循环,S =4,n =4,故输出S 的值为4.故选B .6.(2017·全国卷Ⅲ)执行如图所示的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为( )A .5B .4C .3D .2解:当输入的正整数N 是所给选项中最小的正整数2时,t =1,M =100,S =0,则第一次循环,S =0+100=100,M =-10010=-10,t =2;第二次循环,S =100-10=90,M =--1010=1,t =3,此时t ≤2不成立,输出S =90<91.故选D . 7.给出下面一个程序:A =5B =8 X =A A =B B =X +A PRINT B END此程序运行的结果是________. 解:X =5,A =8,B =5+8=13.故填13.8.(2015·安徽)执行如图所示的程序框图(算法流程图),输出的n 为________.解:由题意,程序框图循环如下:a =1,n =1;a =1+11+1=32,n =2;a =1+132+1=75,n =3;a =1+175+1=1712,n =4,此时⎪⎪⎪⎪1712-1.414≈0.003<0.005,所以输出n =4,故填4. 9.(2016·四川改编)秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n ,x 的值分别为3,2,求输出v 的值.解:该程序框图的执行过程如下:v =1,i =2;v =1×2+2=4,i =1;v =4×2+1=9,i =0;v =9×2+0=18,i =-1,此时输出v =18.10.如果以下程序运行后输出的结果是132,求程序中UNTIL 后面的条件中a 的取值范围.i =12 S =1 DO S =S*i i =i -1LOOP UNTIL i<aPRINT S END解:程序的功能是计算S =12×11×10×…,输出结果为132,即循环体只执行了两次,即i =10时,就结束了循环,所以a 满足10<a ≤11.故a 的取值范围为(10,11].11.某篮球队6名主力队员在最近三场比赛中投进的三分球个数如表格所示:队员i 1 2 3 4 5 6 三分球个数a 1a 2a 3a 4a 5a 6统计该6名队员在最近三场比赛中投进的三分球总数的程序框图如图所示.(1)试在判断框内填上条件; (2)求输出的s 的值.解:(1)依题意,程序框图是统计6名队员投进的三分球的总数,所以判断框内应填条件“i ≤6?”.(2)6名队员投进的三分球个数分别为a 1,a 2,a 3,a 4,a 5,a 6,故输出的s =a 1+a 2+…+a 6.(2015·全国卷Ⅰ)执行如图所示的程序框图,如果输入的t =0.01,则输出的n =( )A .5B .6C .7D .8解法一:执行程序,S =12,m =14,n =1;S =14,m =18,n =2;S =18,m =116,n =3;S=116,m =132,n =4;S =132,m =164,n =5;S =164,m =1128,n =6;S =1128<t =0.01,m=1256,n=7,循环结束,输出n=7.解法二:记第n次循环后S的值为a n()n=0,1,2,…,其中a0=1,则a n=a n-1-⎝⎛⎭⎫12n,递推可得an =a0-⎝⎛⎫12+122+…+12n=1-12⎣⎡⎦⎤1-⎝⎛⎭⎫12n1-12=12n≤t=0.01.显然n>6,故n=7.故选C.。
1-_公司内部英文缩写(非正式文件,仅限内部参考使_用)
英文缩写 (按首字母排序) 100% Cal 100% IVER 100% PPAP 100% SVER 65% Cal 80% Cal 8D A A MRD A/T A/T AA AAM ABS AC ACE ACT ACT BOM AD ADV ADV AE AE AEM AFI AIAC ALY AMT ANSI AP AP APB APD APE APEC APQP/CP APSB AR ARC ASB ASC ASE ASE ASN ASSI Assy Check-in Assy PPAP Assy PPAP Assy PPV Automotive Safety Engineering Aftersales Engineering Advanced shipping notice Architecture Statement of Strategic Intent Assembly Line Check-in Assembly Line PPAP Assembly Line PPAP Assembly Line Products and Process Validation 100% Calibration 100% Integration Vehicle Engineering Release All parts at full PPAP for Vehicle program 100% Structure Vehicle Engineering Release 65% Calibration 80% Calibration 8 Disciplines Alpha Alpha Material Required Date Automatic Transmission Automatic Transmission Architecture Approval Alliance of Automobile Manufactures Anti-lock Brake System or Anti-Block Steering Architecture Confirmation Assistant Chief Engineer Activity Assembly Component Tree BOM Alternatives Development Analysis / Development / Validation Analysis, Development and Validation Application Engineer Application Engineer Assimilability evaluation method Architecture Framing Initiation Automotive Industry Action Group Alloy Automatic Machincal Transmission American National Standards Institute Advanced Purchasing Assembly Plant Automotive Product Board Approved Product Description Annual Program Execution Asia Pacific Economic Cooperation 英文全称 100%标定 100%集成车工程发布 为了整车项目,所有零件须完全通过PPAP 100%结构车工程发布 65%的动力总成标定 80%的动力总成标定 问题解决8步法 Alpha阶段(动力总成产品开发的一个阶段) Alpha样件需求日期 自动变速器 自动变速器 架构批准 汽车制造商联盟 防抱死制动系统 架构确认 总工助理 工艺路线 总成件树形BOM 主题开发 分析/开发/验证 分析,开发和认证 应用工程师 应用工程师 可装配性评估方法 架构框架启动 美国汽车工业行动集团 铝合金 机械式自动变速器 美国国家标准协会 提前采购 总装厂 汽车产品委员会 批准的产品描述 年度项目执行 中文含义
Samtec QTH QSH系列连接器规格说明书
-NO. OF PAIRS-01-----OPTION-QMSHeaderQFSSocket–026, –052,–078–D = (52 total pins per bank)–016, –032,–048–D–DP = (16 pairsper bank)–SL= 10 µ" (0.25 µm) Gold on Signal Pins and Ground Plane, Matte Tin on tails–D = Single-Ended –D–DP= DifferentialPair–MG= Metal Guide Post (QMS only)–K= Polyimidefilm Pick & Place PadLeave blank for Tray Packaging –TR= Tape & Reel (–016, –026, –032 & –052 only)–FR= Full Reel Tape & Reel (must order max. quantity per reel; contact Samtec for quantity breaks)(–016, –026, –032 & –052 only)(0.635 mm) .025" PITCH RIGHT-ANGLE GROUND PLANE HEADERS & SOCKETSQMS-RAQFS-RABoard Mates:QFSBoard Mates:QMSSERIES-POSITIONS PER ROW-01-PLATING-RA -GP-OPTION-PACKAGINGQRM8Header QRF8Socket–026, –052, –078(52 total positionsper bank)–L = 10 µ" (0.25 µm) Gold contact, Matte Tin on tails–GP=Guide Post (Requires -GP on mating connector)–K= (7.00 mm) .275" DIA Polyimide film Pick & Place Pad (–052 only)Leave blank for Tray Packaging –TR=Tape & Reel (–026, –052 only)–FR= Full Reel Tape & Reel (must order max. quantity per reel; contact Samtec forquantity breaks)(–026 & –052 only)Q RATE ®(0.80 mm) .0315" PITCH RIGHT-ANGLE SLIM BODY GROUND PLANE HEADERS & SOCKETSQRM8-RAQRF8-RABoard Mates:QRF8(-GP Required)Board Mates:QRM8(-GP Required)SERIES-POSITIONS PER ROW-01-PLATING-D -EM2-END OPTION-PACKAGINGQMSHeaderQFSSocket–026, –052,–078–SL= 10 µ" (0.25 µm) Gold on Signal Pins and Ground Plane, Matte Tin on tails–PC4= 4 Power Pins per end (QMS only)Leave blank for Tray Packaging –TR= Tape & Reel (–026 & –052 only)–FR= Full Reel Tape & Reel (must order max. quantity per reel; contact Samtec for quantity breaks)(-026 & -052 only)(0.635 mm) .025" PITCH EDGE MOUNT GROUND PLANE HEADERS & SOCKETSQMS-EMQFS-EMBoard Mates:QFSBoard Mates:QMSNote:Some lengths, styles and options are non-standard, non-returnable.View complete specifications at: ?QMS-RA or ?QFS-RAView complete specifications at: ?QMS-EM or ?QFS-EMView complete specifications at: ?QRM8-RA or ?QRF8-RAUnless otherwise approved in writing by Samtec, all parts and components are designed and built according to Samtec’s specifications which are subject to change without notice.F-224。
互联网时代新零售模式研究——以瑞幸咖啡为例论文
摘要在互联网高速发展的时代,“线上+线下”这一新零售模式引起了政学两界的诸多关注,同时,新零售也是各行各业创业的契机。
瑞幸咖啡是目前中国咖啡市场上新零售咖啡的典型代表,其营销模式能迅速占领市场,值得业内借鉴。
虽然瑞幸咖啡最近收数据造假风波影响,其公司管理虽然存在问题,但不可否认,互联网咖啡的新商业模式给传统咖啡业带来了不容忽视的冲击。
因此,通过文献研究法和定性分析法对瑞幸咖啡元年的发展状况进行剖析,然后分析瑞幸咖啡营销存在的问题并基此预测未来的发展趋势,以期瑞幸咖啡的可持续的良性发展。
关键词:新零售模式,瑞幸咖啡,烧钱式营销AbstractUnder the background of Internet thinking, the new retail mode of "Online + offline" has attracted a lot of attention from the political and academic circles. At the same time, the new retail is also an opportunity for entrepreneurship in all walks of life. Luckin coffee is a typical representative of new retail coffee in China's coffee market. Its marketing mode can quickly occupy the market, which is worth learning from in the industry. Therefore, through literature research and qualitative analysis, this paper analyzes the development of Luckin coffee in the first year, and then analyzes the existing problems of Luckin coffee marketing and forecasts the future development trend based on this, in order to achieve sustainable and sound development of Luckin coffee.Keywords: new retail mode, Luckin coffee, money burning marketing; countermeasure前言经风靡一时的星巴克咖啡近几年的市场规模和效益也逐渐开始缩水。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Keywords for Scripta MaterialiaThe keyword listing for Scripta Materialia is divided intofive sections.1.Synthesis and Processing;2.Characterization;3.Material Type;4.Properties and Phenomena;and5.Theory,Computer Simulations,and Modeling.Authors should select a maximum offive(5)keywords from thefive sections as appropriate and ensure that the keywords are included in their manuscript in accordance with the Notes for the Guidance of Authors.Where deemed necessary,authors may provide one keyword that does not appear on the listing.The total number of keywords must not exceedfive.The keywords selected will be used for search and retrieval purposes in an electronic environment as well as for the creation of subject indexes for Scripta Materialia.It is therefore recommended that authors pay careful attention to the selection of the keywords to ensure that they provide a useful description of the work being reported.1.Synthesis and Processingagingannealinganodizationatomizationball millblendingbondingcastingdie castinginjection castinginvestment castingrheocastingsqueeze castingsuction castingthixocastingchemical vapor deposition chemical vapor transportcoatingcold workingcrystal growthBridgman technique Czochralski technique depositionchemical vapor deposition(CVD) laser depositionmolecular beam epitaxy(MBE) physical vapor deposition(PVD) sputteringdrawingdynamic compactionelectroless platingelectron beam methods electroplatingextrusionfiringfoamingforming processescold isostatic pressing(CIP) deep drawingdrawingextrusionforginghot isostatic pressing(HIP)hot pressingrollingsolid freeform processes galvanizationhigh-speed deformation homogenization/solutionizationhot workingimplantationinfiltrationliquid infiltrationslurry infiltrationvapor infiltrationion-beam processingisothermal heat treatmentsaustemperingmartemperingjoiningbrazingdiffusion bondingsolderinglaser treatmentlaser annealinglaser depositionlaser peeninglaser weldingliquid-phase epitaxy(LPE)liquid-phase sinteringlithographymechanical alloyingmechanical millingmelt spinningmetal injection moulding(MIM)mineralizationmolecular beam epitaxy(MBE)nitridingphotochemical processingplasma sprayingplatingpolymer processingpowder consolidationpowder processingquenchingreactive ion etchingrecyclingrollingself-propagating high-temperature synthesis(SHS) semi-solid processingsevere plastic deformation(SPD)accumulative roll bonding(ARB)equal channel angular extrusion(ECAE)equal channel angular pressing(ECAP)frictionhigh-pressure torsiontorsionsinteringspark plasma sinteringsol–gelsolidificationdirectional solidificationeutectic solidificationmonotectic solidificationmulticomponent solidificationperitectic solidificationrapid solidificationsolidification microstructurespark plasma sinteringspin coatingsplat quenchingsputteringstrain agingsurface alloyingsurface modificationtemperingthermal barrier coatingthermal spray processingthermomechanical processingthinfilmstissue engineeringvapor depositionweldingfriction stir weldingfriction welding2.Characterizationacoustic methodsactivation analysisatom location by channeling enhanced microanalysis(ALCHEMI) atom probe tomographyBrillouin scatteringcritical exponent analysisdifferential scanning calorimetry(DSC)differential thermal analysis(DTA)dynamic mechanical analysiselectrical resistivity/conductivityelectron diffractionelectron holographyelectron scatteringimage analysissterology2D quantitative analysis3D reconstructionion microprobeKerr–Faraday–magnetometrymechanical properties testingbending testcompression testcreep testfatigue testhardness testhigh cycle fatigueimpact testlow cycle fatiguemicroindentationnanoindentationscratch testtension testtoughnessmicroscopy and microanalysis techniquesanalytical electron microscopyatomic force microscopy(AFM)atom-probefield-ion microscopy(AP-FIM)convergent beam electron diffraction(CBED)electron backscatteringelectron backscattering diffraction(EBSD)electron backscattering patterns(EBSP)electron diffractionelectron energy loss spectroscopy(EELS)electron holographyelectron probe microanalysis(EPMA)energy dispersive X-ray spectroscopy(EDXS)energyfiltering transmission electron microscopy(EFTEM)field-ion microscopy(FIM)fluctuation electron microscopy(FEM)focused ion beam(FIB)high-angle annular darkfield(HAADF)high-resolution electron microscopy(HREM)Lorenz microscopymagnetic force microscopy(MFM)optical microscopyorientation imaging microscopy(OIM)scanning electron microscopy(SEM)scanning/transmission electron microscopy(STEM) scanning tunneling microscopy(STM)three-dimensional atom probe(3DAP)transmission electron microscopy(TEM)wavelength dispersive X-ray spectroscopy(WDXS)Mo¨ssbauer effectnanoindentationneutron diffractionneutron scatteringnuclear magnetic resonance(NMR)nuclear reaction analysispositron annihilation(PAL)radiographyRutherford backscattering spectrometry/channeling (RBS)small angle neutron scattering(SANS)small angle scattering(SAS)small angle X-ray scattering(SAXS)surface analysis techniquesAuger electron spectroscopy(AES)deep level transient spectroscopy(DLTS)ion scattering spectroscopy(ISS)infrared(IR)spectroscopylow-energy electron diffraction(LEED)optical spectroscopyRaman spectroscopyreflection high-energy electron diffraction(RHEED) secondary ion mass spectroscopy(SIMS)X-ray photoelectron spectroscopy(XPS)thermally stimulated acoustic methodsthermogravimetric analysisthree-dimensional tomographyX-rayextended X-ray absorptionfine structure(EXAFS)line broadeningsmall angle X-ray scattering(SAXS)synchrotron radiationX-ray diffraction(XRD)X-rayfluorescenceZ-contrast microscopy3.Material Typeaerogelamorphous materialsalloysblock polymerscarbonliquidspolymerssiliconberyllidesbiomaterialsbonehydroxyapatitepolymeric biomaterialspolymersblock copolymersboridesbuckminster fullerenebulk metallic glasscarbidescarbon and graphitecarbonfiber-reinforced plastics carbonfiberscarbon nanotubescarbon–carbon compositescellular materialscement and concreteceramic thinfilmsceramicscermetschalcogenide glassescompositesceramic matrix composites(CMC)fiber reinforced compositesmetal matrix composites(MMC) particulate reinforced composites polymer matrix composites whisker reinforced composites compoundsintercalation compounds intermetallic compoundsionic compounds semiconductor compounds cuprate superconductorsdiamondfilmsdiamond-like carbondiblock polymersdielectricselectroceramicselectrochromicselectronic ceramicselectronic packagingfast-ion conductorsfast-ion glassesferritesferroelectric ceramicsferroelectric materials ferromagnetic materials ferromagnetic semiconductor ferromagnetic shape memory alloy fibersfoamsfuel cell materialsfunctionally graded materials(FGM) glassglassfibergranular materialshalf-metalHeusler phaseshigh-temperature superconductors insulatorsintermetallicsiron aluminidesnickel aluminidesniobium aluminidestitanium aluminidestransition metal silicidesionic conductorshydridesLangmuir–Blodgettfilmlaves phaseslayered structureslead-free solderliquidslithium-ion batterieslow-dielectric materialsluminescent materialsmacromolecular materialsmagnetic materialsexchange spring magnethard magnetic materialsmagnetic random access memory(MRAM) magnetic recording headmagnetic recording mediasoft magnetic materialsmagnetostrictive materialsmetallic glassbulk metallic glass(BMG)metal and alloysalkaline earthaluminumaluminum alloyscoppercopper alloysironiron alloysmagnesiummagnesium alloysnickelnickel alloysplatinum grouprare earthrefractory metalssemiconductorsteelstitaniumtitanium alloystransition metalsmetallizationsmicroelectromechanical systems(MEMS) microelectronics packagingmineralsmultilayersnanocompositenanocomposite magnetnanocrystalline materialsnanocrystalline metalnanocrystalline soft magnetic material nanostructured materialsnitridesoptical materialsoptical waveguidesoptoelectronic packagingorganic electronic materialsoxide dispersion strengthened(ODS)alloyoxidesamorphous oxidesbinary oxidescrystalline oxidesnon-binary oxidespermanent magnetperovskitepiezoelectric ceramicspolymersporous materialquantum dotsquantum wellsquantum wiresquasicrystalrare earth magnetssemiconducting polymers semiconductorscompound semiconductors elemental semiconductors semiconductor devicessemimetalssensorsshape memory alloys(SMA) ferromagnetic shape memorysilica glasssilicidestransition metal silicidessolar cellssol–gel materialssolid electrolytessteelsaustenitic steelsbainitic steelscarbidesdual phasesferritic steelsheat-resistant steelshigh-strength low-alloy(HSLA)steels interstitial free(IF)steelsmaraging steelsmartensitic steelspearlitic steelsstainless steelssuperalloysuperconductorsceramic superconductorslow-temperature superconductors metallic superconductorsorganic superconductors thermoelectric materialsthinfilmscoatingsmagnetic recording mediamagnetic thinfilmsmultilayer thinfilmsvaristorwaveguidewhiskerszinc oxide4.Properties and Phenomena acousticatomic layer epitaxy bucklingcapillary phenomenacatalysiscellular growthcoarseningconvectioncorrosioncreepruptureCoble creepcrystallizationcrystal defectscrystal structuredampingdecompositionclustering decompositionordering decompositionspinodal decompositiondefectsetching defectslattice defectspoint defectsdefects in semiconductorsdeformation structuredendritic growthdielectricdiffusionbulk diffusiongrain boundary diffusioninterface diffusioninterstitial diffusionionic diffusionliquid diffusionpipe diffusionstress-assisted diffusionsubstitutional diffusionsurface diffusiondiffusion-induced grain boundary motion(DIGM) directional crystallizationdirectional solidificationdislocationdislocation boundariesdislocation celldislocation dynamicsdislocation mobilitydislocation nucleationdislocation structuredislocation theorydomainsantiphase domainsmagnetic domainsferroelectric domainsdynamic phenomenaelectrical propertieselectrochemistryelectromigrationelectronic structureembrittlementgrain boundary embrittlementhydrogen embrittlementimpurity embrittlementinterstitial embrittlementirradiation embrittlementenvironmental brittlenessepitaxyepitaxial growthfacetsfatigueferroelectricityferromagnetic shape memoryflow-rate modulated epitaxy fractalfracturegrain boundariescoincidence latticegrain boundary cohesion grain boundary defectsgrain boundary diffusion grain boundary embrittlement grain boundary energygrain boundary migration grain boundary segregation grain boundary slidinggrain boundary strengthening grain boundary structure grain boundary wettinggrain interfacesgrain refininggrain growthabnormal grain growth heteroepitaxyheterojunctions heterostructureshomoepitaxyhoneycomb structurehydride vapor phase epitaxy hydrogenhydrogen absorption hydrogen desorption hydrogen diffusion hydrogen embrittlement hydrogen storageinterfacesinterface antiphaseinterface defectsinterface dynamicsinterface migrationinterface structureinterface wettinginterlayer exchange coupling internal frictioninternal stresseslattice defectsdisclinationsdislocationsfaultsinterstitialspoint defectsvacanciesmagnetic propertiescoercivityexchange couplinghard magnetsmagnetic anisotropy magnetic domainmagnetic recording magnetic structure magnetostrictionsoft magnetsspin glass magnetoresistancecolossal magnetoresistance(CMR) giant magnetoresistance(GMR) tunneling magnetoresistance(TMR) mechanical propertiesanelastic behaviorBauschinger effectbrittle-to-ductile transitioncreepductilitydynamic strain agingelastic behaviorerosionfatiguefractureHall–Petch effecthardnesshigh-temperature deformation impact behaviorplastic deformationplasticityPortevin–Le Chetelier effect relaxationshear bandsslipstrain agingstrain path changestrain ratestrain rate sensitivitystress relaxationstress rupturesuperplasticitythermally activated processes toughnesstwinningwork hardeningyield phenomenameltingmesostructuremetastable phasesmicrostructureequiaxed microstructure nanocrystalline microstructure polyphase microstructure recrystallized microstructure textureultrafine grained microstructure misorientationnanostructurenondestructive testingoptical propertieselectro-optical effectsoptical absorptionoptical activity and birefringence optical emissitivityoptical reflectivityoptical transmissionphotoelastic effects photorefractive effectsorderingcontinuous orderinglong-range orderingshort-range orderingoxidationcyclic oxidationkineticsprotective coatingscale adhesionstatic oxidationpercolationphase diagramphase transformationscrystallizationeutectic phase transformationheterogeneous nucleation of phase transformations homogeneous nucleation of phase transformations martensitic phase transformationmassive phase transformationnucleation of phase transformationsorderingorder–disorder phenomenaphase transformation kineticspolymorphic phase transformationprecipitationspinodal decompositionphotonic structurepiezoelectricityprecipitationrecoveryabnormal subgrain growthannihilationsubgrain coalescencesubgrain growthrecrystallizationdynamic recrystallizationnucleation of recrystallizationparticle stimulated nucleation(PSN)primary recrystallizationrecrystallization kineticsrecrystallization texturesecondary recrystallizationstatic recrystallizationresidual stressessegregationinterface segregationsurface segregationself-assemblyself-organizationsolidificationdirectional solidificationeutectic solidificationkinetic solidificationmonotectic solidificationmulitcomponent solidificationperitectic solidificationrapid solidificationundercooling solidificationspintronicssuperconductivitysuperheatingsuperlatticesurfacesurface diffusionsurface energysurface reconstructionsurface segregationsurface structuretexturethermal conductivitytwinningundercoolingwearwetting5.Theory,Computer Simulations,and Modeling ab initio calculationanalytical methodsCALPHADcellular automatoncluster variation methoddensity functional theory(DFT)first-principle calculationfull-potential,linear-augmented plane wave method(FLAPW) kineticsmicromechanical modelingfinite element analysismeanfield analysisstrain gradient plasticitymodelingmolecular dynamics(MD)Monte Carlo simulationphase-field modelsimulationstatistical mechanicsthermodynamics。