第一章概率与统计(第1课)离散型随机变量的分布列(1)
自考 概率论与数理统计 重难点笔记资料

高等教育自学考试《概率论与数理统计》重难点笔记资料 课程代码:04183第一章 随机事件与概率一.随机事件关系与运算1!0,)!(!!!,)!(!0===-==-=C C C A A n n n r n nn rn r n r n :,n r n n 组合排列二.概率P(A) 1.P(A)概率特征)()31)(,0)()21)(0)111∑∞=∞===Ω=≤≤K KK kA A P ,P(P P A P 事件互不相容时φ2. 古典概型3.概率加法公式P(A+B)=P(A)+P(B)- P(AB)当A 、B 互斥时, P(A+B)=P(A)+P(B) 事件的独立性:定义:P(AB)=P(A)P(B)性质:.P(A)>0,,则P(B)=P(B/A); P(B)>0则P(A)=P(A/B) P(B —A)=P(B)--P(AB)P (A--B )==P (AB )=P (A--AB )=P (A )--P (AB )基本事件总数所包含的基本事件数A A P =)(P(A+B+C)=1--P(A+B+C)=1--P(A)P(B)P(C) P(AB)=P(AUB)=1-P(AUB)=1-(P(A)+P(B)) P(A)=1-P(A4.条件概率公式5.概率的乘法公式6.全概率公式:从原因计算结果7.Bayes 公式:从结果找原因)()()|(B P AB P B A P =)|()()(B A P B P AB P =)|()(A B P A P =∑==nk k k B A P B P A P 1)|()()(∑==nk kki i k B A P B P B A P B P A B P 1)|()()|()()|()()()|(A P AB P A B P =)/()/()()(AB C P A B P A P ABC P =第二章随机变量及其概率分布4/ 13分布函数对离散型随机变量对连续型随机变量分布函数与密度函数的重要关系:“一般正态分布函数F(x)”转换为“标准正态分布函数)(x Φ”的关系 设X~N (δμ2,)则1.2.3.连续型随机变量函数的概率分布定理:记x=h(y)为y=g(x)的反函数,则Y=g(X)的概率密度:⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<<'=其他y y h y h y f f X Y ,0),())(()(βα1) 设X~U(-2,2ππ),令Y=tanX,求Y 的概率密度柯西分布:+∞<<-∞+='=y y h y h y y f f X Y ,111)())(()(2π 2)设X~N(σμ2,),求eX的概率密度对数正态分布:⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤>-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤>•=-0,00,2)(ln 210,0,0,1)(ln )(,22y y y y y y y y y e f fX Yσμσπ ∑≤==≤=xk k X P x X P x F )()()(⎰∞-=≤=x dtt f x X P x F )()()(⎰∞-=≤=xdt t f x X P x F )()()()()('x f x F =3直接变换法:[])()(21)()(y y yy y ff F fXXY Y-+='=e e yx x 的的反函数为y y 的反函数为反y 2ln 2,,,,,ln -=-===第三章多维随机变量及其概率分布 二元随机变量及其边缘分布 分布规律的描述方法联合密度函数联合分布函数离散联合分布函数的概率:{}0),(),(),(),(,112112222121≥+--=≤<≤<y x y x y x y x y y x x F F F F Y X P性质1),(,0),(),(),(=+∞+∞=-∞-∞=-∞=-∞F F x F y F 离散边缘分布律:{}{}∑∑===⋅===⋅ijji pijY P j p pij X P pi y x1...2,1,,0,0=⋅=⋅=≥⋅≥⋅∑∑jij p pi j i j p pi联合密度二维边缘密度二维连续随机变量的分布 1.均匀分布(X,Y)~U D1)设D 为平面上的有界区域,S 表面积⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤+−−→−⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤≤≤--−−→−⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧∈=其他,其他o d x c b x a c d a b 其他D y x S y x f R yx R 圆形矩形,01,,,))((1,0),(,1),(2222π),(y x f ),(y x F 0),(≥y x f 1),(=⎰⎰+∞∞-+∞∞-dxdy y x f 1),(0≤≤y x F },{),(y Y x X P y x F ≤≤=+∞<<∞-=⎰+∞∞-x ,,dy y x f x f ),()(+∞<<-∞=⎰+∞∞-y dx y x f y f Y ,,),()(}{}{},{j Y P i X P j Y i X P =====2.正态分布),,,,(~),(222121ρσσμμN Y Xey y x f y x x ⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧+--------=σμσσσρρσπσμμρμ222212121212)2(121),())((2)()1(21221离散型随机变量的独立性)()(),(y FY x Fx y x F =连续型随机变量的独立性第四章 随机变量的数字特征数学期望离散型随机变量,数学期望定义连续型随机变量,数学期望定义期望性质:● E(a)=a ,其中a 为常数● E(a+bX)=a+bE(X),其中a 、b 为常数 , ● E(CX)=CE(X),其中C 为常数● E(X+Y)=E(X)+E(Y),X 、Y 为任意随机变量 ● E(XY)=E(X)E(Y),X,Y 相互独立 方差的性质D(a)=0,其中a 为常数D(a+bX)=b 2(X),其中a 、b 为常数D(X+Y)=D(X)+D(Y) 当X 、Y 相互独立时随机变量g(X)的数学期望常用公式:二维随机变量的期望 离散)()(),(y f x f y x f Y X =∑+∞-∞=⋅=k kkP xX E )(⎰+∞∞-⋅=dxx f x X E )()(⎰∑+∞∞-=⇔=dx x fx x g X g E p x g X g E k k k )()()]([)())((ijji Jii i j ij i i i py j p y Y E p x pi x X E ∑∑∑∑∑∑=⋅==⋅=)()()()()(Y E X E Y X E +=+∑∑=i j ij j i p y x XY E )()()()(,Y E X E XY E Y X =独立时与当连续 g(X)∑⎰⎰∑=⇔=jij jiidxdy y x f y x g Y X G E p yx g Y X g E ,),(),()],([),()],([方差 定义式 离散:⋅-=∑=Pi X E xX D ni i21))(()(连续常用计算式常用公式协方差与相关系数⎰⎰--=dxdy y x f Y E Y X E x Y X Cov ),())())(((),(协方差Cov(X,Y)的性质当X 与Y 相互独立时,则Cov(X,Y)=0相关系数XY ρ的性质⎰⎰⎰⎰==dxdyy x yf Y E dxdy y x xf X E ),()(),()(dxdyy x xyf XY E ⎰⎰=),()(()⎰+∞∞-⋅-=dx x f X E x X D )()()(2[]22)()()(X E X E X D -=))}())(({(2)()()(Y E Y X E X E Y D X D Y X D --++=+)()()(Y D X D Y X D +=+)()()(),(Y E X E XY E Y X Cov -=)()(),(Y D X D Y X Cov XY=ρ[][]{})()()()()(Y E X E XY E Y E Y X E X E -=--())()()(),(22X D X E X E X X Cov =-=),(),(Y X abCov bY aX Cov =),(),(),(Z Y Cov Z X Cov Z Y X Cov +=+独立与相关独立必定不相关 相关必定不独立 不相关不一定独立标准正态分布的概率计算公式)()()(a a Z P a Z P Φ=<=≤)(1)()(a a Z P a Z P Φ-=>=≥)()()(a b b Z a P Φ-Φ=≤≤1)(2)()()(-Φ=-Φ-Φ=≤≤-a a a a Z a P一般正态分布的概率计算一般正态分布的概率计算公式第五章 大数定律及中心极限定理1.切比雪夫不等式:设随机变量X 的期望E(X)及方差D (X )存在,则对任意小正数a>0,{}{}22)(1)()()(aX D a X E X P a X D a X E X P -≥<-↔≤≥- 2.独立同分布序列的中心极限定理{})(21)(212lim lim lim x dt x n n X P x Y P x xt n i i n n n n n eF Φ==⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤-=≤=⎰∑∞---∞→∞→∞→πσμ3.棣莫费-拉普拉斯中心极限定理)1,0(~),(~2N X Z N X σμσμ-=⇔()()(σμ-Φ=<=≤a a X P a X P )(1)()(σμ-Φ-=>=≥a a X P a X P )()()(σμσμ-Φ--Φ=≤≤a b b X a P)(2122lim x dt x mpq np Z p e t x n n Φ==⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤--∞-∞→⎰ 第六章 统计量及其抽样分布 样本方差,)(11212∑=--=ni i x x n s样本标准差2s s = 统计量样本K样本K卡方分布t 分布F 分布正态总体条件下样本均值的分布:样本方差的分布:两个正态总体的方差之比)(~)1,0(~212n X N X ni i χ∑=,则若())(~1),,(~21222n Y N Y ni iχμσσμ∑=-则若),(~//),(~),(~21212212n n F n V n U n V n U 则若χχ),(~2n N X σμ)1,0(~/N nX σμ-)1(~)1(222--n S n χσ)1(~/--n t ns X μ则若),(~),1,0(~2n Y N X χ)(~/n t nY X第七章 参数估计点估计:参数的估计值为一个常数最大似然估计P147似然函数单个正态总体参数的置信区间第八章 假设检验假设检验的步骤① 根据具体问题提出原假设H0和备择假设H1② 根据假设选择检验统计量,并计算检验统计值③ 看检验统计值是否落在拒绝域,若落在拒绝域则拒绝原假设,否则就不拒绝原假设。
概率论与数理统计知识点总结!-知识归纳整理

《概率论与数理统计》 第一章随机事件及其概率§1.1 随机事件一、给出事件描述,要求用运算关系符表示事件: 二、给出事件运算关系符,要求判断其正确性: §1.2 概率古典概型公式:P (A )=所含样本点数所含样本点数ΩA 实用中经常采用“罗列组合”的想法计算补例1:将n 个球随机地放到n 个盒中去,问每个盒子恰有1个球的概率是多少?解:设A :“每个盒子恰有1个球”。
求:P(A)=?Ω所含样本点数:n n n n n =⋅⋅⋅...Α所含样本点数:!1...)2()1(n n n n =⋅⋅-⋅-⋅n n n A P !)(=∴补例2:将3封信随机地放入4个信箱中,问信箱中信的封数的最大数分别为1、2、3的概率各是多少?解:设A i :“信箱中信的最大封数为i”。
(i =1,2,3)求:P(A i )=?Ω所含样本点数:6444443==⋅⋅A 1所含样本点数:24234=⋅⋅836424)(1==∴A PA 2所含样本点数:363423=⋅⋅C1696436)(2==∴A PA 3所含样本点数:4433=⋅C161644)(3==∴A P注:由概率定义得出的几个性质:知识归纳整理1、0<P (A )<12、P(Ω)=1,P(φ) =0 §1.3 概率的加法法则定理:设A 、B 是互不相容事件(AB=φ),则: P (A ∪B )=P (A )+P (B )推论1:设A 1、 A 2、…、 A n 互不相容,则 P(A 1+A 2+...+ A n )= P(A 1) + P(A 2) +…+ P(A n )推论2:设A 1、 A 2、…、 A n 构成完备事件组,则 P(A 1+A 2+...+ A n )=1推论3: P (A )=1-P (A )推论4:若B ⊃A ,则P(B -A)= P(B)-P(A) 推论5(广义加法公式):对任意两个事件A 与B ,有P(A ∪B)=P(A)+P(B)-P(A B) 补充——对偶律:nnAA A A A A ⋂⋂⋂=⋃⋃⋃ (2)121nnAA A A A A ⋃⋃⋃=⋂⋂⋂ (2)121§1.4 条件概率与乘法法则条件概率公式:P(A/B)=)()(B P AB P (P(B)≠0)P(B/A)= )()(A P AB P (P(A)≠0)∴P (AB )=P (A /B )P (B )= P (B / A )P (A )有时须与P (A+B )=P (A )+P (B )-P (AB )中的P (AB )联系解题。
2012数学二轮复习课件 随机变量及其分布

2.常见的离散型随机变量的分布
(1) ห้องสมุดไป่ตู้点分布
分布列为(其中0 < p < 1): ξ 0 1 P 1-p p
( 2 ) 二项分布在n次独立重复试验中,事件A发生的
次数ξ 是一个随机变量,其所有可能取的值为0,1, 2,
k 3, ,n,并且P (ξ = k ) = Cn p k q n − k (其中k = 0,1, 2, , … …
( 3) 记“甲同学在一次数学竞赛预赛中成绩高于80分
6 3 为事件A,则P( A) = = . 8 4 3 随机变量ξ的可能取值为0、 2 3,且ξ ~B(3, ), 1、、 4 k 3 k 1 3− k 所以P(ξ = k ) = C3 ( ) ( ) ,k = 0,1, 2,3. 4 4 所以随机变量ξ的分布列为:
甲 9 8 4 5 8 2 3 1 7 8 9 0 0 0 2 乙 5 3 5 5
( 2 ) 派甲参加比赛比较合适.理由如下:
1 x甲 = (70 × 2 + 80 × 4 + 90 × 2 + 8 + 9 + 1 + 2 + 4 + 8 + 3 + 8 5) = 85, 1 x乙 = (70 ×1 + 80 × 4 + 90 × 3 + 5 + 0 + 0 + 3 + 5 + 0 + 2 + 8 5) = 85, 1 2 2 2 2 s = [( 78 − 85 ) + ( 79 − 85 ) + ( 81 − 85 ) + ( 82 − 85 ) + 8
(1) 设甲、乙两人同时承担H 任务为事件A,
概率与统计PPT教学课件

孟子也非天生的圣人,他也 有过性格不稳定的幼年,能成为 “亚圣”,多得力于他的母亲。 孟子的母亲是位伟大的女性,她 含辛茹苦坚守志节,抚育儿子, 从慎始、励志、敦品、勉学以至 于约礼、成金,数十年如一日, 毫不放松,既成就了孟子,更为 后世的母亲留下一套完整的教子 方案。
孟母三迁
孟子很小的时候,孟母就十分注意对他的 培养,只要周围的环境对他的成长有不好的影响, 孟母就会立即搬家。起初,孟母带着年幼的孟子 住在一所公墓的附近,孟子看见人家哭哭啼啼埋 葬死人,他也学着玩,孟母心想:“我的孩子住 在这里不合适。”就立刻搬家。他们母子搬到了 集市的附近,孟子看见商人自吹自夸地卖东西赚 钱,他又学着玩,孟母又在心里想:“我的孩子 住在这里也不合适。”就连忙又搬家。最后,孟 母和孟子搬到了学堂的附近,这时,孟子开始学 习礼节并要求上学,孟母这才在心里高兴地说: “这里才是适合我的孩子居住的地方!”
让我们走近这两位先哲,让他们思 想的光环也闪耀在我们这一代人的心中!
综合性学习 我所了解的孔子和孟子
圣人孔子
孔子,名丘,字仲尼, 春秋时期鲁国人。他 的祖先是宋国贵族, 大约在孔子前几世没 落了,失掉了贵族的 地位,《史记》称 “孔子贫且贱”,孔 子自己也说:“吾少 也贱,故能多鄙事。” (《论语·子罕》)
随机变量的表示: 常用希腊字母 , 等表示。
2、随机变量所取值的含义:表怎样的试验结果 引例1:某人射击一次,可能出现命中0环,命中 1环,… ,命中10环的结果,
我们用表示射击的命中环数 则是一个随机变量
0 表示命中0环; 1 表示命中1环;
2 表示命中2环; …… 10 表示命中10环;
0
1
0.6 0.3
0
1
0.9025 0.095
专题01 离散型随机变量分布列(解析版)

概率与统计专题01 离散型随机变量分布列常见考点考点一 离散型随机变量分布列典例1.某校组织“百年党史”知识比赛,每组有两名同学进行比赛,有2道抢答题目.已知甲、乙两位同学进行同一组比赛,每人抢到每道题的机会相等.抢到题目且回答正确者得100分,没回答者得0分;抢到题目且回答错误者得0分,没抢到者得50分,2道题目抢答完毕后得分多者获胜.已知甲答对每道题目的概率为45.乙答对每道题目的概率为35,且两人各道题目是否回答正确相互独立.(1)求乙同学得100分的概率;(2)记X 为甲同学的累计得分,求X 的分布列和数学期望. 【答案】(1)37100; (2)分布列见解析,()100E X =. 【解析】 【分析】(1)应用独立事件乘法公式及互斥事件的概率求法,求乙同学得100分的概率;(2)由题意知X 可能值为{0,50,100,150,200},分别求出对应概率,写出分布列,进而求期望. (1)由题意,乙同学得100分的基本事件有{乙抢到两题且一道正确一道错误}、{甲乙各抢到一题都回答正确}、{甲抢到两题且回答错误},所以乙同学得100分的概率为1312141311113722252525252525100⨯⨯⨯⨯+⨯⨯⨯⨯+⨯⨯⨯=. (2)由题意,甲同学的累计得分X 可能值为{0,50,100,150,200},1111111313134(0)225252525252525P X ==⨯⨯⨯+⨯⨯⨯⨯+⨯⨯⨯=;121112134(50)222525252525P X ==⨯⨯⨯⨯+⨯⨯⨯⨯=;1212111414139(100)2225252525252525P X ==⨯⨯⨯+⨯⨯⨯⨯+⨯⨯⨯⨯=;14124(150)2252525P X ==⨯⨯⨯⨯=;14144 (200)252525P X==⨯⨯⨯=;分布列如下:所以期望44944()050100150200100 2525252525E X=⨯+⨯+⨯+⨯+⨯=.变式1-1.第24届冬季奥林匹克运动会(The XXIV Olympic Winter Games),即2022年北京冬季奥运会,于2022年2月4日星期五开幕,2月20日星期日闭幕.北京冬季奥运会设7个大项,15个分项,109个小项.北京赛区承办所有的冰上项目;延庆赛区承办雪车、雪橇及高山滑雪项目;张家口赛区的崇礼区承办除雪车、雪橇及高山滑雪之外的所有雪上项目.某运动队拟派出甲、乙、丙三人去参加自由式滑雪.比赛分为初赛和决赛,其中初赛有两轮,只有两轮都获胜才能进入决赛.已知甲在每轮比赛中获胜的概率均为34;乙在第一轮和第二轮比赛中获胜的概率分别为45和58;丙在第一轮和第二轮获胜的概率分别是p和32p-,其中34p<<.(1)甲、乙、丙三人中,谁进入决赛的可能性最大;(2)若甲、乙、丙三人中恰有两人进人决赛的概率为2972,求p的值;(3)在(2)的条件下,设进入决赛的人数为ξ,求ξ的分布列.【答案】(1)甲进入决赛可能性最大(2)23 p=(3)分布列见解析【解析】【分析】(1)分别求出甲、乙、丙三人初赛的两轮均获胜的概率,然后比较即可;(2)利用相互独立事件的概率的求法分别求出甲和乙进入决赛的概率、乙和丙进入决赛的概率、甲和丙进入决赛的概率,即可通过甲、乙、丙三人中恰有两人进人决赛的概率为2972,列方程求解;(3)先确定进入决赛的人数为ξ的取值,依次求出每一个ξ值所对应的概率,列表即可.(1)甲在初赛的两轮中均获胜的概率为:13394416P =⨯= 乙在初赛的两轮中均获胜的概率为:2451582P =⨯=丙在初赛的两轮中均获胜的概率为:233322P P P P P ⎛⎫=⋅-=-+ ⎪⎝⎭∵3043012p p ⎧<<⎪⎪⎨⎪<-<⎪⎩,∵1324p <<,∵2339941616P P ⎛⎫=--+< ⎪⎝⎭ ∵甲进入决赛可能性最大. (2)()()()123132231111P P P PP P P P P P =⨯++⨯---222913931139111162216222216p p p p p p ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯⨯--+⨯-⨯-+⨯-⨯- ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 2972=整理得21827100p p -+=,解得23p =或56p =,又∵1324p <<,∵23p =; (3)由(2)得,丙在初赛的两轮中均获胜的概率为:345199P =-=, 进入决赛的人数为ξ可能取值为0,1 ,2,3,71417(0)162972P ξ==⨯⨯=, 71591471411(1)16291629162932P ξ==⨯⨯+⨯⨯+⨯⨯=, 91495171529(2)16291692162972P ξ==⨯⨯+⨯⨯+⨯⨯=, 9155(3)162932P ξ==⨯⨯=, ∵ξ的分布列为变式1-2.从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为12,13,14.(1)若有一辆车独立地从甲地到乙地,求这一辆车未遇到红灯的概率;(2)记X 表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X 的分布列和数学期望. 【答案】(1)14(2)分布列见解析,1312【解析】 【分析】(1)利用相互独立事件概率计算公式,计算出所求概率.(2)结合相互独立事件概率计算公式,计算出分布列并求得数学期望. (1)设“一辆车未遇到红灯”为事件A , 则()11111112344P A ⎛⎫⎛⎫⎛⎫=-⋅-⋅-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(2)随机变量X 的所以可能的取值为0,1,2,3, 则(0)P X ==1111(1)(1)(1)2344-⋅-⋅-=(1)P X ==1111111111111111123423423424⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⋅-⋅-+-⋅⋅-+-⋅-⋅= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭. (2)P X ==11111111111112342342344⎛⎫⎛⎫⎛⎫⋅-+⋅-⋅+-⋅⋅= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. (3)P X ==111123424⋅⋅=. 随机变量X 的分布列:随机变量X 的数学期望:1111113()012342442412E X =⨯+⨯+⨯+⨯=. 变式1-3.对飞机进行射击,按照受损伤影响的不同,飞机的机身可分为∵,∵,∵三个部分.要击落飞机,必须在∵部分命中一次,或在∵部分命中两次,或在∵部分命中三次.设炮弹击落飞机时,命中∵部分的概率是16,命中∵部分的概率是13,命中∵部分的概率是12,射击进行到击落飞机为止.假设每次射击均击中飞机,且每次射击相互独立. (1)求恰好在第二次射击后击落飞机的概率; (2)求击落飞机的命中次数X 的分布列和数学期望. 【答案】(1)14; (2)分布列见解析,83. 【解析】 【分析】(1)把恰好在第二次射击后击落飞机的事件拆成两个互斥事件的和,再利用独立事件概率公式计算作答.(2)求出X 的可能值,并求出每个取值的概率,列出分布列并求出期望作答. (1)设恰好第二次射击后击落飞机为事件A 是第一次未击中∵部分,在第二次击中∵部分的事件与两次都击中∵部分的事件的和,它们互斥,所以25111()()6634P A =⨯+=.(2)依题意,X 的可能取值为1,2,3,4,1X =的事件是射击一次击中∵部分的事件,1(1)6P X ==,由(1)知,1(2)4P X ==, 3X =的事件是前两次射击击中∵部分、∵部分各一次,第三次射击击中∵部分或∵部分的事件,与前两次射击击中∵部分,第三次射击击中∵部分或∵部分的事件的和,它们互斥,12211111111(3)C ()()()32632623P X ==⨯⨯⨯++⨯+=, 4X =的事件是前三次射击击中∵部分一次,∵部分两次,第四次射击的事件,123111(4)C ()1324P X ==⨯⨯⨯=,所以X的分布列为:X的数学期望()11118 123464343E X=⨯+⨯+⨯+⨯=.【点睛】关键点睛:利用概率加法公式及乘法公式求概率,把要求概率的事件分拆成两两互斥事件的和,相互独立事件的积是解题的关键.典例2.高三学生甲、乙为缓解紧张的学习压力,相约本星期日进行“某竞技体育项目”比赛.比赛采用三局二胜制,先胜二局者获胜.商定每局比赛(决胜局第三局除外)胜者得3分,败者得1分,决胜局胜者得2分,败者得0分.已知每局比赛甲获胜的概率为23,各局比赛相互独立.(1)求比赛结束,乙得4分的概率;(2)设比赛结束,甲得X分,求X的概率分布与数学期望.【答案】(1)827;(2)分布列见解析,()14227E X=.【解析】【分析】(1)根据题意,求得得4分的事件,即可求得其概率;(2)根据题意,求得X的取值,再求概率从而求得分布列,再根据分布列求得数学期望即可.(1)若比赛结束,乙得4分,则比赛结果是甲以2:1获胜,故前两局比赛,甲胜1场,败1场,最后一局比赛,甲胜.则比赛结束,乙得4分的概率为122128 33327C⨯⨯⨯=.(2)若甲连胜2局结束比赛,甲得6分,其概率为224 39⎛⎫=⎪⎝⎭;若甲连败2局结束比赛,甲得2分,其概率为21139⎛⎫= ⎪⎝⎭;若甲以2:1结束比赛,甲得6分,其概率为12212833327C ⨯⨯⨯=; 若乙以2:1结束比赛,甲得4分,其概率为12211433327C ⨯⨯⨯=; 故X 的分布列如下所示:故()14201422469272727E X =⨯+⨯+⨯=. 变式2-1.现有甲、乙、丙三道多选题,某同学独立做这三道题,根据以往成绩,该同学多选题的得分只有2分和0分两种情况.已知该同学做甲题得2分的概率为34,分别做乙、丙两题得2分的概率均为23.假设该同学做完了以上三道题目,且做每题的结果相互独立. (1)求该同学做完了以上三题恰好得2分的概率; (2)求该同学的总得分X 的分布列和数学期望()E X . 【答案】(1)736(2)分布列见解析,数学期望()256E X = 【解析】 【分析】(1)根据相互独立事件的概率公式进行求解即可;(2)写出随机变量X 的所有可能取值,求出对应概率,从而可求出分布列,再根据期望公式即可求出期望. (1)解:记“该同学做完了以上三题恰好得2分”为事件A ,“该同学做甲题得2分”为事件B ,“该同学做乙题得2分”为事件C .“该同学做丙题得2分”为事件D ,由题意知32(),()()43P B P C P D ===, 因为A BCD BCD BCD =++,所以()()P A P BCD BCD BCD =++()()()P BCD P BCD P BCD =++()()()()()P B P C P D P B P C =+⋅()()()()P D P B P C P D +322322322711111143343343336⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯-⨯-+-⨯⨯-+-⨯-⨯= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭; (2)解:根据题意,X 的可能取值为0,2,4,6, 所以3221(0)11143336P X ⎛⎫⎛⎫⎛⎫==-⨯-⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.由(1)知7(2)36P X ==, 322121(6)433363P X ==⨯⨯==4(4)1(0)(2)(6)9P X P X P X P X ==-=-=-==, 故X 的分布列为所以174125()024********E X =⨯+⨯+⨯+⨯=. 变式2-2.某运动会中,新增加的“趣味乒乓球单打”是这届运动会的热门项目,比赛规则如下:两人对垒,开局前抽签决定由谁先发球(机会均等),此后均由每个球的赢球者发下一个球,对于每一个球,若发球者贏此球,发球者得1分,对手得0分;若对手赢得此球,发球者得0分,对手得2分.当有一人累计得分超过5分时,比赛就结束,得分高者获胜.已知在选手甲和乙的对垒中,发球一方赢得此球的概率都是0.6,各球结果相互独立.(1)假设开局前抽签结果是甲发第一个球,求比赛出现比分2:2的概率;(2)已知现在比分3:3,接下来由甲发球,两人又打了X 个球后比赛结束,求X 的分布列及数学期望.【答案】(1)0.304;(2)分布列见解析,() 2.904E X =. 【解析】 【分析】(1)把比赛出现比分2:2的事件拆成两个互斥的和,再分别求出每个事件的概率即可得解. (2)求出X 的所有可能值,再分析计算求出各个值的概率,列出分布列,求出期望作答.(1)比赛出现比分2:2的事件A 是甲发三球,前两球甲赢,第三球乙赢的事件1A 与甲发球乙赢、乙发球甲赢的事件2A 的和,事件1A 与2A 互斥,1()0.60.60.40.144P A =⨯⨯=,2()0.40.40.16P A =⨯=, 因此,12()()0.1440.160.304P A P A A =+=+=, 所以比赛出现比分2:2的概率为0.304. (2)X 的所有可能值为:2,3,4,因比分已是3:3,接下来由甲发球,且有一人累计得分超过5分时,比赛就结束,2X =的事件是甲发球乙赢,乙发球乙赢比赛结束的事件,(2)0.40.60.24P X ==⨯=,3X =的事件是以下3个互斥事件的和:甲发三球甲赢,比赛结束的事件;甲发第一球甲赢,发第二球乙赢,乙发球比赛结束的事件;甲发第一球乙赢,乙发第二球甲赢,甲发球比赛结束的事件,3(3)0.60.60.410.40.410.616P X ==+⨯⨯+⨯⨯=,4X =的事件是甲发前两球甲赢,发第三球乙赢,乙再发球比赛结束的事件,2(4)0.60.410.144P X ==⨯⨯=,所以X 的分布列为:X 的数学期望:()20.2430.61640.144 2.904E X =⨯+⨯+⨯=.变式2-3.为进一步加强未成年人心理健康教育,如皋市教育局决定在全市深入开展“东皋大讲堂”进校园心理健康教育宣讲活动,为了缓解高三学生压力,高三年级某班级学生在开展“东皋大讲堂”过程中,同座两个学生之间进行了一个游戏,甲盒子中装有2个黑球1个白球,乙盒子中装有3个白球,现同座的两个学生相互配合,从甲、乙两个盒子中各取一个球,交换后放入另一个盒子中,重复进行n 次这样的操作,记甲盒子中黑球的个数为n X ,恰好有2个黑球的概率为n a ,恰好有1个黑球的概率为n b .(1)求第二次操作后,甲盒子中没有黑球的概率; (2)求3X 的概率分布和数学期望()3E X .【答案】(1)427; (2)答案见解析,()32827E X = 【解析】 【分析】(1)由题意得1112,33a b ==,然后分析第二次操作后,甲盒子中没有黑球的情况,从而求解出对应概率;(2)先计算22,a b ,判断3X 的取值为0,1,2,分别计算对应的概率,列出分布列,利用期望公式求解()3E X . (1)由题意知,1112,33a b ==,两次后甲盒子没有黑球时,必须第一次甲盒子中取出一个黑球,第二次甲盒子(黑1白2)再取出一个黑球,乙盒子中(黑1白2)取出一个白球,则11243327P b =⨯⨯= (2)211121733327b a a =⨯+⨯⨯=,21121122163333327b a b ⎛⎫=⨯+⨯+⨯⨯= ⎪⎝⎭,由题意,3X 的取值为0,1,2,则32124144(0)33273243P X b ==⨯⨯+⨯=,3222112242146(1)33333273243P X a b ⎛⎫==⨯+⨯+⨯⨯+⨯= ⎪⎝⎭,32212153(2)333243P X a b ==⨯+⨯⨯=所以3X 的分布列为所以()314653281224324327E X =⨯+⨯= 【点睛】求解分布列的问题时,一般需要先判断变量的可能取值,然后分析题目中的情况计算每个取值对应的概率,从而列出分布列,代入期望公式求解期望.巩固练习练习一 离散型随机变量分布列1.暑假里大学二年级的H 同学去他家附近的某个大型水果超市打工.他发现该超市每天以10元/千克的价格从中心仓库购进若干A 水果,然后以15元/千克的价格出售;若有剩余,则将剩余的水果以8元/千克的价格退回中心仓库.H 同学记录了打工期间A 水果最近50天的日需求量(单位:千克),整理得下表:以上表中各日需求量的频率作为各日需求量的概率,解答下面的两个问题.(1)若超市明天购进A 水果150千克,求超市明天获得利润X (单位:元)的分布列及期望; (2)若超市明天可以购进A 水果150千克或160千克,以超市明天获得利润的期望为决策依据,在150千克与160千克之中应当选择哪一个?若受市场影响,剩余的水果只能以7元/千克的价格退回水果基地,又该选哪一个?请说明理由. 【答案】(1)分布列见解析,数学期望为743元 (2)超市应购进160千克,理由见解析. 【解析】 【分析】(1)求出X 的可能取值及相应的概率,进而得到分布列及数学期望;(2)设该超市一天购进水果160千克,当天利润为Y 元,求出Y 的可能取值及相应的概率,求出数学期望,与第一问求出的期望值相比,得到结论. (1)若A 水果日需求量为140千克,则()()()1401510150140108680X =⨯---⨯-=,且()56800.150P X ===, 若A 水果日需求量不少于150千克,则()1501510750X =⨯-=,且()75010.10.9P X ==-=,故X 的分布列为:()6800.17500.9743E X =⨯+⨯=元(2)设该超市一天购进水果160千克,当天利润为Y 元,则Y 的可能取值为140×5-20×2,150×5-10×2,160×5,即660,730,800 且()56600.150P Y ===,()107300.250P Y ===,()358000.750P Y ===,则()6600.17300.28000.7772E Y =⨯+⨯+⨯=,因为772>743,所以超市应购进160千克.2.某工厂生产一种产品,由第一、第二两道工序加工而成,两道工序的加工结果相互独立,每道工序的加工结果只有A ,B 两个等级.两道工序的加工结果直接决定该产品的等级:两道工序的加工结果均为A 级时,产品为一等品;两道工序恰有一道.工序加工结果为B 级时,产品为二等品;其余均为三等品.每一道工序加工结果为A 级的概率如表一所示,一件产品的利润(单位:万元)如表二所示: 表一表二(1)用η(万元)表示一件产品的利润,求η的分布列和均值;(2)工厂对于原来的生产线进行技术升级,计划通过增加检测成本对第二工序进行改良,假如在改良过程中,每件产品检测成本增加()04x x ≤≤万元(即每件产品利润相应减少x 万元)时,第二工序加工结果为A 级的概率增加0.1x ,问该改良方案对一件产品的利润的均值是否会产生影响?并说明理由.【答案】(1)分布列答案见解析,()33.6E η=(2)该改良方案对一件产品的利润的均值会产生影响,理由见解析【解析】 【分析】(1)由题意η的可能取值为50,20,10,分别求出其概率得分布列,再由期望公式计算出期望; (2)设改良后一件产品的利润为ξ,同(1)求出ξ的各可能取值的概率,计算出期望,由期望函数()E ξ与()E η比较可得结论. (1)由题意可知,η的可能取值为50,20,10, 产品为一等品的概率为0.8×0.6=0.48, 产品为二等品的概率为0.8×0.4+0.2×0.6=0.44, 产品为三等品的概率为1-0.48-0.44=0.08, 所以η的分布列为()500.48200.44100.0833.6E η=⨯+⨯+⨯=.(2)改良方案对一件产品的利润的均值会产生影响,理由如下:由题意可知,改良过程中,每件产品检测成本增加()04x x ≤≤万元时,第二工序加工结果为A 级的概率增加0.1x ,设改良后一件产品的利润为ξ,则ξ可能的取值为50x -,20x -,10x -, 所以一等品的概率为()0.80.10.60.480.08x x ⨯+=+,二等品的概率为()()()0.810.60.110.80.60.10.440.06x x x ⨯-++-⨯+=-⎡⎤⎣⎦, 三等品的概率为()()10.480.080.440.060.080.02x x x -+--=-, 所以()()()()()()()0.480.08500.440.06200.080.0210 1.633.6E x x x x x x x ξ=+⨯-+-⨯-+-⨯-=+,因为()E ξ在[]0,4上单调递增,故当4x =时,()E ξ取到最大值为40, 又因为()()E E ξη≥,所以该改良方案对一件产品的利润的均值会产生影响.3.2022年北京冬奥会有包括中国队在内的12支男子冰球队参加比赛,12支参赛队分为三组,每组四队,2月9号至13号将进行小组赛,小组赛采取单循环赛制,即每个小组的四支参赛队在比赛中均能相遇一次,最后按各队在比赛中的得分多少来排列名次.小组赛结果的确定规则如下: ∵在常规时间里,获得最多进球的队为获胜者,获胜者得3分;∵在常规时间里,如果双方进球相等,每队各得1分.比赛继续进行,以突然死亡法(即在规定的时间内有一方进球)加时赛决出胜负,突然死亡法加时赛中获胜的队将额外获得1分;∵在突然死亡法加时赛中,如果双方都没有得分,那么进行点球赛,直至决出胜负,在点球赛中获胜的队将额外获得1分.若在小组赛中,甲队与乙队相遇,在常规时间里甲队获胜的概率为12,进球数相同的概率为14;在突然死亡法加时赛中,甲队获胜的概率为23,双方都没有得分的概率为16;在点球赛中,甲队获胜的概率为23,假设各比赛结果相互独立.(1)在甲队与乙队的比赛中,求甲队得2分获胜的概率;(2)在甲队与乙队的比赛中,求甲队得分X 的分布列及数学期望. 【答案】(1)736; (2)分布列见解析;3518. 【解析】 【分析】(1)由题可得甲队得2分获胜有两种情况,甲在加时赛中获胜或甲在点球赛中获胜,分别计算概率即得;(2)由题可得X 可取0,1,2,3,分别计算概率即得分布列,然后利用期望计算公式即得. (1)设甲在加时赛中获胜为事件A ,甲在点球赛中获胜为事件B , 则()(),121112143646336P A P B =⨯==⨯⨯=, ∵甲队得2分获胜的概率为()()11763636P P A P B =+=+=. (2)甲队得分X 可取0,1,2,3,()11101244P X ==--=,()121112111143646318P X ⎛⎫⎛⎫==⨯--+⨯⨯-= ⎪ ⎪⎝⎭⎝⎭,()7236P X ==, ()132P X ==, ∵X 的分布列为∵甲队得分X 的数学期望为()117135012341836218E X =⨯+⨯+⨯+⨯=. 4.为进一步完善公共出行方式,倡导“绿色出行”和“低碳生活”,某市建立了公共自行车服务系统,为了鼓励市民租用公共自行车出行,同时希望市民尽快还车,方便更多的市民使用,公共自行车按每次的租用时间进行缴费,具体缴费标准如下:∵租用时间不超过1小时,免费;∵超出一小时后每小时1元(不足一小时按一小时计算),一天24小时最高收费10元.某日甲、乙两人独立出行,各租用公共自行车一次,且两人租车时间都不会超过3小时,设甲、乙租用时间不超过一小时的概率分别是0.5,0.4;租用时间为1小时以上且不超过2小时的概率分别是0.2,0.4. (1)求甲比乙付费多的概率;(2)设甲、乙两人付费之和为随机变量ξ,求ξ的分布列和数学期望. 【答案】(1)0.32 (2)分布列见解析,1.6 【解析】 【分析】(1)用合适的字母表达每个事件,并按照题意搞清楚事件之间的关系以及每个事件的概率即可; (2)求分布列和数学期望就是要搞清楚随机变量的可能取值范围,以及每个值都是由那些事件构成的. (1)根据题意,记“甲付费为0元、1元、2元、”为事件1A ,2A ,3A它们彼此互斥,且()10.5p A =,()20.2p A =,()()()31210.3p A P A P A =-+=⎡⎤⎣⎦, 同理,记“乙付费为0元、1元、2元”为事件1B ,2B ,3B它们彼此互斥,且()10.4p B =,()20.4p B =,()()()31110.2p B P B P B =-+=⎡⎤⎣⎦, 由题知,事件1A ,2A ,3A 与事件1B ,2B ,3B相互独立记,甲比乙付费多为事件M ,则有:213132M A B A B A B =++可得:()()()()()()()2131320.20.40.30.40.30.40.32P M P A P B P A P B P A P B =++=⨯+⨯+⨯= 故:甲比乙付费多的概率为:0.32; (2)由题知,ξ的可能取值为:0,1,2,3,4 则有:()()()1100.50.40.2P P A P B ξ===⨯=,()()()()()122110.50.40.20.40.28P P A P B P A P B ξ==+=⨯+⨯=,()()()()()()()13312220.50.20.30.40.20.40.3P P A P B P A P B P A P B ξ==++=⨯+⨯+⨯=, ()()()()()233230.20.20.30.40.16P P A P B P A P B ξ==+=⨯+⨯=, ()()()3340.30.20.06P P A P B ξ===⨯=;所以ξ的分布列为:ξ的数学期望:()00.210.2820.330.1640.06 1.6E ξ=⨯+⨯+⨯+⨯+⨯=,故答案为:0.32,1.6.5.随着2022年北京冬季奥运会的如火如茶的进行.2022年北京冬季奥运会吉祥物“冰墩墩”受到人们的青睐,现某特许商品专卖店每天均进货一次,卖一个吉祥物“冰墩墩”可获利50元,若供大于求,则每天剩余的吉祥物“冰墩墩”需交保管费10元/个;若供不应求,则可从其他商店调剂供应,此时调剂的每一个吉祥物“冰墩墩”该店仅获利20元.该店调查上届冬季奥运会吉祥物每天(共计20天)的需求量(单位:个),统计数据得到下表:以上述20天吉祥物的需求量的频率作为各需求量发生的概率.记X表示每天吉祥物“冰墩墩”的需求量.(1)求X的分布列;(2)若该店某一天购进164个吉祥物“冰墩墩”,则当天的平均利润为多少元.【答案】(1)(2)8187(元)【解析】【分析】(1)X可取162,163,164,165,166,求出对应概率,然后再写出分布列即可;(2)设Y表示每天的利润,求出所有Y的取值,再根据期望公式即可得解.(1)解:X可取162,163,164,165,166,()21P X===,1622010()41P X===,163205()63P X===,1642010()51P X===,165204()3P X==,16620所以分布列为:(2)设Y 表示每天的利润,当162X =时,162502108080Y =⨯-⨯=, 当163X =时,16350108140Y =⨯-=, 当164X =时,164508200Y =⨯=, 当165X =时,16450208220Y =⨯+=, 当166X =时,164502208240Y =⨯+⨯=, 所以平均利润为1131380808140820082208240818710510420⨯+⨯+⨯+⨯+⨯=(元). 6.在中国共产党的正确领导下,我国顺利实现了第一个百年奋斗目标——全面建成小康社会.某地为了巩固扶贫成果,决定继续对甲、乙两家乡镇企业进行指导.指导方式有两种,一种是精准指导,一种是综合指导.已知对甲企业采用精准指导时,投资50万元,增加100万元收入的概率为0.2,增加200万元收入的概率为0.8,采用综合指导时,投资100万元,增加200万元收入的概率为0.6,增加400万收入的概率为0.4;对乙企业采用精准指导时,投资50万元,增加100万元收入的概率为0.3,增加200万元收入的概率为0.7,采用综合指导时,投资100万元,增加200万元收入的概率为0.7,增加400万元收入的概率为0.3.指导结果在两家企业之间互不影响.(1)若决策部门对甲企业进行精准指导、对乙企业进行综合指导,设两家企业增加的总收入为X 万元,求X 的分布列;(2)若有150万元无息贷款可供甲、乙两家企业使用,对两家企业应分别进行哪种指导总收入最高?请说明理由.【答案】(1)分布列见解析;(2)对甲企业进行综合指导、对乙企业进行精准指导总收入最高,理由见解析. 【解析】 【分析】(1)根据题意确定随机变量X 的所有可能取值,再求出每个取值对应事件的概率并列出分布列即可; (2)由条件知指导方案共有三种:对两家企业均进行精准指导;对甲企业精准指导、对乙企业综合指导;对甲企业综合指导、对乙企业精准指导,然后求出每种方案增加的总收入的数学期望,比较它们大小即可.(1)由题意知X 可能取值为300,400,500,600,则()3000.20.70.14P X ==⨯=,()4000.80.70.56P X ==⨯=,()5000.20.30.06P X ==⨯=,()6000.80.30.24P X ==⨯=,∵当决策部门对甲企业进行精准指导、对乙企业进行综合指导时,两家企业增加的总收入X 的分布列为(2)指导方案1:对甲、乙两家企业均进行精准指导.设两家企业增加的总收入为Y 万元,则Y 可能取值为200,300,400,且()2000.20.30.06P Y ==⨯=,()3000.20.70.80.30.38P Y ==⨯+⨯=,()4000.80.70.56P Y ==⨯=,()2000.063000.384000.56350E Y =⨯+⨯+⨯=(万元);指导方案2:对甲企业进行精准指导、对乙企业进行综合指导. 由(1)得()3000.144000.565000.066000.24440E X =⨯+⨯+⨯+⨯=(万元); 指导方案3:对甲企业进行综合指导、对乙企业进行精准指导.设两家企业增加的总收入为Z ,则Z 的可能取值为300,400,500,600, 且()3000.60.30.18P Z ==⨯=,()4000.70.60.42P Z ==⨯=,()5000.40.30.12P Z ==⨯=,()6000.40.70.28P Z ==⨯=, ()3000.184000.425000.126000.28450E Z =⨯+⨯+⨯+⨯=(万元).∵350440450<<,∵指导方案3:对甲企业进行综合指导、对乙企业进行精准指导总收入最高.7.2021年10月16日,神舟十三号载人飞船与天宫空间站组合体完成自主快速交会对接,航天员翟志刚、王亚平、叶光富顺利进驻天和核心舱,由此中国空间站开启了有人长期驻留的时代.为普及航天知识,某航天科技体验馆开展了一项“摸球过关”领取航天纪念品的游戏,规则如下:不透明的口袋中有3个红球,2个白球,这些球除颜色外完全相同.参与者每一轮从口袋中一次性取出3个球,将其中的红球个数记为该轮得分X ,记录完得分后,将摸出的球全部放回袋中.当参与完成第n 轮游戏,且其前n 轮的累计得分恰好为2n 时,游戏过关,可领取纪念品,同时游戏结束,否则继续参与游戏.若第3轮后仍未过关,则游戏也结束.每位参与者只能参加一次游戏. (1)求随机变量X 的分布列及数学期望;(2)若甲参加该项游戏,求甲能够领到纪念品的概率. 【答案】(1)分布列见解析,数学期望为1.8 (2)0.696 【解析】 【分析】(1)先得出随机变量X 可取的,并求出相应概率,列出分布列,计算数学期望;(2)分别求出甲取球1次后、取球2次后、取球3次后可领取纪念的概率,再相加得出甲能够领到纪念品的概率. (1)由题意得,随机变量X 可取的值为1,2,3,易知()10.3P X ==,()20.6P X ==,所以()30.1P X ==, 则随机变量X 的分布列如下:所以()10.320.630.1 1.8E X =⨯+⨯+⨯= (2)由(1)可知,参与者每轮得1分,2分,3分的概率依次为0.3,0.6,0.1, 记参与者第i 轮的得分为i X ,则其前n 轮的累计得分为12n Y X X X =+++,若参与者取球1次后可领取纪念品,即参与者得2分,则()20.6P Y ==;若参与者取球2次后可领取纪念品,即参与者获得的分数之和为4分,有“13+”、“31+”的情形, 则()420.30.10.06P Y ==⨯⨯=;若参与者取球3次后可领取纪念品,即参与者获得的分数之和为6分, 有“123++”、“321++”的情形,则()620.30.10.60.036P Y ==⨯⨯⨯=;记“参与者能够领取纪念品”为事件A ,则()()()()2460.60.060.0360.696P A P Y P Y P Y ==+=+==++=.8.为庆祝中国共产党建党100周年,某单位举办了以“听党召唤,使命在肩”为主题的知识竞赛活动,经过初赛、复赛,小张和小李进入决赛,决赛试题由3道小题组成,每道小题选手答对得1分,答错得0分,假设小张答对第一、第二、第三道小题的概率依次是45,34,12,小李答对每道小题的概率都是34.且他们每道小题解答正确与否相互之间没有影响,用X 表示小张在决赛中的得分,用Y 表示小李在决赛中的得分.(1)求随机变量X 的分布列和数学期望E (X ),并从概率与统计的角度分析小张和小李在决赛中谁的得分能力更强一些;(2)求在事件“4X Y +=”发生的条件下,事件“X Y >”的概率.【答案】(1)分布列答案见解析,数学期望:2.05,小李的得分能力更强一些 (2)431 【解析】【分析】(1)结合相互独立事件、独立重复试验的知识计算出X 的分布列以及()(),E X E Y ,由此作出判断. (2)利用条件概型概率计算公式,计算出事件“X Y >”的概率.(1)由题设知X 的可能取值为0,1,2,3所以()4311011154240P X ⎛⎫⎛⎫⎛⎫==---= ⎪⎪⎪⎝⎭⎝⎭⎝⎭; ()431431431111111115425425425P X ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==⨯-⨯-+-⨯⨯-+-⨯-⨯= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ ()43143143119211154254254240P X ⎛⎫⎛⎫⎛⎫==⨯⨯-+⨯-⨯+-⨯⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ()4313354210P X ==⨯⨯=, 所以随机变量X 的分布列为。
概率论与数理统计统计课后习题答案(有过程)

概率论与数理统计统计课后习题答案(有过程)第一章习题解答1.解:(1)Ω={0,1,…,10};(2)Ω={,1,…,100n},其中n为小班人数;n(3)Ω={√,×√, ××√, ×××√,…},其中√表示击中,×表示未击中;(4)Ω={(x,y)}。
2.解:(1)事件AB表示该生是三年级男生,但不是运动员;(2)当全学院运动员都是三年级学生时,关系式是正确的;(3)全学院运动员都是三年级的男生,ABC=C成立;(4)当全学院女生都在三年级并且三年级学生都是女生时,=B成立。
3.解:(1)ABC;(2)AB;(3);(4);(5);(6)4.解:因,则P(ABC)≤P(AB)可知P(ABC)=0 所以A、B、C至少有一个发生的概率为P(A∪B∪C)=P(A)+P(B)+P(C)-P(AB)-P(AC)-P(BC)+P(ABC)=3×1/4-1/8+0 =5/85.解:(1)P(A∪B)= P(A)+P(B)-P(AB)=0.3+0.8-0.2=0.9 P(A)=P(A)-P(AB)=0.3-0.2=0.1(2)因为P(A∪B)= P(A)+P(B)-P(AB)≤P(A)+P(B)=α+β, 所以最大值maxP (A∪B)=min(α+β,1);又P(A)≤P(A∪B),P(B)≤P(A∪B),故最小值min P(A∪B)=max(α,β)6.解:设A表示事件“最小号码为5”,B表示事件“最大号码为5”。
223由题设可知样本点总数,。
2C52C411所以;7.解:设A表示事件“甲、乙两人相邻”,若n个人随机排成一列,则样本点总数为n!,, 1若n个人随机排成一圈.可将甲任意固定在某个位置,再考虑乙的位置。
表示按逆时针方向乙在甲的第i个位置,。
则样本空间,事件所以8.解:设A表示事件“偶遇一辆小汽车,其牌照号码中有数8”,则其对立事件A表示“偶遇一辆小汽车,其牌照号码中没有数8”,即号码中每一位都可从除8以外的其他9个数中取,因此A包含的基本事件数为,样本点总数为104。
(呕心整理)概率论与数理统计经管类第四版课后题标准答案吴赣昌著
概率论:第一章习题笔记习题1-2题型分类:计算事件逻辑运算的概率2、思路:①首先将问题中的P[(A∪B)−C)]进行转换成逻辑语言P[(A∪B)∩C];②将互不相容进行逻辑语言化,3、思路:将题目进行逻辑语言化后(如2题),进行韦恩图,帮助确定事件发生概率。
4、思路:明确逻辑语言后,进行韦恩图绘制,快速确定事件概率总结:可以从韦恩图出发,然后再将韦恩图转换成数学符号表达;掌握基本的运算法则,例如习题中的第2题目习题1-31、;如题目问取到的两个球中有黑球则包含两种情况,一是两个都是黑球,一思路:C82=7∗82∗1是一黑一白4、思路:①答案中的P=A;②颜色全相同+颜色不全相同=110、解法2:思路:①一共包含三种情形②A33是排列(在总数为3的样本总量中拿三个数来进行排列);1*4*4是排列对象的样本个数;③基本的想法是选框(可供选择的框框)放数(能够放进去的数字)eg:一般来说第一个数字有三个框可以选择C31,假设次数框内需要填入的是偶数,则C31∗3④此题考虑了顺序,选框放数习题1-43、问题归类:条件概率事件;没有说明顺序,事件A:两件中有一件是不合格产品包含了两种情况(需要注意古典概型)思路:判断是交事件还是条件概率事件:交事件说法:求第一件和第二件都是不合格品的概率;条件概率事件说法:在已知第一件为不合格品下,求第二件也是不合格品的概率4、见作业本①思路:明确逻辑关系之间的等量关系式:P(A∪B)=P(A)+P(B)−P(AB)6、见作业本①思路:①乘法法则,通过树状图明确概率分布,进行条件概率的符号化②需要说明事件之间的独立性习题1-54、5、思路:①对立事件,转换成计算成功率(可利用乘法法则,进行条件概率的符号化);需要说明事件之间的独立性6、思路:无人照管而停工的,同时又有一名工人进行照管;所以出现停工的事件应该是两台以上的机器同时需要照管8、伯努利实验思路:对逻辑语句的理解:不少于三次≥3总习题一1、思路:交事件:只有;并事件:至少10、16、思路:乘法法则进行条件概率的符号化17、思路:①条件概率:将文字符号化;②乘法法则都可以实现条件概率的符号化,或者说乘法法则就是条件概率;③贝叶斯公式实现已知条件的运用,树状图就是贝叶斯23、思路:①设事件:目标事件-这批微机被接受;条件事件-随机抽取的微机中有i台是次品②目标事件为某一事件的概率,可以考虑全概率事件③文字符号化24、思路:(1)①全概率事件,寻求条件概率,将文字符号化(2)①问题是条件概率:很有可能需要用到贝叶斯公式进行转换③贝叶斯公式与全概率公式的联系,全概率公式作为贝叶斯公式的分母总结:(1)并事件、交事件的逻辑关系(2)古典概型中注意事件的完备性,充分考虑可能存在的情况(3)注意C、A之间组合排列的对应关系(3)乘法法则---条件概率(全概率事件)(4)注意判断问题是条件概率(一般用贝叶斯公式),还是某一事件的概率(一般用全概率事件)(5)如果根据题目设置随机变量:eg:总习题23本题目研究的问题是被接受的概率与抽取到次品数量之间的关系,所以A为抽取的次品数量;B产品被接受第二章习题笔记习题2-23、思路:①不考虑顺序,只考虑组合关系②式子中的1表示该随机变量的取值X=?必须在北抽取的三个数字中,只有一种变化,即该随机变量的取值 4、离散型随机变量的分布律思路:①根据分布律直接将对应的概率进行运算 5、7、返回型离散型随机变量求分布律思路:①最后一个分布律满足问题条件,前面对应的分布律都是问题要求:如取到正品̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅②可以写出通式 9、伯努利试验思路:①实验次数较多,计算较为繁琐的时候,可以使用二项分布的泊松近似进行求解,参数λ=np;②泊松分布公式:10、泊松分布与伯努利试验思路:①随机变量为每页印刷错误②问题是四页中没有印刷错误,参杂了伯努利试验,重数是页数,所以要注意区别题目信息的作用习题2-33、求解离散型随机变量分布函数思路:①理解分布函数与分布律之间的关系,累加关系;右连续,单调递增4、离散型随机变量的条件概率思路:P{X<2丨X≠1}不是交事件,是条件概率事件,所以P=0.4/(0.4+0.2),对于条件概率事件一定要用逻辑符号进行表示5、通过连续型随机变量的分布函数求解概率思路:①理解分布律与分布函数之间的关系,累加关系,右连续;②掌握相关的分布函数与分布律之间的运算关系习题2-42、根据概率密度函数求解概率和分布函数思路:①明确分布函数、概率密度函数、概率之间的关系②分布函数与概率密度是累的形式,如何确定积分符号∫的上下标,下标都是从−∞开始(因为分布函数都是累加的形式) 3、通过分布函数和概率密度函数的性质求解参数思路:①当X →+∞时,F 等于1②∫f (t )dt =1+∞−∞求解参数;两个1的运用③在连续型随机变量中,对于p {−1<X <−2}概率的求解不用像离散型随机变量一样关注端点值,直接F(-2)-F(-1)即、可;④在求概率P 的时候可以通过分布函数求解,也可以通过概率密度积分求解,但是进行概率密度积分的时候注意断点,因为有可能需要进行分段求解 5、均匀分布与伯努利试验思路:①通过均匀分布确定P ,n=10;②伯努利试验的标志是多个样本,多重试验,问个数10次,4页、10个等等 6、正态分布的标准化与分位数思路:①标准化②P{X≤3}其中3是分位数,=ϑ(3)7、正态分布相关参数的求解思路:①标准化,便于查表②明确正态分布表的概率计算方式,是≤;③区别分位数与随机变量所在区间P{X≤3}则分位数为3:其中随机变量的区间为(−∞,3);分位数为3,正态分布表显示的是分位数左边的概率总和,即P{X≤3}。
离散型随机变量及其分布列教案
离散型随机变量及其分布列教案离散型随机变量及其分布列教案一、引言1.1 概念介绍离散型随机变量是统计学中的一个重要概念,它描述了在一次实验中可能取到的离散数值,如扔一枚硬币可以取到正面和反面两个离散数值。
本文将介绍离散型随机变量的基本概念及其分布列。
1.2 学习目标通过本教案的学习,你将能够:- 理解离散型随机变量的基本概念;- 了解离散型随机变量的分布列及其性质;- 掌握计算离散型随机变量概率的方法。
二、离散型随机变量的定义2.1 随机变量的概念在概率论中,随机变量是指定义在某个概率空间上的实值函数,它的取值是由实验结果决定的。
随机变量可以分为离散型和连续型两种类型,本文主要关注离散型随机变量。
2.2 离散型随机变量的定义离散型随机变量是指其取值是有限个或可数个的随机变量。
扔一枚硬币的实验可以定义一个离散型随机变量X,它的取值为1(正面)和-1(反面)。
三、离散型随机变量的分布列3.1 定义离散型随机变量的分布列,也称为概率质量函数(Probability Mass Function,简称PMF),描述了随机变量取各个值的概率。
3.2 示意图我们可以通过绘制柱状图来直观地表示离散型随机变量的分布列。
横轴表示随机变量的取值,纵轴表示对应取值的概率。
3.3 性质离散型随机变量的分布列具有以下性质:- 非负性:概率质量函数的取值非负;- 总和为1:所有可能取值的概率之和等于1。
四、计算概率4.1 概念介绍在实际问题中,我们常常需要计算离散型随机变量的概率。
概率计算可以基于分布列进行。
4.2 计算方法计算离散型随机变量概率的基本方法是通过分布列查找对应取值的概率。
具体而言,对于随机变量X和某个取值x,我们可以通过查找分布列找到对应的概率P(X=x)。
五、总结与回顾5.1 概括概念通过本教案的学习,我们了解了离散型随机变量的基本概念及其分布列。
离散型随机变量的分布列描述了随机变量取各个值的概率。
5.2 理解计算方法我们学会了通过分布列计算离散型随机变量的概率的方法。
第一章概率统计基础知识
例题
抽取1个产品
每个产品平均缺陷2个 抽取的产品出现X个(与的大小有关)
例题
抽取100个产品
平均50个瑕疵点 抽取的100个产品有X个缺陷点
泊松分布运算
P( X x) E( X ) Var ( X )
二项分布概率公式
b(n,p) P(x)
E(X)=np Var(x)=np(1-p)
例题
过程不合格品率0.1,抽取6个产品,出现1 个不合格品的概率 平均出现几个不合格品 方差是多少
例题
X服从b(100,0.1),则X的均值和标准 差为
(二)泊松分布
一定面积下出现的点数
独立时间和互不相容事件
不相容事件:无共同样本点 独立事件:相互独立
例题
5个部件工作独立,正常工作的概率为90%, 系统正常工作的概率 系统不工作的概率
例题
从一批产品中抽取10个产品,抽到0个不合 格品的概率为40%,抽到1个不合格品的概 率为30%, 抽到2个以上的概率
放回取样
10个产品 2个不合格品 取4个产品 1个不合格品 所有取法:
10
4
1个不合格品的取法 概率
10 2 (10 2)
1
1
41
10 2 (10 2) P( A) 4 10
4 1
放回取样
10个产品 2个不合格品 取4个产品 2个不合格品 所有取法:
Var ( x)
1
2
例题
指数分布 =0.004 P(200X500) E(X) Var(x)
第1讲 概率、随机变量及其分布列
1.(2020·开封市模拟考试)为应对新冠肺炎疫情,许多企业在
非常时期转产抗疫急需物资.某工厂为了监控转产产品的
质量,测得某批n件产品的正品率为98%,现从中任意有
放回地抽取3件产品进行检验,则至多抽到1件次品的概率
为
()
A.0.998 816
B.0.999 6
C.0.057 624
D.0.001 184
重卦中随机取一重卦,该重卦恰有3个阳爻的概率P=
20 64
=
5 16
.
故选A.
[答案] A
返回
解题方略
古典概型的概率公式 P(A)=mn =A中所基含本的事基件本总事数件数.
返回
[跟踪训练]
1.(2020·济南模拟)2019年1月1日,济南轨道交通1号线试运
行,济南轨道交通集团面向广大市民开展“参观体验,征
返回
2.连续掷3枚硬币,观察落地后这3枚硬币出现正面还是反
面.“恰好3枚正面都朝上”的概率是________,“至少
有2枚反面朝上”的概率是________.
解析:列举基本事件如下:(正,正,正),(正,正,
反),(正,反,正),(反,正,正),(正,反,反),(反,
正,反),(反,反,正),(反,反,反,),共8个,“恰
2.离散型随机变量及其分布列 (1)在对具体问题的分析中,理解取有限值的离散型随机变量及 其分布列的概念,认识分布列对于刻画随机现象的重要性; (2)了解条件概率和两个事件相互独立的概念,理解n次独立重 复试验的模型及二项分布,理解超几何分布及其导出过程,并 能解决一些简单的实际问题; (3)理解取有限值的离散型随机变量均值、方差的概念,能计算 简单离散型随机变量的均值、方差,并能解决一些实际问题; (4)认识正态分布曲线的特点及曲线所表示的意义.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:1.1离散型随机变量的分布列(一)
教学目的:
1了解随机变量、离散型随机变量、连续型随机变量的意义,并能说明随机变量取的值所表示的随机试验的结果
2.通过本课的学习,能举出一些随机变量的例子,并能识别是离散型随机变量,还是连续型随机变量
教学重点:随机变量、离散型随机变量、连续型随机变量的意义
教学难点:随机变量、离散型随机变量、连续型随机变量的意义
授课类型:新授课
课时安排:1课时
教具:多媒体、实物投影仪
内容分析:
本章是在初中“统计初步”和高中必修课“概率”的基础上,学习随机变量和统计的一些知识.学习这些知识后,我们将能解决类似引言中的一些实际问题
教学过程:
一、复习引入:
展示教科书章头提出的两个实际问题(有条件的学校可用计算机制作好课件辅助教学),激发学生的求知欲
某人射击一次,可能出现命中0环,命中1环,…,命中10环等结果,即可能出现的结果可能由0,1,……10这11个数表示;
某次产品检验,在可能含有次品的100件产品中任意抽取4件,那么其中含有的次品可能是0件,1件,2件,3件,4件,即可能出现的结果可以由0,1,2,3,4这5个数表示
在这些随机试验中,可能出现的结果都可以用一个数来表示.这个数在随机试验前是否是预先确定的?在不同的随机试验中,结果是否不变?
观察,概括出它们的共同特点
二、讲解新课:
1.随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量随机变量常用希腊字母ξ、η等表示
2. 离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量
3.连续型随机变量:对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量
如某林场树木最高达30米,则林场树木的高度 是一个随机变量,它可以
取(0,30]内的一切值
4.离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一
注意:(1)有些随机试验的结果虽然不具有数量性质,但可以用数量来表达如投掷一枚硬币,ξ=0,表示正面向上,ξ=1,表示反面向上(2)若ξ是随机变量,b a b a ,,+=ξη是常数,则η也是随机变量三、讲解范例:
例1. 写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果
(1)一袋中装有5只同样大小的白球,编号为1,2,3,4,5 现从该袋内随机取出3只球,被取出的球的最大号码数ξ;
(2)某单位的某部电话在单位时间内收到的呼叫次数η
解:(1) ξ可取3,4,5
ξ=3,表示取出的3个球的编号为1,2,3;
ξ=4,表示取出的3个球的编号为1,2,4或1,3,4或2,3,4;
ξ=5,表示取出的3个球的编号为1,2,5或1,3,5或1,4,5或2,3或3,4,5
(2)η可取0,1,…,n ,…
η=i ,表示被呼叫i 次,其中i=0,1,2,…
例2. 抛掷两枚骰子各一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数的差为ξ,试问:“ξ> 4”表示的试验结果是什么?
答:因为一枚骰子的点数可以是1,2,3,4,5,6六种结果之一,由已知得-5≤ξ≤5,也就是说“ξ>4”就是“ξ=5”“ξ>4”表示第一枚为6点,第二枚为1点
例3 某城市出租汽车的起步价为10元,行驶路程不超出4km ,则按10元的标准收租车费若行驶路程超出4km ,则按每超出lkm 加收2元计费(超出不足1km 的部分按lkm 计).从这个城市的民航机场到某宾馆的路程为15km .某司机常驾车在机场与此宾馆之间接送旅客,由于行车路线的不同以及途中停车时间要转换成行车路程(这个城市规定,每停车5分钟按lkm 路程计费),这个司机一次接送旅客的行车路程ξ是一个随机变量,他收旅客的租车费可也是一个随机变量
(1)求租车费η关于行车路程ξ的关系式;
(Ⅱ)已知某旅客实付租车费38元,而出租汽车实际行驶了15km ,问出租车在途中因故停车累计最多几分钟?
解:(1)依题意得η=2(ξ-4)+10,即η=2ξ+2
(Ⅱ)由38=2ξ+2,得ξ=18,5×(18-15)=15.
所以,出租车在途中因故停车累计最多15分钟.
四、课堂练习:
1.①某寻呼台一小时内收到的寻呼次数ξ;②长江上某水文站观察到一天中的水位ξ;③某超市一天中的顾客量ξ 其中的ξ是连续型随机变量的是( )
A .①;
B .②;
C .③;
D .①②③
2.随机变量ξ的所有等可能取值为1,2,,n …,若()40.3P ξ<=,则( )
A .3n =;
B .4n =;
C .10n =;
D .不能确定
3.抛掷两次骰子,两个点的和不等于8的概率为( )
A .1112;
B .3136;
C .536
; D .112 4.如果ξ是一个离散型随机变量,则假命题是( )
A. ξ取每一个可能值的概率都是非负数;
B. ξ取所有可能值的概率之和为1;
C. ξ取某几个值的概率等于分别取其中每个值的概率之和;
D. ξ在某一范围内取值的概率大于它取这个范围内各个值的概率之和 答案:1.B 2.C 3.B 4.D
五、小结 :随机变量离散型、随机变量连续型随机变量的概念 随机变量ξ是关于试验结果的函数,即每一个试验结果对应着一个实数;随机变量ξ的线性组合η=a ξ+b(其中a 、b 是常数)也是随机变量
六、课后作业:
七、板书设计(略)
八、课后记:。