常规土壤检测项目及方法 土壤检测机构

合集下载

土壤常规45项

土壤常规45项

土壤常规45项(实用版)目录1.土壤常规 45 项的背景和意义2.土壤常规 45 项的具体内容3.土壤常规 45 项的检测方法和应用4.土壤常规 45 项在环境影响评价中的作用5.结论正文一、土壤常规 45 项的背景和意义土壤是生态环境的重要组成部分,与人类生活息息相关。

土壤质量的优劣直接关系到农作物的产量和质量,进而影响人类的健康和生活水平。

随着我国经济的快速发展,工业化和城市化进程加快,土壤环境污染问题逐渐凸显。

为了保障土壤环境质量,确保人类生活和生态环境的安全,我国制定了一系列土壤环境监测标准,其中土壤常规 45 项是环境影响评价中开展土壤环境质量现状监测的重要内容。

二、土壤常规 45 项的具体内容土壤常规 45 项包括重金属、挥发性有机物和半挥发性有机物三大类。

1.重金属(7 项):砷、镉、铬(六价)、铜、铅、汞、镍。

重金属具有高毒性、高积累性和高生物放大性,对生态环境和人类健康具有严重危害。

2.挥发性有机物(27 项):四氯化碳、氯仿(三氯甲烷)、氯甲烷、1,1-二氯乙烷、1,2-二乙烷、1,1-二氯乙烯、顺 -1,2-二氯乙烯、反 -1,2-二氯乙烯、二氯甲烷、1,2-二氯丙烷、1,1,1,2-四氯乙烷、1,1,2,2-四氯乙烷、四氯乙烯、1,1,1-三氯乙烷、1,1,2-三氯乙烷、三氯乙烯、1,2,3-三氯丙烷、氯乙烯、苯、氯苯、1,2-二氯苯、1,4-二氯苯、乙苯、苯乙烯、甲苯、间二甲苯对二甲苯、邻二甲苯。

挥发性有机物具有较强的毒性和挥发性,对大气环境和人体健康造成严重影响。

3.半挥发性有机物(11 项):硝基苯、苯胺、2-氯酚、苯并 [a] 蒽、苯并 [a] 芘、并 [b] 荧蒽、苯并 [k] 荧蒽、、二苯并 [a,h] 蒽、茚并[1,2,3-cd] 芘、萘。

半挥发性有机物在环境中具有一定的持久性和生物放大性,对生态环境和人类健康具有长期影响。

三、土壤常规 45 项的检测方法和应用土壤常规 45 项的检测方法主要包括化学分析法和仪器分析法。

土壤常规检测项目及分析方法

土壤常规检测项目及分析方法

土壤常规检测项目及分析方法土壤常规检测是指通过对土壤中的各项理化指标进行检测和分析,从而了解土壤的肥力状况、污染程度和适宜作物的选择等信息。

土壤常规检测项目包括土壤质地、有机质含量、养分含量、酸碱度、盐分含量等方面,下面将分别介绍这些项目及其分析方法。

1.土壤质地:土壤质地是指土壤颗粒的组成及其粒径分布。

常见的土壤质地包括砂壤土、壤土和粉土。

常规检测土壤质地的方法是根据颗粒的大小进行筛选、称重、计算百分含量,并根据质地三角图进行分类。

2.有机质含量:有机质是指土壤中的有机物质,包括植物残体、动物尸体和微生物等。

有机质含量是衡量土壤肥力的重要指标之一、常规检测有机质含量的方法是用碱钾溶液提取土壤中的有机质,通过酸碱反应测定碱解氮的含量,并乘以一个系数得到有机质的含量。

3.养分含量:养分(主要是氮、磷、钾)是植物生长所需的必需元素,它们对于农作物的生长发育起着重要的作用。

常规检测养分含量的方法包括酸水解法、碱解法和热浸提法等。

其中,酸水解法是将土壤样品与浓硫酸和过氧化钾混合,在高温条件下进行水解,然后用合适的试剂进行分析。

4.酸碱度:酸碱度是指土壤的pH值,它可以反映土壤的酸碱性。

常规检测酸碱度的方法是将土壤样品与盐酸和硫酸混合,在一定条件下进行反应,然后用pH电极测定溶液的pH值。

5.盐分含量:盐分含量是指土壤中溶解在水中的盐类含量,它对于农作物的生长发育和土壤的理化性质起着重要影响。

常规检测盐分含量的方法包括电导率法和煮沸浸提法。

其中,电导率法是通过测定土壤溶液的电导率来间接估算盐分含量。

除了上述常见的土壤常规检测项目,还有一些其他的重要项目,如重金属含量、有机污染物含量、微生物数量和饱和水分含量等。

对于这些项目的检测,通常需要使用更为专门的分析方法和仪器设备。

综上所述,土壤常规检测项目涵盖了土壤质地、有机质含量、养分含量、酸碱度和盐分含量等方面,通过对这些指标的测定和分析,可以全面了解土壤的性质和状况,为农作物的种植和土壤管理提供科学依据。

土壤监测方案

土壤监测方案

土壤监测方案一、引言土壤监测是评估土壤质量和环境状况的重要手段,对于农业生产、环境保护和土地管理至关重要。

本方案旨在提出一种有效的土壤监测方案,以确保土壤质量的可持续性和保护环境的目的。

二、方案设计1. 监测目标本方案旨在监测土壤的化学性质、物理性质和生物学特性,并评估土壤的质量和环境状况。

2. 监测参数(1)化学性质:监测土壤的pH值、有机质含量、养分含量(氮、磷、钾)、重金属含量(铅、镉、汞等)等。

(2)物理性质:监测土壤的质地、容重、含水量等。

(3)生物学特性:监测土壤微生物的种类和数量、土壤酶活性等。

3. 监测方法(1)化学性质:采用标准的化学分析方法,例如土壤pH值采用玻璃电极测定法,有机质含量采用加热重量损失法,养分含量采用化学分析方法等。

(2)物理性质:采用常见的物理测定方法,例如土壤质地可使用质地管、容重可使用圆环法等。

(3)生物学特性:采用分子生物学技术,例如PCR法检测土壤微生物的种类和数量,对土壤酶活性可以使用酶标法等。

4. 监测频率根据土壤的使用情况和目标,建议对农业用地进行定期(不少于一年一次)的监测,对工业用地和污染区域进行更频繁的监测(不少于半年一次)。

5. 监测样品采集(1)样品选择:根据监测目标选择合适的采样点位,避免采样点位的人为干扰,同时要保证采样点位的代表性。

(2)样品采集:采用标准的土壤采样方法,如随机采样、剖面采样等。

(3)样品保存:采集的样品应尽快送至实验室进行分析,如无法立即送至实验室,应妥善保存。

6. 数据分析与报告对采集的土壤样品进行实验室分析后,根据监测参数的结果,进行数据分析和评估。

根据评估结果,编制监测报告,提出有效的土壤改良和治理方案。

三、监测实施1. 建立监测网络根据监测目标和需要,建立土壤监测网络,选择合适的监测点位,并进行监测设备和人员的培训。

2. 实施监测计划根据监测频率和样品采集要求,定期实施土壤监测计划,确保监测工作的顺利进行。

土壤检测方法

土壤检测方法

土壤检测方法
人类生存和发展以及农作物生长、产量和质量受到土壤状况的影响,因此,对土壤性
质进行检测是必要的,来评价土壤肥力水平,便于农业生产管理和可持续利用的重要工具。

土壤检测的主要方法有化学和物理方法:
一、化学法
1、定量分析
定量分析是按不同的分子量和分析活性测定土壤中有机和无机物质的含量及其组成结
构的一种方法。

根据它们的检测方法和检测物质,可以分为:pH、溶解固体、有机质、
磷、钾、氮等。

定性分析是通过不同的化学反应或色谱分析仪测定土壤中某种物质及其活性的方法。

通常可以测定各种有机酸、铁和锰等微量有机及无机物质。

二、物理法
粒度分析是根据土壤粒径的大小把土壤分成不同的粒级,从而预测土壤的物理性质和
产量的一种方法。

2、水分测定
水分测定是土壤水分的定量测定,通过分析土壤的干燥状况,测定土壤水分量的一种
方法。

3、土壤含水量渗透特性测定
土壤含水量渗透特性测定是由学者索尔森提出的测定土壤全水含量及能够很快被植物、昆虫和微生物吸收的土壤有机质所导致的水运动及渗透能力的方法。

4、含气量测定
含气量测定是分析土壤中不可渗透空间内含有的空气的一种方法,它反映了土壤结构
的有机物质含量及其优化程度,在农田土壤的改良中有重要的指导意义。

以上是土壤检测的主要方法,根据土壤检测的具体内容,可以采取不同的测试方法,
以便及时发现土壤质量问题,调整土壤质量。

土壤检测项目及方法

土壤检测项目及方法

土壤检测项目及方法一、土壤检测项目。

土壤检测有好多项目呢。

肥力可是很重要的一项哦。

肥力就像土壤的“力气”,能让农作物茁壮成长。

这里面包括氮、磷、钾的含量检测。

氮就像是植物的“蛋白质”,能让植物枝繁叶茂;磷呢,是植物开花结果的小助手;钾能让植物的茎杆更粗壮,就像给植物吃了“钙片”一样。

还有土壤的酸碱度检测,也就是pH值啦。

酸性土壤和碱性土壤适合种的东西可不一样呢。

比如说,蓝莓就喜欢酸性土壤,要是把它种在碱性土壤里,它可能就会“闹脾气”,长不好啦。

另外,土壤中的重金属含量检测也不能少。

像铅、汞、镉这些重金属要是超标了,那可不得了。

它们会在土壤里“搞破坏”,然后被植物吸收,最后可能就跑到我们的肚子里啦,这对我们的健康可不好呢。

二、土壤检测方法。

检测氮含量的时候呀,有个挺有趣的方法叫碱解扩散法。

就像是给土壤里的氮来一场“小释放”,让它从土壤里跑出来,然后我们就能检测到它有多少啦。

对于磷的检测,钼锑抗比色法就派上用场了。

这个方法就像是给磷穿上一件特殊的“衣服”,让我们能一眼就看到它的存在,然后准确地知道土壤里磷的含量。

钾的检测可以用火焰光度法。

想象一下,就像让钾在火焰里“跳舞”,通过火焰的颜色和强度,我们就能知道钾在土壤里到底有多少啦。

检测土壤酸碱度呢,就简单一些啦。

用pH试纸或者pH计就可以。

pH试纸就像一个小小的“酸碱探测器”,把它放到土壤溶液里,根据颜色变化就能知道土壤是酸性还是碱性啦。

pH计就更高级一点,能直接读出准确的数值呢。

重金属的检测就相对复杂一些啦。

通常会用到原子吸收光谱法之类的高科技手段。

这就像是给重金属来一场“大搜捕”,不管它们藏得多深,都能被找出来。

土壤检测虽然听起来有点复杂,但这些检测项目和方法就像是保护土壤健康的小卫士,让我们能更好地了解土壤,合理利用土壤,这样我们就能种出更多美味又健康的农作物啦。

种植土壤检测标准

种植土壤检测标准

种植土壤检测标准种植土壤检测标准一、前言种植土壤检测是农业生产的重要环节之一,它可以帮助农民了解土壤的养分状况、有机质含量以及重金属等有害物质的含量,为科学施肥和合理种植提供依据。

本文将详细介绍种植土壤检测标准。

二、检测项目1. 养分含量:包括氮、磷、钾等主要元素和微量元素,如铁、锌、锰等。

2. 有机质含量:衡量土壤肥力的重要指标,影响作物生长和品质。

3. pH 值:反映土壤酸碱程度,对于不同作物有不同的适宜范围。

4. 土壤结构:包括颗粒组成、密实度等指标,对于根系生长和水分渗透具有重要影响。

5. 微生物群落:包括细菌和真菌等微生物数量和多样性,对于保持土壤健康和作物品质具有关键作用。

6. 重金属含量:包括铅、镉、汞等有害物质,对于人体健康和环境保护具有重要意义。

三、检测方法1. 养分含量:采用化学分析法或光谱分析法进行检测,包括常规的氮磷钾测定和微量元素分析。

2. 有机质含量:采用干燥燃烧法或湿法氧化法进行检测,其中干燥燃烧法适用于有机质含量较高的土壤,湿法氧化法适用于有机质含量较低的土壤。

3. pH 值:采用电极法或试纸法进行检测,其中电极法精度更高,但需要专业仪器。

4. 土壤结构:采用筛分、密度测定等方法进行检测,其中筛分可以确定土壤颗粒组成和大小分布情况,密度测定可以反映土壤的紧实程度。

5. 微生物群落:采用培养基培养、PCR扩增等方法进行检测,其中培养基培养可以直接获得微生物数量数据,PCR扩增可以获得微生物多样性信息。

6. 重金属含量:采用原子吸收光谱法、电感耦合等离子体质谱法等方法进行检测,其中原子吸收光谱法适用于单一元素的检测,电感耦合等离子体质谱法可以同时检测多种元素。

四、标准范围1. 养分含量:氮、磷、钾的含量应符合不同作物的需求,微量元素的含量应在适宜范围内。

2. 有机质含量:不同土壤类型和作物需求有所不同,但一般应保持在3% 以上。

3. pH 值:不同作物对 pH 值的适宜范围有所差异,但一般应控制在6.0-7.5 之间。

土壤检测方法

土壤检测方法

土壤检测方法
土壤是植物生长的基础,对土壤进行检测可以帮助我们了解土
壤的性质和质量,为农业生产和环境保护提供重要依据。

土壤检测
方法有很多种,包括化学分析、物理性质测试、微生物检测等。


面将介绍几种常见的土壤检测方法。

首先,化学分析是土壤检测的重要手段之一。

通过化学分析可
以了解土壤中的养分含量,包括氮、磷、钾等。

常用的化学分析方
法有土壤pH值测试、有机质含量检测、全氮、全磷、全钾含量检测等。

这些指标可以帮助我们评价土壤的肥力和适宜作物的种植情况,为合理施肥和种植作物提供科学依据。

其次,物理性质测试也是土壤检测的重要内容之一。

土壤的物
理性质包括土壤质地、土壤结构、土壤密度等指标。

通过物理性质
测试可以了解土壤的通透性、保水性、保肥性等特点,为土壤改良
和作物生长提供参考。

此外,微生物检测也是土壤检测的重要内容之一。

土壤中的微
生物包括细菌、真菌、放线菌等,它们在土壤中起着重要的生态功能。

通过微生物检测可以了解土壤中微生物的种类和数量,评价土
壤的生物活性和健康状况,为合理施肥和土壤生态保护提供依据。

除了以上介绍的几种土壤检测方法外,还有其他一些新兴的土壤检测技术,如光谱分析、电化学检测、生物传感技术等,这些新技术为土壤检测提供了更多的选择和可能性。

综上所述,土壤检测是农业生产和环境保护的重要环节,通过科学准确的土壤检测方法,可以为合理施肥、科学种植和土壤生态保护提供重要依据。

希望广大农业生产者和环境保护者能够重视土壤检测工作,促进农业的可持续发展和生态环境的保护。

常规土壤检测项目及方法土壤检测机构

常规土壤检测项目及方法土壤检测机构

常规土壤检测项目及方法土壤检测机构土壤检测是评估土壤质量和农田健康的重要手段,可以帮助农民合理施肥、科学种植,减少农药使用,提高农田的生产力和土壤环境的可持续性。

常规土壤检测项目一般包括土壤理化性质测定、重金属含量测定、土壤微生物及酶活性测定等。

1.土壤理化性质测定:土壤理化性质对植物的生长和土壤质量有重要影响。

常见的土壤理化性质测定项目包括土壤酸碱度测定、有机质含量测定、粒径分析等。

其中,土壤酸碱度测定可以通过pH值来评估,一般采用玻璃电极法或者酶电极法进行测定;有机质含量测定可以通过重量损失法、湿氧法等方法进行测定;粒径分析可以通过筛分法、沉降法或激光粒度分析仪进行测定。

2.重金属含量测定:重金属对土壤环境和农作物生长有一定的毒害作用,因此常规土壤检测中需要对重金属如铅、镉、汞等进行测定。

测定方法主要有原子吸收光谱法、火焰原子吸收光谱法、电化学方法等。

3.土壤微生物及酶活性测定:土壤微生物和酶活性是评估土壤质量和健康状况的重要指标。

常见的土壤微生物测定项目包括微生物总量、土壤细菌和真菌数量及多样性等。

酶活性测定项目包括脱氢酶活性、过氧化氢酶活性、葡萄糖醛酸酶活性等。

土壤微生物及酶活性的测定方法主要有培养法、DNA测序技术、比色法、荧光法等。

土壤检测机构是进行土壤检测的专业机构,其检测能力和服务水平对保障农田质量和环境安全至关重要。

常见的土壤检测机构有农业科学院、农业研究所、农业环境监测站等。

此外,一些农业科技企业也提供土壤检测服务。

这些机构通常拥有先进的实验设备和专业的技术人员,能够提供准确可靠的土壤检测报告,并根据检测结果提供相应的土壤改良建议。

综上所述,常规土壤检测项目及方法主要包括土壤理化性质测定、重金属含量测定和土壤微生物及酶活性测定等,这些检测项目可以帮助评估土壤质量和农田环境状况,为科学施肥、合理种植提供决策依据。

土壤检测机构在提供土壤检测服务方面起着重要作用,能够保障农田质量和环境安全。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常规土壤检测项目及方法土壤检测机构1.水解性氮(碱解氮)LY/T1229-1999《森林土壤水解性氮的测定》。

碱解-扩散法。

如果测定值>200mg/kg,允许绝对偏差<10mg/kg;测定值200mg/kg~50mg/kg,允许绝对偏差10mg/kg~2.5mg/kg;测定值<50mg/kg,允许绝对偏差<2.5mg/kg。

用1.8mol/L氢氧化钠处理土壤,土壤于碱性条件下水解,使易水解态氮转化为氨态氮,由硼酸吸收,用标准酸滴定计算碱解氮的含量。

2.全氮NY/T53-1987《土壤全氮测定法》。

半微量凯氏法。

平行测定结果的允许差:土壤含氮量>0.1%时,不得>0.005%,含氮0.1-0.06%时,不得>0.004%,含氮<0.06%时,不得>0.003%。

土壤中的全氮在硫酸铜、硫酸钾与硒粉的存在下,用浓硫酸消煮,各种含氮有机化合物经过高温分解转化为铵态氮,然后用氢氧化钠碱化,加热蒸馏出氨,经硼酸吸收,用标准酸滴定其含量。

3.全磷LY/T1232-1999《森林土壤全磷的测定》。

酸溶-钼锑抗比色法。

测定值>2g/kg,绝对偏差>1016g/kg;测定值2g/kg~1g/kg,绝对偏差0.06~0.03g/kg;测定值<1,绝对偏差<0.03。

以硫酸-高氯酸溶解土壤中的磷,用钼锑抗比色法测定。

4.有效磷L Y/T1233-1999《森林土壤有效磷的测定》。

4.1盐酸-硫酸浸提法。

测定值>25mg/kg,绝对偏差>2.5mg/kg;测定值25mg/kg~10mg/kg,绝对偏差2.5mg/kg~1.0mg/kg;测定值<10mg/kg~2.5mg/kg,绝对偏差 1.0mg/kg~0.5mg/kg,测定值<2.5mg/kg,绝对偏差<0.5mg/kg。

盐酸和硫酸溶液浸提法:用盐酸和硫酸的混合溶液浸提溶解出土壤中的磷酸铁、铝盐,再用钼锑抗比色法可以测定出浸提液中的磷。

4.20.5mol/L碳酸氢钠浸提法。

测定值>25mg/kg,绝对偏差>2.5mg/kg;测定值25mg/kg~10mg/kg,绝对偏差2.5mg/kg~1.0mg/kg;测定值<10mg/kg~2.5mg/kg,绝对偏差1.0mg/kg~0.5mg/kg,测定值<2.5mg/kg,绝对偏差<0.5mg/kg。

碳酸氢钠浸提土壤,可以抑制溶液中的钙离子活度,使某些活性较大的碳酸钙被浸提出来,同时也可使活性磷酸铁、铝盐水解被浸出,浸出液中的磷不会次生沉淀,可用钼锑抗比色法定量。

5.有效磷NY/T149-1990《石灰性土壤有效磷测定方法》。

碳酸氢钠浸提-钼锑抗比色法。

平行测定结果的允许差:测定值<10mg/kg P时,绝对差值<0.5mg/kg P;测定值为10-20mg/kg P时,绝对差值<1.0mg/kg P;测定值>20mg/kg P时,相对差<5%。

用0.5mol/L碳酸氢钠浸提土壤有效磷。

碳酸氢钠可以抑制溶液中Ca2+离子的活度,使某些活性较大的磷酸钙盐被浸提出来;同时液可以使活性磷酸铁、铝盐水解二被浸出。

浸出液中的磷不致次生沉淀;可用钼锑抗比色法定量。

测定值与作物对磷肥的反应相关性高。

6.全钾LY/T1234-1999《森林土壤全钾的测定》。

酸溶-火焰光度法。

测定值>20g/kg,绝对偏差>0.8g/kg;测定值20g/kg~10g/kg,绝对偏差0.8g/kg~0.4g/kg;测定值<10g/kg,绝对偏差<0.4g/kg。

以氢氟酸-高氯酸溶解土壤中的钾,用火焰光度计法测定钾。

7.缓效钾LY/T1235-1999《森林土壤缓效钾的测定》。

1mol/L硝酸煮沸浸提-火焰光度法。

测定值>200mg/kg,绝对偏差>10mg/kg;测定值200mg/kg~500mg/kg,绝对偏差10mg/kg~25mg/kg;测定值<50mg/kg,绝对偏差<2.5mg/kg。

1mol/L硝酸煮沸浸出钾量减去速效钾量后即为缓效钾含量。

8.速效钾LY/T1236-1999《森林土壤速效钾的测定》。

1mol/L乙酸铵浸提-火焰光度法。

测定值>200mg/kg,绝对偏差>10mg/kg测定值;200mg/kg~500mg/kg,绝对偏差10mg/kg~25mg/kg;测定值<50mg/kg,绝对偏差<2.5mg/kg。

在中性条件下,土壤胶体表面的钾离子与铵离子进行交换,连同水溶性钾离子一起进入溶液,浸出液的钾可直接用火焰光度计测定。

9.全钾NY/T87-1988《土壤全钾测定法》。

平行测定结果的允许差<0.05%。

土壤中的有机物先用硝酸和高氯酸加热氧化,然后用氢氟酸分解硅酸盐等矿物,硅与氟形成四氟化硅逸去。

继续加热至剩余的酸被赶尽,使矿质元素变成金属氧化物或盐类。

用盐酸溶液溶解残渣,使钾转变为钾离子。

经适当稀释后用火焰光度法或原子吸收分光光度法测定溶液中的钾离子浓度,再换算成土壤钾离子含量。

10.有机质NY/T85-1988《土壤有机质测定法》。

平行测定结果的允许差:土壤有机质含量<1%时,相差<0.05%;含量为1%-4%时,相差<0.10%;含量4%-7%时,相差<0.30%;含量>10%时,相差<0.50%。

用定量的重铬酸钾-硫酸溶液,加热加速土壤有机质的氧化,使土壤有机质中的碳氧化成二氧化碳,而重铬酸离子被还原成三价离子,剩余的重铬酸钾用二价铁的标准溶液滴定,并以二氧化硅为添加物作试剂空白标定,根据氧化前后氧化剂质量差值,可计算出有机碳的含量。

再乘以系数1.724,即为土壤有机质含量。

11.pH值LY/T1239-1999《森林土壤pH值的测定》。

电位法。

两次称样平行测定结果允许差0.1pH;室内严格控制条件时测定结果允许差0.02pH。

用水或盐溶液浸提,加水或盐水溶液后搅匀,平衡30分钟,然后用pH计测定。

12.全钠NY/T296-1995《土壤全钙、镁、钠的测定》。

火焰光度法。

当测定值>30g/kg 时,相对相差<3%;测定值10-30g/kg时,相对相差<5%;当测定值<10g/kg时,相对相差<10%。

土壤样品采用氢氟酸-高氯酸消解法,或碳酸锂-硼酸、石墨粉坩埚熔融法制备待测液,用火焰光度计测定钠(波长589nm)含量13.有效铜LY/T1260-1999《森林土壤有效铜的测定》。

原子吸收分光光度法。

测定值300mg/kg~100mg/kg,绝对偏差15mg/kg~5mg/kg;测定值100mg/kg~10mg/kg,绝对偏差5mg/kg~0.5mg/kg;测定值10mg/kg~1mg/kg,绝对偏差0.5mg/kg~0.05mg/kg;测定值1mg/kg~0.2mg/kg,绝对偏差0.05mg/kg~0.02mg/kg;测定值0.2mg/kg~0.1mg/kg,绝对偏差0.02mg/kg~0.01mg/kg;测定值<0.1mg/kg;绝对偏差<0.01mg/kg。

用原子吸收分光光度计测定铜的含量。

14.全铜NY/TF011-1998《土壤全量铜、锌、铁、锰的测定方法》。

原子吸收法(非标准方法)。

平行测定结果允许相对相差≤10%。

土壤样品先用硝酸-高氯酸消化以氧化有机质,氢氟酸脱硅,再用高氯酸赶氟。

消化物用盐酸溶解,用原子吸收光谱法测定溶液中的铜。

15.有效锌LY/T1261-1999《森林土壤有效锌的测定》。

原子吸收分光光度法。

测定值300mg/kg~100mg/kg,绝对偏差15mg/kg~5mg/kg;测定值100mg/kg~10mg/kg,绝对偏差5mg/kg~0.5mg/kg;测定值10mg/kg~1mg/kg,绝对偏差0.5mg/kg~0.05mg/kg;测定值1mg/kg~0.2mg/kg,绝对偏差0.05mg/kg~0.02mg/kg;测定值0.2mg/kg~0.1mg/kg,绝对偏差0.02mg/kg~0.01mg/kg;测定值<0.1mg/kg;绝对偏差<0.01mg/kg。

在原子吸收分光光度计上测定锌的含量。

16.有效铁LY/T1262-1999《森林土壤有效铁的测定》。

原子吸收分光光度法。

测定值300mg/kg~100mg/kg,绝对偏差15mg/kg~5mg/kg;测定值100mg/kg~10mg/kg,绝对偏差5mg/kg~0.5mg/kg;测定值10mg/kg~1mg/kg,绝对偏差0.5mg/kg~0.05mg/kg;测定值1mg/kg~0.2mg/kg,绝对偏差0.05mg/kg~0.02mg/kg;测定值0.2mg/kg~0.1mg/kg,绝对偏差0.02mg/kg~0.01mg/kg;测定值<0.1mg/kg;绝对偏差<0.01mg/kg。

用原子吸收分光光度计可直接测定铁的含量。

17.砷GB8915-88《土壤中砷的卫生标准》。

在碘化钾和氯化亚锡存在下,以锌与硫酸溶液作用,还原砷为易气化的砷化氢(AsH),然后砷化氢与银盐(AgDDTC)作用,生成红紫色胶态单质银,比色定量。

18.全铅、全镉NY/TF012-1998《土壤全量铅、镉、镍的测定方法》。

原子吸收法(非标准方法)。

平行测定结果允许相对相差≤10%。

土壤样品经王水-高氯酸消化处理后,以碘化钾-甲基异丁酮萃取富集后,原子吸收光谱法测定。

19.全铬NY/TF013-1998《土壤全量铬的测定方法》。

原子吸收法(非标准方法)。

平行测定结果允许相对相差≤10%。

土壤样品经硝酸-过氧化氢消解后,以各种价态铬化合物转变为可溶性六价铬离子,以焦硫酸钾作抑制剂,用原子吸收光谱法测定。

20.有效硼TF/JF-3.1-1988《土壤有效硼的测定》。

ICP法(非标准方法)。

土壤样品用热水浸提出硼,用等离子体发射光谱法测定硼含量。

21.有效硫TF/JF-3.6-1988《土壤有效硫的测定》。

ICP法(非标准方法)。

土壤样品用磷酸盐-乙酸溶液浸提,用等离子体发射光谱法测定。

22.有效硅TF/JF-3.5-1988《土壤有效硅的测定》。

ICP法(非标准方法)。

土壤样品用0.025mol/L柠檬酸浸提出硅酸,用等离子体发射光谱法测定。

23.有效铁、锰、铜、锌SSC-17.10《ICP-AES法同时测定有效态铁、锰、铜、锌的含量》(非标准方法)。

DTPA-CaCl2-TEA浸提-ICP-AES法。

用pH7.3的DTPA-CaCl2-TEA浸提石灰性或中性土壤中的有效态铁、锰、铜、锌元素,浸提液经离心过滤后可直接用ICP-AES 法测定其中的铁、锰、铜、锌含量24.阳离子交换量一次平衡法(非标准方法)。

相关文档
最新文档