最新精选七年级上册数学数轴类动点问题压轴题专题练习(二)
专题02数轴上的动点问题 期中专题复习(含解析)2023年秋人教版数学七年级上册

运动时间问题(1)求的值;a b ,点表示的数(1)请你在数轴上表示出A,B,C三点的位置;(1)一般地,数轴上表示数m和数n两点之间的距离我们可用│m-n│参考答案:1.A【分析】根据数轴,按题目叙述的移动方法即可得到点前五次移动后在数轴上表示的数;根据移动的规律即可得移动第158次后到达的点在数轴上表示的数.【详解】解:设向右为正,向左为负,则表示的数为+1,表示的数为+3表示的数为0表示的数为-4表示的数为+1……由以上规律可得,每移动四次相当于向左移动4个单位长度.所以当移动156次时,156=39×4相当于向左移动了39次四个单位长度.此时表示的数为.则第157次向右移动157个单位长度,;第158次还是向右,移动了158个单位长度,所以.故在数轴上表示的数为159.故选A .【点睛】本题考查了数轴上点的运动规律,正确理解题意,找出点在数轴上的运动次数与对应点所表示的数的规律是解题的关键.2.①②④【分析】“前进3步后退2步”这5秒组成一个循环结构,先根据题意列出几组数据,从数据找寻规律:第一个循环节结束的数即x 5=1,第二个循环节结束的数即x 10=2,第三个循环节结束的数即x 15=3,…,第m 个循环节结束的数就是第5m 个数,即x 5m =m .然后再根据“前进3步后退2步”的运动规律来求取对应的数值.【详解】根据题意可知:x 1=1,x 2=2,x 3=3,x 4=2,x 5=1,x 6=2,x 7=3,x 8=4,x 9=3,x 10=2,x 11=3,x 12=4,x 13=5,x 14=4,x 15=3,1P 2P 3P 4P 5P ()39-4156⨯=-1571P =1581+158=159P =158P②如图2所示,当N在A点左侧,M在A点右侧时,③(2)817 =1+(2)=33 CA--17。
2023-2024年人教版七年级上册数学期末动点问题压轴题专题训练(含答案)

2023-2024年人教版七年级上册数学期末动点问题压轴题专题训练(1) ______, ______(1)若点P 到A 、B 两点的距离都相等,请直接写出点P 对应的数(2)数轴上是否存在点P ,使点P 到点A ,点B 的距离之和为10=a b =(1)___________,___________.(2)若在数轴上有两动点、分别从同时出发向右运动,点的速度为2个单位长度/秒,点的速度为1个单位长度秒,当点在点追上了点,求点对应的数为多少?=a c =P Q A B ,P Q P D Q D(1)写出数轴上点B 表示的数 ;(2)表示5与3之差的绝对值,实际上也可理解为(1)求出线段的长度;(1)点表示的数为________,点|53|-AB A(1)请直接写出a 、b 、c 的值. ______,设点P 运动时间为t 秒.(1)若M ,N ,P 三点同时出发,=a(1)数轴上点B 表示的数是 ;当点P 运动到(1)则______,______. A =a b =(1)A 点所表示的数是___________,C 点所表示的数是___________;(2)若动点P 从点C 出发,以每秒3个单位长度的速度沿数轴向左移动,同时另一动点Q 恰好从点A 出发,以每秒2个单位长度的速度沿数轴向右移动,设点P 和点Q 在数轴上的点M 相遇,求点M所表示的数是多少?(3)若动点P 从C 点出发,以每秒3个单位长度的速度沿数轴向左运动,另一动点Q 恰好从A 点出发,以每秒2个单位长度的速度沿数轴也向左运动,是否存在时间t ,使得P ,Q 到原点的距离相等,并求出此时点P 和点Q 所表示的数.13.如图,点在线段上,,,动点从点出发,沿线段以每秒个单位长度的速度向终点匀速运动;同时,动点从点出发,沿线段以每秒个单位长度的速度向终点匀速运动.当点到达终点时,点也随之停止运动.设点的运动时间为秒.(1)线段的长为______.(2)当点与点相遇时,求的值.(3)当点与点之间的距离为个单位长度时,求的值.(4)当时,直接写出的值.14.如图,在数轴上点A 、C 、B 表示的数分别是、1、12.动点P 从点A 出发,沿数轴以每秒3个单位长度的速度向终点B 匀速运动;同时,点Q 从点B 出发,沿数轴以每秒2个单位长度的速度向终点A 匀速运动,设点Q 的运动时间为t 秒.C AB 3AC =11BC =P A AB 3B Q B BA 2A P Q P t AB P Q t P Q 9t 2.5PC QB +=t 8-(1)的长为________;AB(2)当点P与点Q相遇时,求t的值;(1)点A表示的数为___________,点B表示的数为(1)OA=__________cm,OB=__________cm参考答案:。
部编数学七年级上册期中难点特训(二)数轴上册的动点与整式加减相结合的压轴题(解析版)含答案

期中难点特训(二)数轴上的动点与整式加减相结合的压轴题1.已知:b是最小的正整数,且a、b、c满足(c﹣5)2+|a+b|=0,请回答问题:(1)请直接写出a、b、c的值.a=_____ ,b=______ ,c=______(2)a、b、c所对应的点分别为A、B、C,点P为一动点,其对应的数为x,点P在0到2之间运动时(即0≤x≤2时),请化简式子:|x+1|﹣|x﹣1|+2|x+5|(请写出化简过程)(3)在(1)(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC﹣AB 的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值【答案】(1) -1;1;5;(2) 4x+10或2x+12;(3)不变, BC-AB=2【分析】(1)根据b是最小的正整数,即可确定b的值,然后根据非负数的性质,几个非负数的和是0,则每个数都是0,即可求得a,b,c的值;(2)根据x的范围,确定x+1,x-1,x+5的符号,然后根据绝对值的意义即可化简;(3)先求出BC=3t+4,AB=3t+2,从而得出BC-AB=2.【详解】(1)∵b是最小的正整数,∴b=1.根据题意得:c-5=0且a+b=0,∴a=-1,b=1,c=5.故答案是:-1;1;5;(2)当0≤x≤1时,x+1>0,x-1≤0,x+5>0,则:|x+1|-|x-1|+2|x+5|=x+1-(1-x)+2(x+5)=x+1-1+x+2x+10=4x+10;当1<x≤2时,x+1>0,x-1>0,x+5>0.∴|x+1|-|x-1|+2|x+5|=x+1-(x-1)+2(x+5)=x+1-x+1+2x+10=2x+12.(3)不变.理由如下:t秒时,点A对应的数为-1-t,点B对应的数为2t+1,点C对应的数为5t+5.∴BC=(5t+5)-(2t+1)=3t+4,AB=(2t+1)-(-1-t)=3t+2,∴BC-AB=(3t+4)-(3t+2)=2,即BC-AB的值不随着时间t的变化而改变,BC-AB=2.【点睛】本题考查了数轴与绝对值,整式的加减,通过数轴把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.2.已知:b是最小的正整数,且a、b满足(c-5)2+|a+b|=0,请回答问题:(Ⅰ)请直接写出a、b、c的值:a=_______;b=______;c=_______.(Ⅱ)a、b、c所对应的点分别为A、B、C,已知数轴上两点间的距离为这两点所表示的数的差的绝对值(或用这两点所表示数中较大的数减去较小的数),若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB,试计算此时BC-AB的值.(Ⅲ)在(Ⅰ)(Ⅱ)的条件下,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒3个单位长度和7个单位长度的速度向右运动,则经过t秒钟时,请问:BC-AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请直接写出它的值.422BC AB -=-=;故答案为2(Ⅲ)经过t 秒后,、、A B C 三点分别表示的数为1t --,13t +,57t+57(13)44BC t t t =+-+=+,13(1)24AB t t t=+---=+2BC AB -=答:不变,值为2.【点睛】此题考查了有理数及整式的混合运算,以及数轴,正确理解AB ,BC 的变化情况是关键.3.探究与发现:|a ﹣b |表示 a 与 b 之差的绝对值,实际上也可理解为 a 与 b 两数 在数轴上所对应的两点之间的距离.如|x ﹣3|的几何意义是数轴上表示有理数 x 的点与表示有理数 3 的点之间的距离.(1)如图,已知数轴上点 A 表示的数为 8,B 是数轴上位于点 A 左侧一点,且 AB =20,则数轴上点 B 表示的数 ;(2)若|x ﹣8|=2,则 x = .拓展与延伸:在(1)的基础上,解决下列问题:(3)动点 P 从 O 点出发,以每秒 5 个单位长度的速度沿数轴向右匀速运动,设运动时 间为 t (t >0)秒.求当 t 为多少秒时?A ,P 两点之间的距离为 2;(4)数轴上还有一点 C 所对应的数为 30,动点 P 和 Q 同时从点 O 和点 B 出发分别以每 秒 5 个单位长度和每秒 10 个单位长度的速度向 C 点运动,点 Q 到达 C 点后,再立即以 同样的速度返回,点 P 到达点 C 后,运动停止.设运动时间为 t (t >0)秒.问当 t 为多 少秒时?P ,Q 之间的距离为 4.4.如图:在数轴上A点表示数a,B点表示数b,C点表示数c,且a,c满足|a+3|+(c﹣9)2=0,b=1.(1)a= ,c= ;(2)若将数轴折叠,使得A点与点C重合,则点B与数 表示的点重合.(3)在(1)的条件下,若点P为数轴上一动点,其对应的数为x,求当x取何值时代数式|x﹣a|﹣|x﹣c|取得最大值,并求此最大值.(4)点P从点A处以1个单位/秒的速度向左运动;同时点Q从点C处以2个单位/秒的速度也向左运动,在点Q到达点B后,以原来的速度向相反的方向运动,设运动的时间为t(秒),求第几秒时,点P、Q之间的距离是点C、Q之间距离的2倍?5.已知代数式M=(a﹣16)x3+20x2+10x+9是关于x的二次多项式,且二次项系数为b.如图,在数轴上有A、B、C三个点,且A、B、C三点所表示的数分别是a、b、c,已知AC=6AB.(1)直接依次写出a、b、c的值: , , ;(2)若动点P、Q分别从C、O两点同时出发,向右运动,且点Q不超过点A.在运动过程中,E 为线段AP的中点,F为线段BQ的中点,若动点P的速度为每秒2个单位长度,动点Q的速度为每秒3个单位长度,则BP AQEF-的值是 ;(3)若动点P、Q分别从A、B两点同时出发,都以每秒2个单位长度的速度向左运动,动点M 从点C出发,以每秒6个单位长度的速度沿数轴向右运动,设运动时间为t秒,若动点P、Q分别从C、O两点同时出发,3<t72<时,数轴上有一点N与点M的距离始终为2个单位长度,且点N在点M的左侧,T为线段MN上的一点(点T不与M、N重合),在运动的过程中,若满足MQ﹣NT =3PT(点T不与点P重合),求出此时线段PT的长度.6.新规定:点C为线段AB上一点,当CA=3CB或CB=3CA时,我们就规定C为线段AB的“三倍距点”.如图,在数轴上,点A所表示的数为﹣3,点B所表示的数为5.(1)确定点C所表示的数为 ;(2)若动点P从点B出发,沿射线BA方向以每秒2个单位长度的速度运动,设运动时间为t 秒.①当点P与点A重合时,则t的值为 ;②求AP的长度(用含t的代数式表示);③当点A为线段BP的“三倍距点”时,直接写出t的值.7.【背景知识】数轴上A点、B点表示的数为a、b,则A,B两点之间的距离AB=|a﹣b|,若a>b ,则可简化为AB =a ﹣b :线段AB 的中点M 表示的数为2a b +.【问题情境】已知数轴上有A 、B 两点,分别表示的数为﹣10,8,点P ,Q 分别从A ,B 同时出发,点P 以每秒5个单位长度的速度沿数轴向右匀速运动,点Q 以每秒3个单位长度的速度沿数轴向左匀速运动,设运动时间为t 秒(t >0).【综合运用】(1)A 、B 两点的距离为 ,线段AB 的中点C 所表示的数 ;(2)点P 所在的位置的点表示的数为 ,点Q 所在位置的点表示的数为 (用含t 的代数式表示);(3)P 、Q 两点经过多少秒会相遇?8.如图,以O 为原点的数轴上有A ,B 两点,它们对应的数分别为a ,b ,且(a ﹣10)2+(2b +8)2=0.(1)直接写出结果:a= ,b= .(2)设点P,Q分别从点A,B同时出发,在数轴上相向运动,且在原点O处相遇.设它们运动的时间为t秒,点P运动的速度为每秒2.5个单位长度.①用含t的式子表示:t秒后,点P,Q在数轴上所对应的数(直接写出结果),点P对应的数是 ,点Q对应的数是 .②当P,Q两点间的距离恰好等于A,B两点间距离的一半时,求t的值.9.数轴上,把点A表示的数记为a,点B表示的数记为b.在学习绝对值时,我们知道了绝对值的几何含义:数轴上点A,B之间的距离记作|AB|.例如:当a=1,b=3时,点A,B之间的距离|AB|=|1﹣3|=2;当a=﹣1,b=﹣3时,点A,B之间的距离|AB|=|﹣1﹣(﹣3)|=2;当a=﹣1,b=3时,点A,B之间的距离|AB|=|﹣1﹣3|=4;由此我们知道,一般情况下,点A,B之间的距离|AB|=|a﹣b|.已知a=﹣6,b=2.(1)直接写出|AB|的值为 ;(2)若点M从点A出发,以4个单位/秒的速度沿数轴向右移动,同时点N从点B出发,以2个单位/秒的速度向右移动,设移动时间为t秒.①移动过程中点M表示的数为 ,点N表示的数为 ,点M,N之间的距离|MN|为 (用含t的式子表示);②在移动过程中,若点M,N之间相距3个单位长度,求t的值;(3)在的(2)条件下,在点M,N移动的同时点P从点O出发,以1个单位/秒的速度沿数轴向右移动,在三个点移动的过程中,|MN|+2|PN|或|MN|﹣2|PN|在某种条件下是否会为定值,请分析并说明理由.10.已知数轴上A、B两点对应的数分别为a、b,且|a+1|+|b﹣3|=0(1)求点A、B两点对应的有理数是 、 ;A、B两点之间的距离是 .(2)若点C到点A的距离刚好是6,求点C所表示的数应该是多少?(3)若点P所表示的数为8,现有一只电子蚂蚁从点P出发,以2个单位每秒的速度向左运动,经过多少秒时,P到A的距离刚好等于P到B的距离的2倍?(4)若点P所表示的数为8,现有一只电子蚂蚁从点P出发,以2个单位每秒的速度向右运动,若运动的时间为t秒,2PA﹣mPB的值不随时间t的变化而改变,求m的值.11.如图,数轴上有两条可以左右移动的线段OB和CD.已知OB=m,CD=n,且m,n满足|m﹣4|+(n﹣8)2=0.(1)m= ,n= ;(2)如图1,线段OB的中点为M,线段CD中点为N,线段OB以每秒4个单位长度向右运动,同时线段CD以每秒1个单位长度也向右运动,若运动6秒后,MN=8,求线段CD在向右运动前,点C在数轴上所对应的数;(3)如图2,已知BC=24,线段CD固定不动,M,N分别为OB,CD中点,线段OB以每秒4个单位长度向右运动t秒,若始终有MN+OD为定值.求出这个定值,并直接写出对应t的取值范围.当9t ³时,430436866MN OD t t t +=-+-=-;综上可得:当7.59t £<时,6MN OD +=,此时7.59t £<.【点睛】题目主要考查数轴上两点间的距离、绝对值及平方的非负性质,理解题意,列出相应的方程及找出各线段间的关系是解题关键.12.在数轴上,点A 表示的数为a ,点B 表示的数为b ,且a 、b 满足()2570a b ++-=,其中O 为原点,如图:(1)直接写出:=a _____,b =______,A ,B 两点之间的距离为______.(2)在数轴上有一动点M ,若点M 到点A 的距离是点M 到点B 的距离的2倍,求点M 对应的数.(3)在数轴上有一动点P ,动点P 从点A 出发第一次向左运动1个单位长度;然后在此位置进行第二次运动,向右运动2个单位长度;然后在此位置进行第三次运动,向左运动3个单位长度……;按照如此规律不断地进行左右运动,当运动到2021次时,求此时点P 所对应的有理数.解得19m =(舍去),当点M 在AB 之间时,57m -££,5MA m =+,7MB m =-,∴()527m m +=-,解得:3m =,当点M 在点B 的右侧时,7m >,5MA m =+,7MB m =-,∴()527m m +=-,解得:19m =综上所述:点M 对应的数为3或19.(3)根据题意,设点P 对应的数为p ,51234201920202021p =--+-+-+-L ,()()()12342019202052021=-++-++-+--L ,101052021=--1016=-,故点P 所对应的有理数为1016-.【点睛】本题考查了一元一次方程的应用,非负数的性质,数轴,两点间的距离公式.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程再求解.13.点A 对应数a ,点B 对应数b ,点C 对应数c .(1)已知6c a x y 与202b x y +-的和是106x y -,那么=a ,b = ,c =;(2)点P 为数轴上一点,且满足31PA PB =+,请求出点P 所表示的数;(3)点M 为数轴上点A 右侧一点,甲、乙两点分别从A 、M 出发,相向而行,2分钟后在途中相遇,相遇后,两点的速度都提高了l 单位长度/分,当甲到达M 点后立刻按原路向A 返行,当乙到达A 点后也立刻按原路向M 点返行.甲、乙两点在第一次相遇后3分36秒又再次相遇,则A 、M 两点的距离是 单位长度.(4)当甲以4单位长度/分的速度从A 出发,向右运动,乙同时从点C 出发,以6单位长度/分的速度向左运动,当甲到A 、B 、C 的距离之和为40个单位长度时,甲立即掉头返行,请问甲、乙还能碰面吗?若能,求出碰面的地点对应的数;若不能,请说明理由.14.如图,点A和点B在数轴上分别对应数a和b,其中a和b满足(a+4)2=﹣|8﹣b|,原点记作O.(1)求a和b;(2)数轴有一对动点A1和B1分别从点A和B出发沿数轴正方向运动,速度分别为1个单位长度/秒和2个单位长度/秒.①经过多少秒后满足AB1=3A1B?②另有一动点O1从原点O以某一速度出发沿数轴正方向运动,始终保持在1A与1B之间,且满足11 111 2AO B O =,运动过程中对于确定的m值有且只有一个时刻t满足等式:AO1+BO1=m,请直接写出符合条件m的取值范围.()\=+=--+=+-=+-4,44,82, AO vt A O vt t vt t B O t vt BO。
七年级数学上册数轴上的动点压轴题专题练习

七年级数学上册数轴上的动点压轴题专题练习1.已知,在数轴上点 A 表示数 a,点B 表示数 b,且 a,b 满足a + 2 +b - 4 = 0 .(1)点A 表示的数为,点B 表示的数为;(2)设点A 与点C 之间的距离表示为AC,点B 与点C 之间的距离表示为BC.若在数轴上存在一点C,使BC=2AC,则点C 表示的数为;(3)若在原点处放一挡板,一小球甲从点 A 处以每秒 2 个单位长度的速度向左运动;同时另一小球乙从点 B 以每秒2 个单位长度的速度也向左运动,在碰到挡板后(忽略球的大小,可看做一点)以原来速度的两倍向相反的方向运动.设运动的时间为 t 秒,请用含 t 的代数式分别表示出甲、乙两小球到原点的距离.2.已知:c=10,且a,b 满足(a+26)2+|b+c|=0,请回答问题:(1)请直接写出a,b,c 的值:a= ,b=;(2)在数轴上a、b、c 所对应的点分别为A、B、C,记A、B 两点间的距离为AB,则AB=,AC=;(3)在(1)(2)的条件下,若点 M 从点A 出发,以每秒 1 个单位长度的速度向右运动,当点 M 到达点 C 时,点 M 停止;当点 M 运动到点B 时,点N 从点A 出发,以每秒 3 个单位长度向右运动,点 N 到达点 C 后,再立即以同样的速度返回,当点 N 到达点 A 时,点N 停止.从点 M 开始运动时起,至点 M、N 均停止运动为止,设时间为t 秒,请用含t 的代数式表示 M,N 两点间的距离.3.如图,点A、B 和线段MN 都在数轴上,点A、M、N、B 对应的数字分别为-1、0、2、11.线段MN 沿数轴的正方向以每秒1 个单位的速度移动,移动时间为t 秒.(1)用含有t 的代数式表示AM 的长为.(2)当t=秒时,AM+BN=11.(3)若点A、B 与线段MN 同时移动,点A 以每秒2 个单位的速度向数轴的正方向移动,点B 以每秒1 个单位的速度向数轴的负方向移动,在移动过程中,AM 和BN 可能相等吗?若相等,请求出t 的值,若不相等,请说明理由.A M N B-102114.如图,已知数轴上点A 表示的数为-7,点 B 表示的数为5,点 C 到点A,点 B 的距离相等,动点P 从点A 出发,以每秒2 个单位长度的速度沿数轴向右匀速运动,设运动的时间(>0)秒(1)点C 表示的数是.(2)求等于多少秒时,点P 到达点B 处.(3)点P 表示的数是(用含的代数式表示).(4)求当t 等于多少秒时,PC 之间的距离为2 个单位长度(只列式,不计算).5.已知:a 、b、c 满足 a=-b,|a+1|+(c-4)2=0,请回答问题:(1)请求出 a 、b、c 的值;(2)a、b、c 所对应的点分别为A、B、C ,P 为数轴上一动点,其对应的数为x,若点P 在线段BC 上时,请化简式子:|x+1|-|1-x|+2|x-4|(请写出化简过程);(3)若点 P 从A 点出发,以每秒2 个单位长度的速度向右运动,试探究当点 P 运动多少秒时,PC=3PB? 6.如图,点A、B 和线段MN 都在数轴上,点A、M、N、B 对应的数字分别为﹣1、0、2、11.线段MN 沿数轴的正方向以每秒1 个单位的速度移动,移动时间为t 秒.(1)用含有t 的代数式表示AM 的长为(2)当t=秒时,AM+BN=11.(3)若点A、B 与线段MN 同时移动,点A 以每秒2 个单位速度向数轴的正方向移动,点B 以每秒1 个单位的速度向数轴的负方向移动,在移动过程,AM 和BN 可能相等吗?若相等,请求出t 的值,若不相等,请说明理由.7.数轴上对应的数,对应的数,为数轴上一动点.(1)AB 的距离是.(2)①若到的距离比到的距离大1,对应的数为.②若其对应的数,数轴上是否存在,使到,的距离之和为8?若存在,请求的值;若不存在,请说明理由.(3)当以每秒个单位长度从原向右运动时,以每秒个单位长度的速度从向左运动,以每秒钟个单位长度的速度从点向右运动,问它们同时出发秒钟时,(直接写出答案即可).8.如图,在数轴上点 A 表示的有理数为﹣6,点 B 表示的有理数为 6,点 P 从点A 出发以每秒 4 个单位长度的速度在数轴上由A 向 B 运动,当点 P 到达点 B 后立即返回,仍然以每秒 4 个单位长度的速度运动至点 A 停止运动,设运动时间为 t(单位:秒).(1)求 t=1 时点 P 表示的有理数;(2)求点P 与点 B 重合时的 t 值;(3)在点P 沿数轴由点A 到点B 再回到点A 的运动过程中,求点P 与点A 的距离(用含t 的代数式表示);(4)当点P 表示的有理数与原点的距离是 2 个单位长度时,请求出所有满足条件的 t 值.9.阅读理解:已知Q、K、R 为数轴上三点,若点K 到点Q 的距离是点K 到点R 的距离的2 倍,我们就称点K 是有序点对[Q,R]的好点.根据下列题意解答问题:(1)如图1,数轴上点Q 表示的数为−1,点P 表示的数为0,点K 表示的数为1,点R表示的数为2.因为点K 到点Q 的距离是2,点K 到点R 的距离是1,所以点K 是有序点的好点,但点K 不是有序点的好点.同理可以判断:点P 有序点的好点,点R 有序点的好点(填“是”或“不是”);(2)如图2,数轴上点M 表示的数为-1,点N 表示的数为5,若点X 是有序点的好点,求点X 所表示的数,并说明理由?(3)如图3,数轴上点A 表示的数为−20,点 B 表示的数为10.现有一只电子蚂蚁C 从点B 出发,以每秒2 个单位的速度向左运动t 秒.当点A、B、C 中恰有一个点为其余两有序点对的好点,求t 的所有可能的值.10.如图,在一条不完整的数轴上从左到右有A、B、C 三个点,其中AB=3,BC=4,设点A、B、C 所对应的数的和是p.(1)若以B 为原点,写出点A、C 所对应的数,并计算p 的值;若以C 为原点,p 的值为.(2)若原点O 在图中数轴主点A 的左侧,且BO=22,求p 的值;(3)若原点O 在图中数轴上点B 的右侧,且CO=a(a>0),求p 的值(用含a 的代数式表示).11.已知数轴上有 A、B、C 三点,分别表示有理数-26、-10、10,动点 P 从A 出发,以每秒 1 个单位的速度向终点 C 移动,设点P 移动时间为 t 秒.(1)用含t 的代数式表示P 到点A 和点C 的距离:PA=,PC=(2)当点 P 运动到 B 点时,点Q 从A 点出发,以每秒 3 个单位的速度向 C 点运动,Q 点到达 C 点后,再立即以同样的速度返回点 A,当点 Q 开始运动后,请用 t 的代数式表示 P、Q 两点间的距离。
七年级数学上册数轴上的动点问题专题训练(二)

七年级数学上册数轴上的动点问题专题训练(二)前言:数轴上的动点问题进阶是熟练描述点与点的位置关系以后,深入探讨点与线段、线段与线段之间的关系,而由于点的数量的多少和数据呈现的不同,题目又会出现一些不同的类别.一、例题解析【例1】已知点A、B在数轴上表示的数分别为a、b且满足|a-2|与(b-90)2互为相反数.(1)a值为,b值为.(2)一只电子狗P从点A出发,向右匀速运动,速度为每秒1个单位长度:另一电子狗Q从点B 出发,向左匀速运动,速度为每秒3个单位长度,且Q比P先运动2秒,已知在原点O处有病毒,若电子狗遇到病毒则停止运动,未遇到病毒则继续运动,问电子狗P经过多长时间,有P、Q两只电子狗相距20个单位长度?【例2】数轴上两个点A、B所对应的数为-8、4,A、B两点各自以一定的速度在数轴上运动,且A点的运动速度为2个单位/秒.(1)点A、B两点同时出发相向而行,在原点处相遇,求B点的运动速度;O BA4-8(2)A、B两点同时以(1)中的速度同时出发,向数轴正方向运动,几秒后原点恰好在两动点中间;(3)A、B两点以(1)中的速度同时出发,几秒种时两者相距6个单位长度?【例3】如图,在数轴上每相邻两点间的距离为一个单位长度,点A 、B 、C 、D 对应的数分别是a 、b 、c 、d ,且d -2a =14.DC AB(1)那么a = ,b = ;(2)点A 以3个单位/秒的速度沿着数轴的正方向运动,1秒后点B 以4个单位/秒的速度也沿着数轴的正方向运动,当点A 到达D 点处立刻返回,与点B 数轴某点处相遇,求这个点对应的数;(3)如果A 、B 两点以(2)中的速度同时向数轴的负方向运动,点C 从图上的位置出发也向数轴的负方向运动,且始终保持AB =23AC ,当点C 运动到-6时,点A 对应的数是多少?【例4】如图,数轴上点A 、C 对应的数分别为a 、c ,且满足|a +4|+(c -1)2018=0,点B 对应的数为-3.COB A(1)求数a 、c ;(2)点A 、B 沿数轴同时出发向右匀速运动,点A 速度为2个单位长度/秒,点B 速度为1个单位长度/秒,若运动时间为t 秒,运动过程中,当A 、B 两点到原点O 的距离相等时,求t 的值;(3)在(2)的条件下,若点B 运动至点C 处后立即以原速返回,到达自己的出发点后停止运动;点A 运动至点C 处后也立即原速返回,到达自己的出发点后又折向点C 运动,当点B 停止运动时,点A 随之停止运动,求在运动过程中,A ,B 两点同时到达的点在数轴上表示的数.【例5】已知点A 在数轴上对应的数为a ,点B 对应的数为b ,A 、B 之间的距离记作|AB |,定义:|AB |=|a -b |,且|a +2|+(b -5)2=0. (1)求线段AB 的长;(2)设点P 在数轴对应的数为x ,当|AP |+|PB |=10时,求x 的值;(3)如图,M 、N 两点分别从O 、B 出发以v 1、v 2的速度同时沿数轴负方向运动(M 在线段AO 上,N 在线段BO 上,当M 运动到A 点或N 运动到O 点时,另一点N 或M 即停止运动),P 是线段AN 的中点,若M 、N 运动到任一时刻时,总有|PM |为定值,下列结论:①12v v 的值不变;②v 1+v 2的值不变.其中只有一个结论是正确的,请你找出正确的结论,并求值.O A MBN P【例6】如图1,已知点A 、C 、E 、F 、B 为直线l 上的点,且AB =12,CE =6,F 为AE 的中点. (1)如图1,若CF =2,则BE = ,若CF =m ,BE 与CF 的数量关系是 .图1F EBCA(2)当点E 沿直线l 向左运动至图2的位置时,(1)中BE 、CF 的数量关系是否仍然成立?请说明理由.图2A C BE F(3)如图3,在(2)的条件下,在线段BE 上,是否存在点D ,使得BD =7,且DF =3DE ?若存在,请求出10DFCF值;若不存在,请说明理由. D FE BC A 图3二、课后练习1.数轴上点A 对应的数为-5,点B 在点A 右边,电子蚂蚁甲、乙在B 分别以2个单位/秒、1个单位/秒的速度向右运动,电子蚂蚁丙在A 以3个单位/秒的速度向右运动. (1)若电子蚂蚁丙经过5秒运动到C 点,求C 点表示的数;-5BA(2)若它们同时出发,若丙在遇到乙后1秒遇到甲,求点B 表示的数是:-5BA(3)在(2)的条件下,设它们同时出发的时间为t 秒,是否存在t 的值,使丙到乙的距离是丙到甲的距离的2倍?若存在,求出t 值;若不存在,说明理由.-5BA2.已知:数轴上A 、B 、C 三点对应有理数a 、b 、C 、a 、b 、c 在数轴上的位置如图所示,且|c |>|a |.ba c 0(1)化简:|b -c |-|c -2a |+|2a +b |+|a +c |;(2)若|a +10|=30,b 2=900,c 是|x +40|-30取最小值时x 的值,求a ,b ,c 的值;(3)在(2)的条件下,数轴上是否存在一点P ,使得P 点到C 点的距离加上P 点到A 点的距离减去P 点到B 点的距离为60,即PC +P A —PB =60,若存在,求出P 点在数轴上所对应的数;若存在,请说明理由.3.如图,在数轴上A 点表示数a ,B 点表示数b ,AB 表示A 点和B 点之间的距离,C 是AB 的中点,且a ,b 满足|a +3|+(b +3a )2=0.ba c 0(1)求点C 表示的数; (2)点P 从A 点以3个单位每秒向右运动,点Q 同时从B 点以2个单位每秒向左运动,若AP +BQ =2PQ ,求时间t ;(3)若点P 以3个单位秒从A 点向右运动 ,点M 为AP 的中点,在P 点到达点B 之前①PA PBPC的值不变;②2BM -BP 的值不变其中只有一个正确,请你找出正确的结论并求出.4.已知:如图1,M 是定长线段AB 上一定点,C 、D 两点分别从M 、B 出发以1c m/s 、3cm/s 的速度沿直线BA 向左运动,运动方向如箭头所示(C 在线段AM 上,D 在线段BM 上) (1)若AB =10cm ,当点C 、D 运动了2s ,求AC +MD 的值.(2)若点C 、D 运动时,总有MD =3AC ,直接填空:AM = AB . (3)在(2)的条件下,N 是直线AB 上一点,且AN -BN =MN ,求MNAB的值. BDMC A 图1图2AMB5.如图1,已知数轴上有三点A 、B 、C ,AB =12AC ,点C 对应的数是200. (1)若BC =300,求点A 对应的数;(2)如图2,在(1)的条件下,动点P 、Q 分别从A 、C 两点同时出发向左运动,同时动点R 从A 点出发向右运动,点P 、Q 、R 的速度分别为10单位长度每秒、5单位长度每秒,点M 为线段PQ 的中点,点Q 在从点D 运动到点A 的过程中,32QC AM 的值是否发生变化?若不变,求其值;若不变,请说明理由.图1CB A图2RPQ200QR P图3-800C D E A200。
七年级数学上册数轴类动点问题压轴题专题提高练习(二) (2)

七年级数学上册数轴类动点问题压轴题专题提高练习1.点A在数轴上对应的数为a,点B对应的数为b,且a、b满足|a+2|+(b﹣3)2=0.(1)求点A,B所表示的数;(2)点C在数轴上对应的数为x,且x是方程2x+1=x﹣8的解,①求线段BC的长;②在数轴上是否存在点P,使PA+PB=BC?若存在,求出点P对应的数;若不存在,请说明理由.2.如图,在数轴上有四个点A、B、C、D,点A在数轴上表示的数是﹣12,点D在数轴上表示的数是15,AB长2个单位长度,CD长1个单位长度.(1)点B在数轴上表示的数是,点C在数轴上表示的数是,线段BC =.(2)若点B以1个单位长度/秒的速度向右运动,同时点C以2个单位长度/秒的速度向左运动设运动时间为t秒,若BC长6个单位长度,求t的值;(3)若线段AB以1个单位长度/秒的速度向左运动,同时线段CD以2个单位长度/秒的速度也向左运动.设运动时间为t秒.①用含有t的式子分别表示点A、B、C、D,则A是,B是,C是,D是.②若0<t<24时,设M为AC中点,N为BD中点,试求出线段MN的长.3.如图,数轴上有A、B、C、D四个点,分别对应a,b,c,d四个数,其中a=﹣10,b=﹣8,(c﹣14)2与|d﹣20|互为相反数,(1)求c,d的值;(2)若线段AB以每秒3个单位的速度,向右匀速运动,当t=时,点A与点C 重合,当t=时,点B与点D重合;(3)若线段AB以每秒3个单位的速度向右匀速运动的同时,线段CD以每秒2个单位的速度向左匀速运动,则线段AB从开始运动到完全通过CD所需时间多少秒?(4)在(3)的条件下,当点B运动到点D的右侧时,是否存在时间t,使点B与点C 的距离是点A与点D的距离的4倍?若存在,请求出t值,若不存在,请说明理由.4.如图,数轴上点A对应的有理数为12,点P以每秒1个单位长度的速度从点A出发,点Q以每秒2个单位长度的速度从原点O出发,且P、Q两点同时向数轴正方向运动.设运动时间为t秒.(1)填空:当t=2时,P,Q两点对应的有理数分别为,,PQ=.(2)当PQ=8时,求t的值.5.数轴上A、B两点对应的数分别是﹣4、12,线段CE在数轴上运动,点C在点E的左边,且CE=8,点F是AE的中点.(1)如图1,当线段CE运动到点C、E均在A、B之间时,若CF=1,则AB=,AC=,BE=;(2)当线段CE运动到点A在C、E之间时,求BE与CF的数量关系;(3)当点C运动到数轴上表示数﹣14的位置时,动点P从点E出发,以每秒3个单位长度的速度向右运动,抵达B后,立即以同样速度返回,同时点Q从A出发,以每秒1个单位长度的速度向终点B运动,设它们运动的时间为t秒(t≤16),求t为何值时,P、Q两点间的距离为1个单位长度.6.如图,一根木棒放在数轴上,数轴的1个单位长度为1cm,木棒的左端与数轴上的点A 重合,右端与点B重合.(1)若将木棒沿数轴向右水平移动,则当它的左端移动到点B时,它的右端在数轴上所对应的数为24;若将木棒沿数轴向左水平移动,则当它的右端移动到点A时,它的左端在数轴上所对应的数为6,由此可得到木棒长为cm;(2)由(1)的启发,请你借助“数轴”这个工具解决下列问题:一天,小丽问马老师年龄时,马老师说:“我像你这么大时,你只是1岁;等你到我这个年龄的时候,我已经52岁了.”请求出小丽和马老师现在多少岁了?7.已知数轴上三点A、O、B表示的数分别为4、0、﹣2,动点P从A点出发,以每秒3个单位的速度沿数轴向左匀速运动.(1)当点P到点A的距离与点P到点B的距离相等时,点P在数轴上表示的数是.(2)另一动点R从点B出发,以每秒2个单位的速度沿数轴向左匀速运动,若点P、R 同时出发,问点P运动多长时间追上点R?(3)若点M为AP的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN的长度.8.如图,线段AB=24,动点P从A出发,以每秒2个单位的速度沿射线AB运动,运动时间为t秒(t>0),M为AP的中点.(1)当点P在线段AB上运动时,①当t为多少时,PB=2AM?②求2BM﹣BP的值.(2)当P在AB延长线上运动时,N为BP的中点,证明线段MN的长度不变,并求出其值.(3)在(2)的条件下,在P点的运动过程中,是否存在这样的t的值,使M、N、B三点中的一个点是以其余两点为端点的线段的中点,若有,请求出t的值;若没有,请说明理由.9.如图1,在长方形ABCD中,AB=12厘米,BC=6厘米.点P沿AB边从点A开始向点B以2厘米/秒的速度移动;点Q沿DA边从点D开始向点A以1厘米/秒的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间,那么:(1)DQ=厘米,AP=厘米(用含t的代数式表示)(2)如图1,当t=秒时,线段AQ与线段AP相等?(3)如图2,P、Q到达B、A后继续运动,P点到达C点后都停止运动.当t为何值时,线段AQ的长等于线段CP的长的一半.10.如图,在射线OM上有三点A、B、C,满足OA=20cm,AB=60cm,BC=10cm(如图所示),点P从点O出发,沿OM方向以3cm/s的速度匀速运动,点Q从点C出发在线段CO上向点O匀速运动(点Q运动到点O时停止运动),两点同时出发.(1)当P在线段AB上时,且PA=2PB,点Q运动到的位置恰好是线段AP的中点,求点Q的运动速度.(2)若点Q运动速度为5cm/s,经过多长时间P、Q两点相距70cm.(3)当点P运动到线段AB上时,分别取OP和OC的中点E、F,求的值.参考答案1.解:(1)∵|a+2|+(b﹣3)2=0,∴a+2=0,b﹣3=0,解得a=﹣2,b=3,即点A,B所表示的数分别为﹣2,3;(2)①2x+1=x﹣8,解得x=﹣6,即点C表示的数为﹣6,∵点B表示的数为3,∴BC=3﹣(﹣6)=3+6=9,即线段BC的长为9;②存在点P,使PA+PB=BC,设点P表示的数为m,当m<﹣2时,(﹣2﹣m)+(3﹣m)=9,解得m=﹣4,即当点P表示的数为﹣4时,使得PA+PB=BC;当﹣2≤m≤3时,[m﹣(﹣2)]+(3﹣m)=m+2+3﹣m=5≠9,故当﹣2≤m≤3时,不存在点P使得PA+PB=BC;当m>3时,[m﹣(﹣2)]+(m﹣3)=9,解得m=5,即当点P表示的数为5时,使得PA+PB=BC;由上可得,点P表示的数为﹣4或5时,使得PA+PB=BC.2.解:(1)∵AB长2个单位长度,点A在数轴上表示的数是﹣12 ∴点B在数轴上表示的数为﹣10;∵CD长1个单位长度,点D在数轴上表示的数是15 ∴点C在数轴上表示的数为14∴BC=14﹣(﹣10)=24故答案为:﹣10;14;24.(2)当B、C相遇前:t+2t=24﹣6;解得:t=6.当B、C相遇后:t+2t=24+6;解得:t=10.∴t的值为:6或10.(3)①∵移动前,点A在数轴上表示的数是﹣12,∴运动t秒后,A是﹣12﹣t;∵移动前,点B在数轴上表示的数为﹣10∴运动t秒后,B是﹣10﹣t;∵移动前,点C在数轴上表示的数为14,∴运动t秒后,点C是14﹣2t;∵移动前,点D在数轴上表示的数是15∴运动t秒后,点D是15﹣2t.故答案为:﹣12﹣t;﹣10﹣t;14﹣2t;15﹣2t.②∵0<t<24,∴点B一直在点C的左侧.∵M为AC中点,N为BD中点,∴点M表示的数为,点N表示的数为,∴MN=.3.解:(1)由题意得:∵(c﹣14)2+|d﹣20|=0,∴c﹣14=0,d﹣20=0,∴c=14,d=20;(2)[14﹣(﹣10)]÷3=8;[20﹣(﹣8)]÷3=.故答案为:8;;(3)t秒后,A点表示的数为﹣10+3t,D点表示的数为20﹣2t,∵AD重合,∴﹣10+3t=20﹣2t,解得t=6.∴线段AB从开始运动到完全通过CD所需要的时间是6秒;(4)①当点A在D的左侧时AD=(20﹣2t)﹣(﹣10+3t)=30﹣5t,BC=(﹣8+3t)﹣(14﹣2t)=5t﹣22,∵BC=4AD,∴5t﹣22=4(30﹣5t),解得;②当点A在D的右侧时AD=(﹣10+3t)﹣(20﹣2t)=5t﹣30,BC=(﹣8+3t)﹣(14﹣2t)=5t﹣22,∵BC=4AD,∴5t﹣22=4(5t﹣30),解得:.所以当或时,BC=4AD.4.解:(1)∵2×2=4,12+2×1=14,∴当t=2时,P,Q两点对应的有理数分别是14,4,∴PQ=14﹣4=10.故答案为:14;4;10.(2)当运动t秒时,P、Q两点对应的有理数分别为12+t,2t.①当点P在点Q右侧时:∵PQ=8,∴(12+t)﹣2t=8,解得t=4.②当点P在点Q的左侧时:∵PQ=8,∴2t﹣(12+t)=8,解得t=20.综上所述,当PQ=8时,t的值为4或20.5.(1)∵数轴上A、B两点对应的数分别是﹣4、12,∴AB=16;∵CE=8,CF=1,∴EF=7∵点F是AE的中点.∴AF=EF=7∴AC=AF﹣CF=7﹣1=6BE=AB﹣AE=16﹣7×2=2故答案为:16,6,2;(2)∵点F是AE的中点∴AF=EF设AF=FE=x,∴CF=8﹣x∴BE=16﹣2x=2(8﹣x)∴BE=2CF(3)①当0<t≤6时,P对应数:﹣6+3t,Q对应数﹣4+tPQ=|﹣4+t﹣(﹣6+3t)|=|﹣2t+2|依题意得:|﹣2t+2|=1解得:t=或②当6<t≤12时,P对应数12﹣3(t﹣6)=30﹣3t,Q对应数﹣4+tPQ=|30﹣3t﹣(﹣4+t)|=|﹣4t+34|依题意得:|﹣4t+34|=1解得:t=或∴t为秒,秒,秒,秒时,两点距离是1.6.解:(1)由数轴观察知三根木棒长是24﹣6=18(cm),则此木棒长为:18÷3=6cm,故答案为:6.(2)设马老师今年x岁,因为马老师和小丽的年龄和是:52+1=53(岁),则小丽的岁数是53﹣x岁;所以,x﹣(53﹣x)+x=523x﹣53=52,x=35,小丽的年龄是:53﹣35=18(岁)答:小丽现在18岁,马老师现在35岁.7.解:(1)∵A,B表示的数分别为4,﹣2,∴AB=6,∵PA=PB,∴点P表示的数是1,故答案为:1;(2)设P点运动x秒追上R点,由题意得:2x+6=3x解得:x=6答:P点运动6秒追上R点.(3)MN的长度不变.①当P点在线段AB上时,如图示:∵M为PA的中点,N为PB的中点∴又∵MN=MP+NP∴∵AP+BP=AB,AB=6∴②当P点在线段AB的延长线上时,如图示:∵MN=MP﹣NP,AB=AP﹣BP=6∴=.8.解:(1)①∵M是线段AP的中点,∴AM=AP=t,PB=AB﹣AP=24﹣2t.∵PB=2AM,∴24﹣2t=2t,解得t=6;②∵AM=t,BM=24﹣t,PB=24﹣2t,∴2BM﹣BP=2(24﹣t)﹣(24﹣2t)=24;(2)当P在AB延长线上运动时,点P在B点右侧.∵M是线段AP的中点,∴PM=AP=t,∵N是线段BP的中点,∴PN=BP=(2t﹣24)=t﹣12.∴MN=PM﹣PN=t﹣(t﹣12)=12;(3)由题意可知,N不能是BM的中点.①如果M是NB的中点,那么BM=MN=BN,∴t﹣24=12,解得t=36,符合题意;②如果B是MN的中点,那么BM=BN=MN,∴24﹣t=×12,解得t=18,符合题意.综上,在P点的运动过程中,存在这样的t的值,使M、N、B三点中的一个点是以其余两点为端点的线段的中点,此时t为36或18.9.解:(1)DQ=t厘米,AP=2t厘米;(2)由题意,得AQ=(6﹣t)cm,当AQ=AP时,6﹣t=2t解得:t=2故当t=2秒时,线段AQ与线段AP相等;(3)由题意,得AQ=(t﹣6)cm,CP=(18﹣2t)cm,∴t﹣6=(18﹣2t),解得:t=7.5.答:当t行7.5秒时,线段AQ的长等于线段CP的长的一半.故答案为:t,2t;2.10.解:(1)当P在线段AB上时,∵PA=2PB,AB=60cm,OA=20cm,∴PA=40cm,PB=20cm,∴OP=60cm,∴点P运动时间为:60÷3=20(秒),∵当P在线段AB上时,且PA=2PB,点Q运动到的位置恰好是线段AP的中点,BC=10cm,∴BQ=40cm,CQ=50cm,∴点Q的运动速度为:50÷20=(cm/s);(2)设运动时间为t秒,则3t+5t=90±70,解得,t1=,t2=20,∵点Q运动到O点时停止运动,∴点Q最多运动的时间是:(10+60+20)÷5=18(秒),∴当点Q运动18秒到点O时,PQ=OP=3×18=54cm,之后点P继续运动的时间为:(70﹣54)÷3=秒,∴PQ=OP=70cm时,此时t=18+=秒,由上可得,故经过秒或秒两点相距70cm;(3)如右图所示,设设运动时间为t秒,OP=3t,点P在线段AB上,∵点E为OP的中点,∴OE=1.5t,∵OA=20cm,AB=60cm,BC=10cm,点F为OC的中点,∴OC=90cm,OF=45cm,∴EF=OF﹣OE=45﹣1.5t,OC﹣OP=90﹣3t,∴.。
七上压轴题数轴动点问题,代数式表示动点 七年级数学心算训练

七上压轴题数轴动点问题,代数式表示动点七年级数学心算训练七上压轴题数轴动点问题,代数式表示动点| 七年级数学心算训练 -数轴上动点问题,解题步骤如下(一)用代数式表示动点(二)根据等量关系列方程(根据题目可能需要先分类讨论)(三)解方程,检验今天我们主要练习第一步:用代数式表示动点,表示方法如下数轴上的运动,在数轴上一个点表示的数为a,向左运动b(b>0)个单位后表示的数为a-b;若向右运动b(b>0)个单位后所表示的数为a+b数轴上两点间距离公式,两个点表示的数是a、b,则它们的距离可以表示成|a-b|。
用绝对值表示可以省去分类讨论以下是代数式表示动点的心算练习题,限时 5 分钟(禁用草纸,心算后直接写答案)①点A在数轴上对应的数是-3,如果点A以2单位长度/秒的速度沿数轴的一个方向运动,那么t秒后点A与-3的距离是( )。
②点A在数轴上对应的数是-3,如果点A以2单位长度/秒的速度沿数轴的负方向运动,那么t秒后点A与原点的距离是( )。
③数轴上动点P的起始位置是-8,如果点P以3单位长度/秒的速度向数轴正方向运动,那么t秒后点P表示的数是( )。
④数轴上动点A的起始位置是15,如果点A以2单位长度/秒的速度向数轴负方向运动,那么t秒后点A与原点的距离是( )。
⑤点A在数轴上对应的数是-6,O是原点,如果点A以2单位长度/秒的速度向数轴负方向运动,那么t秒后线段AO的中点表示的数是( )。
⑥点A、B在数轴上对应的数分别是-3、9,如果点A以3单位长度/秒的速度向数轴正方向运动,点B同时以1单位长度/秒的速度向数轴负方向运动,t秒后AB中点表示的数是( )。
⑦点A、B在数轴上同时从原点出发向左运动,点A的速度是6单位长度/秒,点B的速度是8单位长度/秒,那么t秒后AB 中点代表的数是( )。
⑧点A、B同时从原点出发反向运动,如果点A的速度是3单位长度/秒,点B的速度是2单位长度/秒,那么t秒后点A、B的距离是( )。
人教版七年级上册期末点对点攻关训练:一元一次方程应用—数轴动点问题(二)

七年级上册期末点对点攻关训练:一元一次方程应用之数轴动点问题(二)1.如图,数轴上A,B两点对应的数分别为10和﹣3,点P和点Q同时从原点出发,点P 以每秒1个单位长度的速度沿数轴正方向运动,点Q以每秒3个单位长度的速度先沿数轴负方向运动,到达点B后再沿数轴正方向运动,当点P到达点A后,两个点同时结束运动.设运动时间为t秒.(1)当t=1时,求线段PQ的长度;(2)通过计算说明,当t在不同范围内取值时,线段PQ的长度如何用含t的式子表示?(3)当点Q是BP的中点时直接写出t的值.2.如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示﹣12,点B表示10,点C表示20,我们称点A和点C在数轴上相距32个长度单位.动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着折线数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒,则:(1)动点P从点A运动至点C需要时间多少秒?(2)若P,Q两点在点M处相遇,则点M在折线数轴上所表示的数是多少(3)求当t为何值时,P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等.3.已知b是最小的正整数,且a,b,c满足(c﹣5)2+|a+b|=0.(1)填空:a=,b=,c=;(2)a,b,c在数轴上所对应的点分别为A,B,C,点P为数轴上一动点,其对应的数为x,点P在1到2之间运动时(即1≤x≤2时),请化简式子:|x+1|﹣|x﹣1|+2|x﹣5|(请写出化简过程);.(3)在(1),(2)的条件下,点A,B,C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒m(m<5)个单位长度和5个单位长度的速度向右运动,假设t秒钟过后,点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.若BC﹣AB的值保持不变,求m的值.4.一辆出租车从甲地出发,在一条东西走向的街道上行驶,每次行驶的路程记录如下表(规定向东为正,其中x是小于5的正数,单位:km):第1次第2次第3次第4次x x﹣6 2(8﹣x)(1)通过计算,求出这辆出租车每次行驶的方向;(2)如果出租车行驶每千米耗油0.1升,当x=2时,求这辆出租车在这四次的行驶中总共耗油多少升?5.某出租车从车站出发在东西方向上营运.若规定向东为正,向西为负,一天的行车情况依先后序记录如下(单位:km):+8,﹣2,﹣4,+4,﹣8,+5,﹣3,﹣6,﹣4,+7.(1)将最后一名乘客送到目的地,出租车离车站多远?在车站什么方向?(2)若每千米的营运费为3元,求出司机一天的营运额是多少?6.阅读下面材料,回答问题距离能够产生美.唐代著名文学家韩愈曾赋诗:“天街小雨润如酥,草色遥看近却无.当代印度著名诗人泰戈尔在《世界上最遥远的距离》中写道:“世界上最遥远的距离不是瞬间便无处寻觅而是尚未相遇便注定无法相聚”距离是数学、天文学、物理学中的热门话题,唯有对宇宙距离进行测量,人类才能掌握世界尺度.已知点A,B在数轴上分别表示有理数a,b,A,B两点之间的距离表示为AB.(1)当A,B两点中有一点在原点时,不妨设点A在原点,如图1,AB=OB=|b|﹣|a|=b﹣a=|a﹣b|.(2)当A,B两点都不在原点时,①如图2,点A,B都在原点的右边,AB=OB﹣OA=|b|﹣|a|=b﹣a=|a﹣b|;②如图3,点A,B都在原点的左边,AB=OB﹣OA=|b|﹣|a|=﹣b﹣(﹣a)=a﹣b=|a﹣b|;③如图4,点A,B在原点的两边,AB=OA+OB=|a|+|b|=a+(﹣b)=a﹣b=|a﹣b|.综上,数轴上A,B两点的距离AB=|a﹣b|.利用上述结论,回答以下三个问题:(1)若数轴上表示x和﹣2的两点之间的距离是4,则x=;(2)若代数式|x+1|+|x﹣2|取最小值时,则x的取值范围是;(3)若未知数x,y满足(|x﹣1|+|x﹣3|)(|y﹣2|+|y+1|)=6,则代数式x+2y的最大值是,最小值是.7.如图,点A,B在数轴上表示的数分别为﹣2与+6,动点P从点A出发,沿A→B以每秒2个单位长度的速度向终点B运动,同时,动点Q从点B出发,沿B→A以每秒4个单位长度的速度向终点A运动,当一个点到达时,另一点也随之停止运动.(1)当Q为AB的中点时,求线段PQ的长;(2)当Q为PB的中点时,求点P表示的数.8.回答下列问题:(1)数轴上表示2和5的两点之间的距离是,数轴上表示﹣2和﹣5的两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是;(2)数轴上表示x和﹣1的两点A和B之间的距离是,如果|AB|=2,那么x 为;(3)当代数式|x+1|+|x﹣2|取最小值时,此时符合条件的整数x为;(4)若点A表示的数为x,则当x为时,|x+1|与|x﹣2|的值相等.9.如图,数轴的原点为0,点A、B、C是数轴上的三点,点B对应的数字1,AB=6,BC=2,动点P、Q同时从A、C出发,分别以每秒2个长度单位和每秒1个长度单位的速度沿数轴正方向运动.设运动时间为t秒(t>0)(1)求点A、C分别对应的数;(2)求点P、Q分别对应的数(用含t的式子表示)(3)试问当t为何值时,OP=OQ?10.已知数轴上,点A和点B分别位于原点O两侧,点A对应的数为a,点B对应的数为b,且|a﹣b|=15.(1)若b=﹣6,则a的值为.(2)若OA=2OB,求a的值;(3)点C为数轴上一点,对应的数为c,若A点在原点的左侧,O为AC的中点,OB=3BC,请画出图形并求出满足条件的c的值.参考答案1.解:(1)当t=1时,P点对应的有理数为1,Q点对应的有理数为﹣3×1=﹣3,所以PQ=1﹣(﹣3)=4;(2)①当0<t<1时,P点对应的有理数为t,Q点对应的有理数为﹣3t,PQ=t﹣(﹣3t)=4t;②当1≤t<3时,P点对应的有理数为t,Q点对应的有理数为3t﹣6,PQ=t﹣(3t﹣6)=﹣2t+6;③当3≤t≤10时,P点对应的有理数为t,Q点对应的有理数为3t﹣6,PQ=3t﹣6﹣t=2t﹣6.综上所述,PQ=;(3)①当0<t<1时,则﹣3t×2=﹣3+t,解得t=;②当1≤t<3时,则(3t﹣6)×2=﹣3+t,解得t=.故t的值是或.2.解:(1)动点P从点A运动至点C需要时间t=[0﹣(﹣12)]÷2+(20﹣10)÷2+10÷1=21(秒).答:动点P从点A运动至点C需要时间为21秒;(2)由题意可得t>10s,∴(t﹣6)+2(t﹣10)=10,解得t=12,∴点M在折线数轴上所表示的数是6;(3)当点P在AO上,点Q在CB上时,OP=12﹣2t,BQ=10﹣t,∵OP=BQ,∴12﹣2t=10﹣t,解得t=2;当点P在OB上时,点Q在CB上时,OP=t﹣6,BQ=10﹣t,∵OP=BQ,∴t﹣6=10﹣t,解得t=8;当点P在OB上时,点Q在OB上时,OP=t﹣6,BQ=2(t﹣10),∵OP=BQ,∴t﹣6=2(t﹣10),解得t=14;当点P在BC上时,点Q在OA上时,OP=10+2(t﹣16),BQ=10+(t﹣15),∵OP=BQ,∴10+2(t﹣16)=10+(t﹣15)a,解得t=17.当t=2,8,14,17时,OP=BQ.3.解:(1)∵(c﹣5)2+|a+b|=0,∴c﹣5=0,a+b=0,b是最小的正整数,∴a=﹣1,b=1,c=5;故答案为:﹣1;1;5;(2)|x+1|﹣|x﹣1|+2|x﹣5|=(x+1)﹣(x﹣1)+2(5﹣x)=x+1﹣x+1+10﹣2x=﹣2x+12,故答案为﹣2x+12;(3)根据题意得,BC=(5+5t)﹣(1+mt)=4+5t﹣mt,AB=(1+mt)﹣(﹣1﹣t)=2+mt+t,∴BC﹣AB=(4+5t﹣mt)﹣(2+mt+t)=2+4t﹣2mt=2+(4﹣2m)t,若BC﹣AB的值保持不变,则4﹣2m=0,∴m=2.4.解:(1)第1次,向东行驶x千米,第2次,向西行驶x千米,第3次,向西行驶(6﹣x)千米,第4次,向东行驶2(8﹣x)千米;(2)行驶的总路程为:x+x+6﹣x+2(8﹣x)=22﹣x,当x=2时,原式=22﹣3=19,0.1×19=1.9升,答:这辆出租车在这四次的行驶中总共耗油1.9升.5.解:(1)8﹣2﹣4+4﹣8+5﹣3﹣6﹣4+7=﹣3,答:将最后一名乘客送到目的地,出租车离车站出发点3千米,在车站西方;(2)(|+8|+|﹣2|+|﹣4|+|+4|+|﹣8|+|+5|+|﹣3|+|﹣6|+|﹣4|+|+7|)×3=153(元),答:若每千米的营运费为3元,求出司机一天的营运额是153元.6.解:(1)若数轴上表示x和﹣2的两点之间的距离是4,则|x+2|=4解得x=﹣6或x=2故答案为:﹣6或2;(2)若代数式|x+1|+|x﹣2|取最小值时,表示在数轴上找一点x,到﹣1和2的距离之和最小,显然这个点x在﹣1和2之间故答案为:﹣1≤x≤2;(3)∵(|x﹣1|+|x﹣3|)(|y﹣2|+|y+1|)=6又∵|x﹣1|+|x﹣3|的最小值为2,|y﹣2|+|y+1|的最小值为3∴1≤x≤3,﹣1≤y≤2∴代数式x+2y的最大值是7,最小值是﹣1故答案为:7;﹣1.7.解:(1)AB的中点所表示的数为=2,此时点Q表示的数为2,点Q移动的时间为(6﹣2)÷4=1秒,因此,点P表示的数为﹣2+2×1=0,∴PQ=2﹣0=2,(2)设点Q移动的时间为t秒,则移动后点Q所表示的数为6﹣4t,移动后点P所表示的数为﹣2+2t,当Q为PB的中点时,有=6﹣4t,解得,t=,此时.点P表示的数为﹣2+2×=﹣.8.解:(1)由题意得:|5﹣2|=3;|﹣2﹣(﹣5)|=|﹣2+5|=3;|1﹣(﹣3)|=|1+3|=4;故答案为:3,3,4;(2)数轴上表示x和﹣1的两点A和B之间的距离是:|x﹣(﹣1)|=|x+1|;∵|AB|=2,∴|x+1|=2,∴x+1=2或x+1=﹣2,∴x=1或x=﹣3;故答案为:1或﹣3;(3)∵当代数式|x+1|+|x﹣2|取最小值时,数x表示的点在﹣1和2之间的线段上,∴﹣1≤x≤2,∴整数x为﹣1或0或1或2.故答案为:﹣1或0或1或2;(4)由题意得:|x+1|=|x﹣2|,∴x+1=x﹣2或x+1=2﹣x,∴1=﹣2,无解或x=.故答案为:.9.解:(1)∵点B对应的数为1,AB=6,BC=2,∴点A对应的数是1﹣6=﹣5,点C对应的数是1+2=3.(2)∵动点P、Q分别同时从A、C出发,分别以每秒2个单位和1个单位的速度沿数轴正方向运动,∴点P对应的数是﹣5+2t,点Q对应的数是3+t;(3)①当点P与点Q在原点两侧时,若OP=OQ,则5﹣2t=3+t,解得:t=;②当点P与点Q在同侧时,若OP=OQ,则﹣5+2t=3+t,解得:t=8;当t为或8时,OP=OQ.10.解:(1)∵b=﹣6,|a﹣b|=15,∴|a+6|=15,∴a+6=15或﹣15,∴a=9或﹣21,∵点A和点B分别位于原点O两侧,b=﹣6,∴a>0,∴a=9,故答案为:9;(2)∵OA=2OB,∴|a|=|2b|,∵点A和点B分别位于原点O两侧,点A对应的数为a,点B对应的数为b,∴b=﹣a,∵|a﹣b|=15,∴|a+a|=15,∴a=±10;(3)满足条件的C两种情况:①如图,设BC=x,则OC=OA=2x,则有x+2x+2x=15,解得:x=3,∴C对应6②如图,设BC=x,则OB=3x,OA=OC=4x,则有3x+4x=15,解得,x=,则C对应,综上所得:C点对应6或.。