上海沪教版六年级数学下知识点总结电子教案

合集下载

沪教版六年级下册数学2.2分数的基本性质(第二课时)(教学设计)

沪教版六年级下册数学2.2分数的基本性质(第二课时)(教学设计)

沪教版六年级下册数学2.2分数的基本性质(第二课时)(教学设计)一. 教材分析沪教版六年级下册数学2.2分数的基本性质(第二课时)的教学内容主要包括分数的基本性质和分数的比较。

分数的基本性质包括分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。

分数的比较包括同分母分数的比较和异分母分数的比较。

本节课的教学内容是学生进一步理解分数的意义,掌握分数的基本性质,提高解决问题的能力。

二. 学情分析六年级的学生已经掌握了分数的基本概念和简单的分数运算,对分数有一定的认识。

但是在实际应用中,部分学生对分数的基本性质和比较方法还不够熟练,需要通过本节课的学习进一步巩固。

此外,学生的数学思维能力、观察能力和合作能力有待提高。

三. 教学目标1.理解分数的基本性质,掌握分数的比较方法。

2.能够运用分数的基本性质和比较方法解决实际问题。

3.培养学生的数学思维能力、观察能力和合作能力。

四. 教学重难点1.教学重点:分数的基本性质,分数的比较方法。

2.教学难点:分数的基本性质在实际问题中的应用。

五. 教学方法1.情境教学法:通过生活情境引导学生理解分数的基本性质和比较方法。

2.合作学习法:小组讨论、探究,培养学生的合作能力和观察能力。

3.引导发现法:教师引导学生发现分数的基本性质和比较方法,培养学生的数学思维能力。

六. 教学准备1.教学课件:制作课件,展示分数的基本性质和比较方法。

2.练习题:准备一些有关分数的基本性质和比较方法的练习题。

3.教学道具:准备一些分数的模型,帮助学生直观地理解分数的基本性质。

七. 教学过程1.导入(5分钟)教师通过一个生活情境,如分蛋糕,引入分数的概念,引导学生回顾已学的分数知识,为新课的学习做好铺垫。

2.呈现(10分钟)教师利用课件展示分数的基本性质,如分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。

同时,展示分数的比较方法,如同分母分数的比较和异分母分数的比较。

沪教版六年级数学下册全套教案+习题

沪教版六年级数学下册全套教案+习题

六年级下册第五章有理数知识点1、正数:大于0的数叫做正数。

2、负数:在正数前面加上负号“-”的数叫做负数。

3、0既不是正数也不是负数。

零是正数和负数的分界。

4、有理数:整数和分数统称为有理数。

有理数:正数:正整数、零、负整数分数:正分数、负分数5、数轴:规定了原点、正方向、单位长度的直线叫做数轴。

数轴上的点从左到右依次增大,正数大于零,零大于负数,正数大于负数。

6、相反数:绝对值相等,只有负号不同的两个数叫做互为相反数。

7、绝对值:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。

记做|a|。

由绝对值的定义可得:|a-b|表示数轴上a点到b点的距离。

一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.8、有理数加法法则加法交换律:有理数的加法中,两个数相加,交换加数的位置,和不变。

表达式:a+b=b+a。

加法结合律:有理数的加法中,三个数相加,先把前两个数相加或者先把后两个数相加,和不变。

表达式:(a+b)+c=a+(b+c)9、有理数减法法则减去一个数,等于加这个数的相反数。

表达式:a-b=a+(-b)10、有理数乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数同0相乘,都得0.乘法交换律:一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等。

表达式:ab=ba乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。

表达式:(ab)c=a(bc)乘法分配律:一般地,一个数同两个的和相乘,等于把这个数分别同这两个数相乘,再把积相加。

表达式:a(b+c)=ab+ac注意:几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正;几个数相乘,有因数为零,积就为零。

也就是说,在积的各个因数中,只有一个负号,积为负; 有两个负号,积为正; 有三个负号,积为负; 有四个负号,积为正; 有零时积就是零。

沪教版六年级下学期数学知识点

沪教版六年级下学期数学知识点

六年级下学期数学知识点包括:小数的加减乘除运算、图形的面积和体积、简便算法、比例与数学模型等。

以下是对每个知识点的详细介绍。

一、小数的加减乘除运算小数的加减乘除运算是六年级下学期数学的重点内容。

在进行小数的加减乘除运算时,我们可以先进行位数对齐,然后按照整数加减乘除的运算法则进行运算。

例如:1.加法运算:将小数点对齐,然后按照整数加法的运算法则进行运算,最后加上小数点。

2.减法运算:将小数点对齐,然后按照整数减法的运算法则进行运算,最后加上小数点。

3.乘法运算:将小数点后的数字按照整数乘法的运算法则进行运算,最后确定小数点的位置。

4.除法运算:将除数和被除数的小数点对齐,然后按照整数除法的运算法则进行运算,最后确定小数点的位置。

二、图形的面积和体积图形的面积和体积是六年级下学期数学的另一个重点。

面积是指二维图形所占的空间大小,而体积则是指三维图形所占的空间大小。

1.面积的计算:根据图形的不同,面积的计算方法也不同。

例如,长方形的面积等于长乘以宽,三角形的面积等于底乘以高再除以22.体积的计算:体积的计算也是根据图形的不同而不同。

例如,长方体的体积等于底面积乘以高,圆柱体的体积等于底面积乘以高等。

三、简便算法简便算法是六年级下学期数学的一项基础内容,主要包括各种运算的简便算法,例如乘法口诀、除法运算的估算等。

1.乘法口诀:通过熟练掌握乘法口诀,可以快速计算两个整数的乘积。

乘法口诀表是六年级下学期数学课上经常出现的内容。

2.除法的估算:当进行除法运算时,可以通过估算来确定结果的大小。

例如,通过估算商的整数部分,可以快速确定结果的范围。

四、比例与数学模型比例与数学模型是六年级下学期数学的一个拓展内容,主要包括比例的概念和应用、数学模型的建立和解决问题等。

1.比例的概念和应用:比例是指两个具有相同或相似关系的量之间的比值关系。

其应用可以广泛涉及生活中的各个方面,例如物品的打折销售、图画的放大和缩小等。

2.数学模型的建立和解决问题:数学模型是将实际问题抽象为数学问题的过程。

沪教版六年级下学期数学知识点

沪教版六年级下学期数学知识点

一、数值:
1、分数加减运算:进行同分母分数加减运算,求得同分母加减后的分数;
2、小数乘除法运算:乘减法的基本运算法与小数乘除法运算中的抹去法;
3、整数四则运算:熟练掌握整数的加减乘除,增加难度可以运用被加数、被减数、乘数与被乘数来确定四则运算的顺序;
4、数的阶乘:了解数阶乘的基本概念,找出规律进行运算;
5、正数的幂次:根据幂次的定义熟练掌握正数的幂次;
6、数轴:掌握数轴上的基本概念,如正负号、加减号等。

二、几何:
1、钝角的性质:了解钝角的定义,掌握钝角的性质;
2、平行四边形:了解平行四边形的定义,熟练掌握平行四边形的性质;
3、正方形:了解正方形的定义,包括边长与对角线,了解正方形的性质;
4、多边形:了解多边形的定义,掌握多边形的性质,并能针对特定多边形的求解;
5、三角形:掌握三角形的性质,包括角度关系,边长关系,以及对错角三角形的判断;
6、几何性质:能利用平行线、共线、全等、中线等几何性质求解特定图形的属性。

三、空间:
1、棱面:了解棱面的定义,掌握棱面的性质,比如棱线,边,角的个数;。

沪教版数学六年级下册第五章《有理数》全章教学设计及习题

沪教版数学六年级下册第五章《有理数》全章教学设计及习题

沪教版数学六年级下册第五章《有理数》全章教学设计及习题一. 教材分析沪教版数学六年级下册第五章《有理数》是学生学习数学的重要内容,本章主要介绍了有理数的定义、性质、运算及其应用。

教材通过丰富的实例和生动的语言,引导学生认识和理解有理数,掌握有理数的加、减、乘、除运算,并能运用有理数解决实际问题。

本章内容在数学体系中占据重要地位,为学生进一步学习代数、几何等数学分支奠定了基础。

二. 学情分析六年级的学生已经具备了一定的数学基础,对实数有一定的认识。

但在学习有理数时,仍存在以下问题:1. 对有理数的定义和性质理解不深刻;2. 有理数的运算规则掌握不熟练;3. 运用有理数解决实际问题的能力较弱。

因此,在教学过程中,要注重引导学生深入理解有理数的概念,熟练掌握有理数的运算方法,提高运用有理数解决实际问题的能力。

三. 教学目标1.理解有理数的定义,掌握有理数的性质;2. 熟练掌握有理数的加、减、乘、除运算方法;3. 能够运用有理数解决实际问题;4. 培养学生的逻辑思维能力和创新能力。

四. 教学重难点1.有理数的定义和性质;2. 有理数的运算方法;3. 运用有理数解决实际问题。

五. 教学方法1.情境教学法:通过生活实例引入有理数的概念,使学生能够直观地理解有理数;2. 讲授法:讲解有理数的定义、性质和运算方法,引导学生深入理解有理数;3. 练习法:布置适量的习题,让学生巩固所学知识;4. 小组讨论法:分组讨论,培养学生的合作意识和解决问题的能力。

六. 教学准备1.准备相关的教学PPT和教学素材;2. 准备习题和实际问题;3. 准备黑板和粉笔。

七. 教学过程1.导入(5分钟)利用生活实例,如温度、海拔等,引导学生认识有理数,激发学生的学习兴趣。

2.呈现(10分钟)讲解有理数的定义、性质和运算方法,让学生初步了解有理数的基本概念和运算规则。

3.操练(10分钟)布置适量的习题,让学生独立完成,检验对有理数的理解和运算方法的掌握程度。

沪教版六年级数学下册教案[001]

沪教版六年级数学下册教案[001]

沪教版六年级数学下册教案[001]
教学目标
1.掌握面积的定义和相关概念。

2.理解与计算平行四边形、三角形的面积。

3.培养学生独立思考和解决问题的能力。

教学重难点
1.教学重点:面积的定义及计算方法。

2.教学难点:平行四边形的计算。

教学内容
1. 面积的引入
教师可以利用教室或校园中常见的物品引入面积的概念,让学生理解面积对于计算或比较物体大小的作用。

2. 面积的定义和计算
教师要引导学生探究面积的定义和计算方法,学生可以通过手工制作正方形、长方形等图形,边长改变时观察面积的变化,并通过数学公式进行计算。

3. 平行四边形的面积计算
由于平行四边形的形态较为特殊,教师需要通过合理的讲解和案例引导学生理解、计算平行四边形的面积。

4. 三角形的面积计算
三角形是常见的图形,教师也需要通过案例和计算公式的讲解帮助学生掌握三角形面积的计算方法。

教学方法
1.通过教室或校园中常见的物品引入面积概念。

2.制作手工图形进行计算,培养学生思考和解决问题的能力。

3.讲解和案例相结合,帮助学生掌握平行四边形和三角形的面积计算方
法。

教学评估
通过以下方式对学生的学习效果进行评估:
1.每节课结束时通过课堂练习进行检测。

2.作业中对面积计算的要求,如画图、列公式等。

3.期末考试中对面积计算相关题目的考查。

教学反思
1.面积的引入是否能够吸引学生兴趣?
2.平行四边形的面积计算是否能够讲解清楚,学生是否理解?
3.是否需要增加更多实际案例引导学生计算面积?。

沪教版六年级下学期数学各章知识点

沪教版六年级下学期数学各章知识点

沪教版六年级下学期数学知识点梳理1.相反意义的量收入与支出;增加与减少;上升与下降; 零上与零下;高于海平面与低于海平面;前进与后退;盈利与亏损; ??任意规定一方为正,则另一方为负。

2.正数与负数4.数轴的概念与画法数轴是规定了原点、正方向和单位长度的直线;数轴画法:一直线 + 三要素5.数轴的性质数轴上表示的两个数,右边的数总比左边的数大;正数都大于零,负数都小于零,正数大于一切负数。

6.相反数只有符号不同的两个数互为相反数,其中一个数是另一个数的相反数;0的相反数是0. 正数的相反数是负数;负数的相反数是正数;零的相反数是它本身。

7.相反数的几何意义数轴上,表示互为相反数的两个点,它们分别位于原点的两侧,而且与原点的距离相等。

10.有理数的大小比较两个负数,绝对值大的反而小;对于任意有理数的大小比较应采用:正数都大于零,负数都小于零,正数大于负数。

比较两个数的大小,还可以用“作差法”,即:11.有理数加法及加法法则把两个有理数合成一个有理数的运算,叫做有理数的加法。

分五种情况:①两个正数相加;②两个负数相加;③两个异号数相加;④有理数和零相加;⑤零和零相加。

有理数的加法法则:①同号两数相加,取相同的符号,并把绝对值相加;②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;③互为相反数的两个数相加得零;④一个数与零相加,仍得这个数。

注意:利用加法法则计算的步骤:先确定和的符号,再进行绝对值相加或相减。

12.有理数加法运算律加法交换律:a+b=b+a;加法结合律:(a+b)+c=a+(b+c)运算律有下列规律:①互为相反数的两数可以先相加;②符号相同的数可以相加;③分母相同的数可以先相加;④几个数相加能得到整数的可以先相加。

13.有理数的减法法则及运算法则:减去一个数,等于加上这个数的相反数。

注意:两个“变”字,①改变运算符号;②改变减数的性质符号(变为相反数),牢记一个“不变”,被减数与减数的位置不变,即没有交换律。

沪教版数学六年级下册6.4《一元一次方程的应用》教学设计

沪教版数学六年级下册6.4《一元一次方程的应用》教学设计

沪教版数学六年级下册6.4《一元一次方程的应用》教学设计一. 教材分析《一元一次方程的应用》是沪教版数学六年级下册第六章的内容。

本节课主要让学生掌握一元一次方程的应用,通过解决实际问题,让学生了解一元一次方程在生活中的应用,培养学生解决实际问题的能力。

教材通过丰富的例题和练习题,帮助学生巩固知识,提高解题技能。

二. 学情分析六年级的学生已经掌握了代数的基础知识,对一元一次方程有一定的理解。

但是,学生在应用一元一次方程解决实际问题时,还存在着一定的困难。

因此,在教学过程中,教师需要引导学生将理论知识与实际问题相结合,提高学生解决问题的能力。

三. 教学目标1.知识与技能:让学生掌握一元一次方程的应用,能够解决实际问题。

2.过程与方法:通过解决实际问题,培养学生运用一元一次方程解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生积极解决问题的态度。

四. 教学重难点1.重点:让学生掌握一元一次方程的应用。

2.难点:如何引导学生将实际问题转化为一元一次方程,并解决问题。

五. 教学方法采用问题驱动法、案例教学法和小组合作法。

通过提出问题,引导学生思考,运用案例教学法讲解实际问题,让学生在解决实际问题的过程中掌握一元一次方程的应用。

同时,采用小组合作法,让学生在小组内讨论、交流,提高学生的合作能力和解决问题的能力。

六. 教学准备1.准备相关案例和练习题,用于引导学生解决问题。

2.准备多媒体教学设备,用于展示案例和讲解。

七. 教学过程1.导入(5分钟)教师通过提出一个问题:“小明买了一些苹果,比梨多3倍,如果小明买了45个梨,那么他买了多少个苹果?”引发学生的思考,引导学生进入本节课的主题。

2.呈现(10分钟)教师通过多媒体展示几个实际问题,让学生尝试解决。

例如:“一家商店卖出一件衣服,赚了20元,卖出一双鞋子,赚了15元。

如果商店一天卖出了3件衣服和2双鞋子,那么商店一共赚了多少钱?”学生在解决问题的过程中,教师进行讲解和指导。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上海沪教版六年级数学下知识点总结第五章有理数5.1有理数的意义整数和分数统称为有理数有理数整数:正整数、零、负整数分数:正分数、负分数5.2正数和负数数轴:规定了原点、正方向和单位长度的直线叫数轴。

数轴的三要素:原点、单位长度、正方向。

所有的数都可以用数轴上的点来表示。

也可以用数轴来比较两个数的大小在数轴上表示的两个数,正方向的数大于负方向的数零是正数和负数的分界。

只有符号不同的两个数,我们称其中一个数为另一个数的相反数,也称为这两个数互为相反数,零的相反数是零。

一个数在数轴上所对应的点与原点的距离,叫做这个数的绝对值注意:1、一个正数的绝对值是它本身。

2、一个负数的绝对值是它的相反数。

3、零的绝对值是零。

4、两个负数,绝对值大的那个数反而小。

5.3有理数的加减有理数加法法则:1、同号两数相加,取原来的符号,并把绝对值相加。

2、异号两数相加,绝对值相等时和为零,绝对值不相等时,其和的绝对值为较大绝对值减去较小的绝对值所得的差,其和的符号取绝对值较大的加数的符号。

3、一个数同零相加,仍得这个数。

有理数加法的运算律1、交换律:a+b=b+a2、结合律:(a+b)+ c=a+(b+c)有理数的减法法则1、减去一个数,等于加上这个数的相反数2、a-b=a+(-b)5.4有理数的乘除两数相乘的符号法则正正得正,正负得负,负正得负,负负得正。

有理数的乘法法则1、两数相乘,同号得正,异号得负,并把绝对值相乘。

2、任何数与零相乘,都得零。

注意连成的符号:1、几个不等于零的数相乘,积的符号由负因数的个数决定2、当负因数有奇数个时,积为负3、当负因数有偶数个时,积为正4、几个数相乘,有因数为零,积就为零有理数除法法则1、两数相除,同号得正,异号得负,并把绝对值相除。

2、零除以任何一个不为零的数,都得零。

5.5有理数的乘方求N个相同因数的积的运算,叫做乘方。

乘法的结果叫做幂。

在a n中,a叫做底数,n叫做指数,读作a的n次方,a n看做是a的n次方结果时,读作a的n次幂。

注意:1、正数的任何次幂都是正数,负数的奇数次幂是负数,负数的偶数次幂是正数。

2、有理数混合运算的顺序:先乘方,后乘除,再加减;统计运算从左到右;如果有括号,先算小括号,后算中括号,再算大括号。

3、把一个数写成a*10n(其中1≤a<10,n是正整数,这种形式的计数方法叫做科学计数法第六章一次方程(组)及一次不等式(组)6.1方程的意义用字母x、y、等表示所要求的未知的数量,这些字母称为未知数。

含有未知数的等式叫做方程。

在方程中,所含的未知数又称为元。

为了求得未知数,在未知数和已知数之间建立一种等量关系式,就是列方程。

如果未知数所取的某个值能使方程左右两边的值相等看,那么这个未知数的值叫做方程的解6.2一次方程的意义只含有一个未知数且未知数的次数是一次的方程叫做一元一次方程等式性质:1、等式两边同时加上(或减去)同一个数或一个含有字母的式子,说得结果仍是等式。

2、等式两边同时乘以同一个数(或除以同一个不为零的数),所得结果仍是等式。

去括号的法则是:括号前带“+”号,去掉括号时括号内各项都不变符号。

括号前带“—”号,去掉括号时括号内各项都改变符号。

6.3一次方程的解法解一元一次方程的一般步骤是:1、去分母;2、去括号;3、移项;4、化成ax=b(a≠0)的形式5、两边同除以未知数的系数,得到方程的解x=b/a列方程解应用题的一般步骤是:1、设未知数(元);2、列方程;3、解方程;4、检验并作答。

6.4不等式的意义及解法用不等号“<”“>”“≤”“≥”表示的关系式,叫做“不等式”。

不等式性质:1、不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,即:如果a>b,那么a+m>b+m如果a<b,那么a+m<b+m2、不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,即:如果a>b,且m>0,那么am>bm(或a/m>b/m)如果a<b,且m>0,那么am<bm(或a/m<b/m=3、不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,即:如果a>b,且m<0,那么am<bm(或a/m>b/m)如果a<b,且m<0,那么am>bm(或a/m<b/m)在含有未知数的不等式中,能使不等式成立的未知数的值,叫做不等式的解。

一般情况下,一元一次方程的解只有一个,一元一次不等式的解可以有无数个。

不等式的解的全体叫做不等式的解集。

只含有一个未知数且未知数的次数是一次的不等式叫做一元一次不等式。

解一元一次不等式的一般步骤与解一元一次方程类似。

不等式组由几个含有同一个未知数的一次不等式组成的不等式组,叫做一元一次不等式组。

不等式组中所有不等式的解集的公共部分叫做这个不等式组的解集。

求不等式组的解集的过程叫做解不等式组。

如果各个不等式的解集没有公共部分,那么这个不等式组无解。

解一元一次不等式组的一般步骤是:1、求出不等式组中各个不等式的解集;2、在数轴上表示各个不等式的解集;3、确定各个不等式解集的公共部分,就得到这个不等式组的解集。

二元一次方程含有两个未知数的一次方程叫做二元一次方程。

使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。

二元一次方程的解有无数个,二元一次的解的全体叫做这个二元一次方程的解集。

由几个方程组成的一组方程叫做方程组。

如果方程组中含有两个未知数,且含未知数的项的二元一次方程组次数都是一次,那么这样的方程组叫做二元一次方程组。

在二元一次方程组中,使每个方程都适合的解,叫做二元一次方程组的解。

通过“代入”消去一个未知数,将方程式转化为一元一次方程,这种解法叫做代入消元法,简称代入法。

通过将两个方程相加(或相减)消去一个未知数,将方程组转化为一元一次方程,这种解法叫做加减消元法。

如果方程组中有三个未知数,且含有未知数的项的次数都是一次,这样的方程组叫做三元一次方程组。

注意:1、列方程解应用题时要灵活选择未知数的个数。

2、对于含有两个未知数的应用题一般采用列二元一次方程组求解;对于含有三个未知数的应用题一般采用列三元一次方程组求解。

第七章线段与角的画法7.1直线的画法7.2射线的画法7.3线段的画法联结两点的线段的长度叫做两点之间的距离。

两条线段可以相加(或相减),它们的和(或差)也是一条线段,其长度等于这两条线段的长度的和(或差)。

将一条线段分成两条相等线段的店叫做这条线段的中点。

7.4角的画法角是具有公共端点的两条射线组成的图形。

公共端点叫做角的顶点,两条射线叫做角的边。

角是由一条射线绕着它的端点旋转到另一个位置所成的图形。

处于初始位置的那条射线叫做角的始边,终止位置的那条射线叫做角的终边。

两个角可以相加(或相减),它们的和(或差)也是一个角,它的度数等于这两个角的角度的和(或差)。

从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

7.5角的测量如果两个角的度数的和是90°,那么这两个角叫做互为余角,简称互余。

其中一个角成为另一个角的余角。

如果两个角的度数的和是180°,那么这两个角叫做互为补角,简称互补。

其中一个角称为另一个角的补角。

注意:1、同角(或等角)的余角相等;2、同角(或等角)的补角相等;提问:1、一个角与它的余角相等,这个角是怎样的角?是锐角2、一个角与它的补角相等,这个角是怎样的角?是直角3、互补的两个角能否都是锐角?不能4、互补的两个角能否都是直角?可能5、互补的两个角能否都是钝角?不能第八章长方体的再认识长方体的顶点;长方体的棱;长方体的面;长方体的表面积;长方体的体积公式;1、长方体有六个面,八个顶点,十二条棱。

2、长方体的每个面都是长方形。

3、长方体的十二条棱可以分为三组,每组中的四条棱的长度相等。

4、长方体的六个面可以分为三组,每组中的两个面的形状和大小都相同。

5、第115页:长方体中棱与棱位置关系的认识:如图:棱EH与棱EF所在的直线在同一个面内,它们有惟一的公共点,我们称这两条棱相交。

棱EF与棱AB所在的直线在同一个面内,但它们没有公共点,我们称这两条棱平行。

棱EH与棱AB所在的直线既不平行,也不相交,我们称这两条棱异面。

6、一般地,如果直线AB与直线CD在同一平面内,具有惟一公共点,那么称这两条直线的位置关系为相交,读作:直线AB与直线CD相交。

7、如果直线AB与直线CD在同一平面内,但没有公共点,那么称这两条直线的位置关系为平行,记作:AB∥CD,读作:直线AB与直线CD平行。

8、如果直线AB与直线CD既不平行,也不相交,那么称这两条直线的位置关系为异面,读作:直线AB与直线CD异面。

9、直线PQ垂直于平面ABCD,记住:直线PQ⊥平面ABCD,读作:直线PQ垂直于平面ABCD。

10、如何检验直线与平面垂直呢?可以用“铅垂线”检验。

如果细棒垂直于墙面,可以用“三角尺”检验。

还可以用“合页型折纸”检验直线是否垂直于平面。

11、直线PQ平行于平面ABCD,记作:直线PQ∥平面ABCD, 读作:直线PQ平行于平面ABCD.12、如何检验直线与平面平行呢?可以用“铅垂线”检验。

也可以用“长方形纸片”检验。

相关文档
最新文档