工业锅炉设计热力计算

合集下载

工业锅炉3章热平衡计算资料

工业锅炉3章热平衡计算资料

与负荷成反比
工质吸收的热量=
工质吸收的热量
烟气放气量 工质吸收的热量+烟道的散热量
10
5.灰渣物理热损失Q6
(1)原因:灰渣温度高于环境温度
(2)影响因素
灰分
4190 Aar Qar,net
Aar , zs
10
排渣方式
(3)计算:固态排渣煤粉炉thz=600℃ 液态排渣thz=t3+100℃ 流化床thz=800 ℃
燃料的物理显热; 外来热源加热空气时带入的热量;
雾化燃油所用蒸汽带入的热量 燃料和空气没有利用外界热量
燃煤水分满足
4190 M ar Qar .net
M ar,zs
6.65
Qr
为什么空气预热器所带入的热量不计入输入热量?
5
三、各项热损失
1.机械未完全燃烧热损失Q4
飞灰Qfh4 (1)原因:固体颗粒未燃尽
灰渣Qlz4
(2)选择
飞灰量?
固态排渣煤粉炉0.5~5.0% 设计:选取
燃油和燃气炉0.0%
运行:热平衡试验测定
飞灰系数0.9~0.95
(3)灰平衡:进入炉内的总灰量=灰渣中灰量+飞灰中灰量
排渣率
6
(4)影响因素
燃料种类,燃烧方式 炉膛型式与结构 燃烧器设计与布置 锅炉运行工况
2.化学未完全燃烧热损失Q3
1.目的
确定锅炉效率 确定锅炉各项损失 确定锅炉各项工作指标
正平衡
2.方法
反平衡
Q1和燃料消耗量B→ηb
小型锅炉
各项损失Σqi→ηb
大型锅炉
14
人有了知识,就会具备各种分析能力, 明辨是非的能力。 所以我们要勤恳读书,广泛阅读, 古人说“书中自有黄金屋。 ”通过阅读科技书籍,我们能丰富知识, 培养逻辑思维能力; 通过阅读文学作品,我们能提高文学鉴赏水平, 培养文学情趣; 通过阅读报刊,我们能增长见识,扩大自己的知识面。 有许多书籍还能培养我们的道德情操, 给我们巨大的精神力量, 鼓舞我们前进。

工业锅炉热力计算

工业锅炉热力计算

工业锅炉热力计算
工业锅炉是现代工业生产中广泛使用的一种热能装置,通过燃烧燃料将化学能转化为热能,然后利用热能将介质加热至一定温度或产生蒸汽,用于生产或供热。

工业锅炉的热力计算主要包括热效率计算、燃料消耗量计算和烟气排放计算。

热效率是衡量锅炉能量转化效果的重要指标,表示锅炉每单位燃料所转化的热能。

热效率计算可以根据以下公式得出:
η=100×(Q1-Q2)/Q1
其中,η表示热效率,Q1表示锅炉所有燃料的热值,Q2表示烟气中未利用的热量。

燃料消耗量的计算可以通过锅炉的额定蒸发量和热效率来计算。

额定蒸发量是指锅炉在规定工况下所产生的蒸汽量。

燃料消耗量的计算公式如下:
G=S/LHV
其中,G表示燃料消耗量,S表示蒸汽量,LHV表示燃料的低位发热值。

烟气排放计算是指通过对锅炉燃烧过程中产生的烟气中的各种气体成分进行分析,并计算其排放浓度和排放量的过程。

烟气排放计算需要考虑锅炉燃烧过程中产生的二氧化碳、一氧化碳、硫化物等气体,并结合锅炉燃烧空气量、燃料成分等因素进行计算。

工业锅炉热力计算的目的是为了评估锅炉的热力性能以及燃烧效率,为提高锅炉的能效和环境保护提供依据。

在实际工程应用中,可以根据锅
炉的具体参数和运行情况进行热力计算,并结合能源管理的要求,优化锅炉运行参数,降低能耗和环境污染。

总之,工业锅炉热力计算是对锅炉热力性能参数进行计算和分析,推导出锅炉热效率、燃料消耗量和烟气排放等指标的方法和过程。

通过热力计算,可以评估锅炉的能效和环保性能,并为优化锅炉运行提供依据。

锅炉热力计算课件

锅炉热力计算课件

燃烧过程计算
燃烧效率计算
根据燃料特性和燃烧条件,计算燃料 的燃烧效率。
燃烧温度计算
基于燃料的种类和燃烧条件,计算燃 烧温度。
燃烧产物计算
烟气成分分析
分析燃烧产生的烟气成分,如二氧化碳、一氧化碳、氮氧化物等。
烟气排放量计算
根据燃料成分和燃烧效率,计算烟气的排放量。
04
热工控制与安全保护
热工控制原理
控制系统集成
讲解如何将锅炉的控制系统与其 他系统进行集成,实现信息共享 和协同工作。
05
实际应用与案例分析
实际应用场景
1 2 3
工业生产 工业生产中需要大量的蒸汽和热水,锅炉热力计 算可以确定锅炉的容量、热效率等参数,以满足 生产需求。
集中供热 在城市集中供热系统中,锅炉热力计算可以确定 供热管网的输送能力和热源的供热能力。
01
根据锅炉的负荷和效率,计算出燃料消耗量,以优化能源利用。
热量平衡计算
02
通过对锅炉进出口水温、蒸汽流量等参数的计算,确定锅炉的
热效燃烧效率,计算出烟气流量和温度,以评估
燃烧效果。
系统效率分析
热效率分析
通过对比实际运行数据和设计值,分析锅炉热效率的 高低及其原因。
案例二:大型电站锅炉热力计算
案例概述
某大型火力发电厂需要 建设一台电站锅炉,用 于发电。
计算内容
根据汽轮机的进汽参数 和发电效率要求,进行 锅炉热力计算,包括炉 膛尺寸、受热面布置、 燃烧器数量等。
计算结果
确定锅炉的设计和运行 参数,以及相关的工艺 参数。
案例三:生物质锅炉热力计算
案例概述 某生物质发电厂需要建设一台生物质锅炉,用于燃烧生物 质发电。

锅炉WNS2-1.25燃气热力计算

锅炉WNS2-1.25燃气热力计算

Q net.q ( 100- q 3- q 4- q 6)/ ( 100q 4)+ Q k=35588×(100-0.5-0-0)÷(1000)+273.35
查焓温表
Θ jr+273=1890.85+273
θ l〞 I l〞 T l〞
先假定后校核 查焓温表
θ l〞+273=1333+273
(Q l - I l〞) / (T j r - T l)=(35683.4124130.49)÷(2163.85-1606)
Ⅴ.锅炉热平衡及燃料消耗量计算 符号
Q net.q tl Il
k k
单位
KJ/m
3

值 35588.00 20.0 248.5 160.00 2539.38 0.00 0.50 1.00
燃料低位发热值 冷空气温度 冷空气理论热焓 排烟温度 排烟热焓 固体不完全燃烧 热损失 气体不完全燃烧 热损失 排烟过量空气系 数 排烟热损失
查烟焓表
KJ/m3
KW/m3 KW/m
2
ψ (Q l - I l〞) =0.96×(35683.4124076.93)
qV q
f
B Q net.q / V=158.3013÷3600×35588÷ 1.11 Q
f
/H f=11157.5÷7.75
符号
θl I′ θ l〞 T l〞 I l〞 Q rp D gz t
3.6 V l / F l=3.6×1.11÷8.08

值 8.08 0.50 1.00 0.55 0.55 7.75 1.10 0.10 20.00 248.50 20.00 248.50 273.35 35683.41 1890.85 2163.85 1333.00 24130.49 1606.00 20.71 0.104

锅炉热力计算书

锅炉热力计算书

锅炉热力计算书锅炉热力学计算书(BoilerThermalCalculations)是用来精确地计算锅炉热力学性能的重要书籍,它是国家标准、国际标准、工业技术规范、实验室和厂房设备调试等工作的重要参考书。

锅炉热力学计算书包括以下几个方面:1.质量计算:当受热量和温度变化时,热质量计算法可以准确地估算锅炉的热能转换效率。

2.容量:热容量是指锅炉的能够容纳的热量,这是用来评估锅炉的热能转换效果的重要参数。

3.传导:热传导是指锅炉的热量如何在流体内传播的过程,这也是锅炉热能转换效果的重要参数。

4.械传动:机械传动涉及到锅炉的压力控制、温度控制以及电气动力涡轮变速器等相关系统,是锅炉热能转换效果的重要要素。

5.管理:热管理是指在锅炉运行过程中,如何实现对热量的控制,是提高锅炉热能转换效率的关键技术领域。

6.质交换:热质交换是指锅炉的热能如何从一种介质转换到另一种介质的过程,也是锅炉热能转换效率的重要参数。

7.体动力:气体动力则是指锅炉内燃料燃烧后产生的热量如何用于发动机的运行,这对于提高锅炉热能转换效率也是至关重要的。

锅炉热力学计算书是锅炉热能转换效果的重要参考书,它可以为我们精确估算锅炉的热能转换效果提供有力的参考依据。

它应用于各种制造业的锅炉的设计、制造及运行都是必不可少的,所以有必要研究和开发出更高水平的锅炉热力学计算书,以满足不断变化的锅炉设计要求。

为了充分利用锅炉热力学计算书,需要先了解锅炉的热力学特性和规律,并了解各种热力计算方法,以及与锅炉热力学有关的各项理论和实践。

此外,应当注意物理数据的准确性,以确保锅炉的热力学计算的准确性。

在进行锅炉热力学计算时,应根据锅炉的实际情况,尽可能准确地反映出锅炉热力学变化,以期可以得出符合实际情况的结论。

综上,锅炉热力学计算书是锅炉热能性能精确计算的重要参考书,它对于社会经济建设发展和改善人类生活有重要意义,应得到重视。

工业锅炉设计计算 标准方法

工业锅炉设计计算 标准方法

工业锅炉设计计算标准方法
工业锅炉设计计算是工程设计中的重要环节,其准确性和合理性直接关系到锅
炉的安全运行和能效。

本文将介绍工业锅炉设计计算的标准方法,以供参考。

首先,工业锅炉设计计算的第一步是确定工作参数。

这包括锅炉的额定蒸发量、额定蒸汽压力、额定蒸汽温度、给水温度、燃料种类和热值等。

这些参数的确定需要充分考虑锅炉的使用环境和工艺要求,确保锅炉在设计工况下能够稳定运行。

其次,根据工作参数,进行热力计算。

热力计算是工业锅炉设计计算的核心内容,主要包括燃烧热效率计算、传热面积计算、燃料燃烧量计算等。

在进行热力计算时,需要考虑锅炉的燃烧方式、传热方式、燃烧风量、燃烧风压等因素,确保计算结果准确可靠。

接着,进行结构设计和强度计算。

结构设计包括锅炉的整体结构设计和传热面
的布置设计,需要考虑锅炉的使用场所、安装方式和维护要求。

强度计算则是根据设计参数和材料特性进行应力分析和变形分析,确保锅炉在工作过程中能够承受各种载荷,并保证安全可靠。

最后,进行热力系统和控制系统的设计。

热力系统设计包括锅炉的给水系统、
蒸汽系统和排烟系统等,需要考虑热力平衡和热力损失,确保系统运行稳定。

控制系统设计则是根据锅炉的工作参数和工艺要求,确定控制方式和参数范围,确保锅炉能够按照设计要求进行自动控制。

综上所述,工业锅炉设计计算是一项复杂的工程计算工作,需要充分考虑锅炉
的使用环境和工艺要求,确保设计结果符合安全、稳定、高效的要求。

只有通过严谨的计算和科学的设计,才能保证工业锅炉的安全运行和长期稳定性。

工业锅炉设计

i″
kJ/kg
i'+BjQrp/D(1+Ppw)
10
工质出口温度
t″

由[1]附表5
71.25
11
工质入口温度
t'

设计数据
70
12
烟气平均温度
υpj

(υ'+υ″) /2
220
13
最大温差
△td

υ'+t″
188.75
14
最小温差
△tx

υ″-t'
110
15
温压
△t

(△td-△tx)/ln(△td/△tx)
1295.24
4
锅炉管束吸热量
Qgg
kJ/kg
由热力计算得
6448.4
5
省煤器吸热量
Qsm
kJ/kg
由热力计算得
714.87
7
绝对误差
△Q
kJ/kg
Q1-ΣQ[(100-q4)/100]
-84.52
8
相对误差

%
|△Q/Qr|×100误差小于0.5%
0.478
省煤器计算
表1-9铸铁省煤器几何特性计算
序号
名称
符号
单位
计算公式或来源
数值
1
省煤器管长
m
由[1]表3-3
1.5
2
管内径
dn
mm
由[1]表3-3
60
3
每根管受热面积
H1
m2
由[1]表3-3
2.18
4
每根管烟气流通截面积

工业锅炉热力计算



T4 wal
Qb,c
Ib,c

b,c
I0 l,a

Ib,c
Tav Tb,cTb,c
11
锅炉热力计算简介
燃油燃气锅炉炉胆热力计算
方法:采用校核计算方法; 主要计算方程
Qr

CH r Bcal

Tav 100
4


Twal 1004锅炉热力计算简介 热力计算简介
校核计算
校核计算是估计已有锅炉在非设计工况条件下的运行指标或者 改造后锅炉热力性能计算
计算任务:根据已有的锅炉各受热面结构参数及传热面积和热 力系统形式在锅炉参数,燃料种类或局部受热面面积发生变化 时,通过传热性能计算确定各个受热面交界处的水温、汽温、 烟温及空气温度的值,确定锅炉的热效率和燃料消耗量等。
对布置在炉膛出口处的对流受热面,还考虑炉膛的辐 射热量。
13
锅炉热力计算简介
对流受热面热力计算
方法:一般采用校核计算方法,对于两级过热器,先 计算的一级采用校核计算,后计算的一级采用设计计 算;
主要计算方程
Qh,t


KH t Bcal
——诸多锅炉厂根据长期设计生产经验确定的修正系数
fur

Tfur Tadi
p
fur

k
B0

1 afur
m

10
锅炉热力计算简介
燃尽室热力计算
方法:采用校核计算的方法,先确定燃尽室几何结构 参数,然后求出燃尽室出口烟气温度;
主要计算方程
Qr

0ab,c H r
Bcal

锅炉炉膛热力计算+锅炉烟风阻力计算书

SZBQ6-1.25-T锅炉热力计算书计算依据《工业锅炉设计计算标准方法》2003SZBQ6-1.25-T炉膛热力计算序号计算项目符号单位公式或来源数值1 额定蒸发量 D t/h 设计选定 62 额定压力Pe MPa 设计选定 1.253 蒸汽湿度sd % 设计选定04 饱和蒸汽温度tbh ℃蒸汽特性表193.285 饱和蒸汽焓iss KJ/㎏蒸汽特性表2788.616 饱和水焓isw KJ/㎏蒸汽特性表822.237 汽化潜热qr KJ/㎏蒸汽特性表4907.378 给水温度tgs ℃设计选定209 给水焓ifw KJ/㎏表B14 85.1510 排污率pw % 设计选定 311 燃料种类- - 木质颗粒12 收到基碳Car % 表B2-1 46.8813 收到基氢Har % 表B2-1 5.7214 收到基氧Oar % 表B2-1 35.515 收到基氮Nar % 表B2-1 0.1416 收到基硫Sar % 表B2-1 0.0517 收到基灰份Aar % 表B2-1 1.818 收到基水份Mar % 表B2-1 9.9119 挥发份Vhf % 表B2-1 6020 挥发份燃烧系数Vfc - 式5-21 0.1521 燃料低位发热值Qar KJ/㎏表B2-1 1720022 理论空气量V0 Nm3/㎏式3-7 4.523 理论氮气量VN Nm3/㎏式3-19 3.5624 理论水蒸汽量VH Nm3/㎏式3-21 0.8325 实际水蒸汽量Vs Nm3/㎏式3-23 0.8726 三原子气量VR Nm3/㎏式3-20 0.8827 烟气总容积Vg Nm3/㎏式3-22 7.5528 炉膛入口空气系数kq1 - 设计选定 1.429 漏风系数dkq - 设计选定0.130 炉膛出口空气系数kq2 - 设计选定 1.531 排烟处空气系数kqpy - 设计选定 1.732 冷空气温度tlk ℃设计选定2033 冷空气焓Ilk KJ/㎏焓温表119.2734 供风温度tgf ℃设计选定2035 供风焓Igf KJ/㎏焓温表119.2736 空气带入炉膛的热量Qa KJ/㎏式5-12 178.937 锅炉有效利用热量Qef KJ/㎏式4-10 16117465.4638 锅炉输入热量Qin KJ/㎏式4-4 1720039 锅炉入炉热量Qfur KJ/㎏式5-11 17205.9440 排烟温度tpy ℃设计选定15041 排烟焓Ip KJ/㎏焓温表1749.4942 输出热量q1 KJ/㎏式4-10 14990.143 排烟热损失q2 % 式4-13 8.9544 气体不完全燃烧损失q3 % 设计选定 145 固体不完全燃烧损失q4 % 设计选定0.546 散热损失q5 % 表4-1 2.447 灰渣温度thz ℃设计选定60048 灰渣漏煤比blm - 设计选定0.9549 灰渣物理热损失q6 % 式4-22 050 锅炉热效率XL % 式4-28 87.1551 燃料耗量 B ㎏/h 式4-29 1075.2152 计算燃料耗量Bcal ㎏/h 式4-32 1069.8353 保热系数Br - 式4-21 0.9754 炉膛容积VL m3 设计选定1455 炉膛包容面积FL ㎡设计选定4556 辐射受热面积Hf ㎡设计选定1257 炉排面积Rlp ㎡设计选定7.858 炉墙与炉排面积比lr - 式5-25 0.2159 炉膛有效辐射层厚度S m 式5-10 1.1260 炉膛水冷度sld - 式5-9 0.3261 大气压力Patm MPa 设计选定0.162 烟气重量Gg ㎏/㎏式3-26 9.863 飞灰系数afh - 设计选定0.0564 飞灰浓度Mufh ㎏/㎏式3-27 .0000965 飞灰焓Ifh kJ/㎏式3-39 066 绝热燃烧温度tadi ℃焓温表1431.6667 水蒸汽容积份额rh - 式3-25 0.1168 三原子气容积份额rq - 式3-24 0.2369 三原子气辐射减弱系数Ktri 1/(m*MPa) 式5-19 2.1470 固体辐射减弱系数Kp 1/(m*MPa) 式5-21 0.1671 介质辐射减弱系数Kj 1/(m*MPa) 式5-18 2.372 烟气黑度ag - 式5-17 0.2373 辐射受热面黑度awal - 5.3.3条0.874 烟气平均热容量Vcav kJ/㎏*℃式5-16 13.1475 炉膛系统黑度afur - 式5-24 0.5776 波尔兹曼准则Bo - 式5-33 1.1377 受热面灰壁热阻系数Rzb ㎡*℃/W 式5-28 0.0025878 管壁灰表面温度twal ℃式5-28 506.8279 计算值m - 式5-31 0.1780 无因次温度变量值mbo - 式5-32 2.1781 无因次温度Wst - 解式5-32 0.7782 炉膛出口温度tl2 ℃解式5-32 1047.8883 炉膛出口烟焓Il2 KJ/㎏焓温表12163.4384 炉膛平均温度tav ℃式5-27 1152.9285 炉膛辐射放热量Qr KJ/㎏式5-30 4907.3786 辐射受热面热流密度qm W/㎡式5-29 121529.0587 炉排面积负荷强度qr W/㎡式5-47 658602.6588 炉膛容积负荷强度qv W/m3 式5-48 366935.7689 额定工况通风量Qetf m3/h - 7274.5590 额定工况烟气量Qeyq m3/h - 14032.09 一程顺列管束热力计算.序号项目符号单位公式及来源数值2.1 入口烟温t1 ℃上段计算结果1043.83 2.2 入口烟焓i1 KJ/kg 焓温表9808.88 2.3 出口烟温t2 ℃上段计算结果524.262.4 出口烟焓i2 KJ/kg 焓温表4775.23 2.5 冷空气温度tlk ℃设计选定202.6 冷空气焓Ilk KJ/kg 焓温表102.132.7 工质温度tj ℃程序查表1942.8 保热系数Br - 上段计算结果.972.9 计算燃料量Bcal - 上段计算结果1209.15 2.10 烟气放热量Qrp KJ/kg 式8-2 4892.22 2.11 入口空气系数kq1 - 设计选定 1.52.12 漏风系数dkq - 设计选定.052.13 平均空气系数kq - 设计选定 1.522.14 出口空气系数kq2 - 设计选定 1.552.15 烟气通道面积fx m2 设计确定.62.16 对流受热面积fxhf m2 由几何计算54.382.17 对流管直径dw mm 设计选定512.18 横向管距ss1 mm 设计选定1002.19 纵向管距ss2 mm 设计选定1052.20 纵向布管数量z2 - 设计确定272.21 横排几何系数Cs - 式8-25 12.22 纵排几何系数Cz - 式8-26 12.23 平均烟速w m/s 式8-14 13.052.24 导热修正系数MA - 程序查表.972.25 粘度修正系数MV - 程序查表.992.26 普朗特修正系数MPr - 程序查表.982.27 烟气导热系数 A - 程序查表.083667 2.28 烟气运动粘度V - 程序查表.000114 2.29 烟气普朗特数Pr - 程序查表.52.30 烟温与工质最大温差tmax ℃t1-tj 849.83 2.31 烟温与工质最小温差tmin ℃t2-tj 330.26 2.32 平均温压dt ℃式8-51 549.72 2.33 计算烟温tyj ℃tgz+dt 743.72 2.34 灰壁热阻系数Rhb W/(m.℃) 选取02.35 热流密度qm W/m2 Bcal*Qrp/(3.6*fxhf) 30216.41 2.36 灰壁温差dtb ℃qm*Rhb 77.96 2.37 管灰壁温度tb ℃dtb+dt 271.96 2.38 有效辐射层厚度sfb m 式8-48 .192.39 实际水蒸汽量Vs Nm3/kg 式3-23 .462.40 烟气总容积Vg Nm3/kg 式3-22 6.262.41 水蒸汽容积份额rh - 式3-25 .072.42 三原子气辐射减弱系数ktri 1/(m.MPa) 式5-19 5.492.43 烟气黑度ag - 式8-45 .12.44 对流换热系数ad W/m2℃式8-24 73.91 2.45 辐射换热系数af W/m2℃(式8-44) 10.65 2.46 传热有效系数psi - 设计选定.652.47 传热热系数Kcr W/m2℃式8-1 54.97 2.48 传热量Qcp KJ/kg 式8-2 4892.22 2.49 计算误差ca % - 0二程管束热力计算.序号项目符号单位公式及来源数值3.1 入口烟温t1 ℃上段计算结果524.26 3.2 入口烟焓i1 KJ/kg 焓温表4775.25 3.3 出口烟温t2 ℃上段计算结果352.05 3.4 出口烟焓i2 KJ/kg 焓温表3229.28 3.5 冷空气温度tlk ℃设计选定203.6 冷空气焓Ilk KJ/kg 焓温表102.13 3.7 工质温度tj ℃程序查表1943.8 保热系数Br - 上段计算结果.973.9 计算燃料量Bcal - 上段计算结果1209.15 3.10 烟气放热量Qrp KJ/kg 式8-2 1505.97 3.11 入口空气系数kq1 - 设计选定 1.553.12 漏风系数dkq - 设计选定.053.13 平均空气系数kq - 设计选定 1.583.14 出口空气系数kq2 - 设计选定 1.63.15 烟气通道面积fx m2 设计确定.463.16 对流受热面积fxhf m2 由几何计算42.093.17 对流管直径dw mm 设计选定513.18 横向管距ss1 mm 设计选定1003.19 纵向管距ss2 mm 设计选定1053.20 纵向布管数量z2 - 设计确定273.21 横排几何系数Cs - 式8-25 13.22 纵排几何系数Cz - 式8-26 13.23 平均烟速w m/s 式8-14 12.13.24 导热修正系数MA - 程序查表.973.25 粘度修正系数MV - 程序查表.993.26 普朗特修正系数MPr - 程序查表.973.27 烟气导热系数 A - 程序查表.05782 3.28 烟气运动粘度V - 程序查表.000061 3.29 烟气普朗特数Pr - 程序查表.533.30 烟温与工质最大温差tmax ℃t1-tj 330.26 3.31 烟温与工质最小温差tmin ℃t2-tj 158.05 3.32 平均温压dt ℃式8-51 233.67 3.33 计算烟温tyj ℃tgz+dt 427.67 3.34 灰壁热阻系数Rhb W/(m.℃) 选取03.35 热流密度qm W/m2 Bcal*Qrp/(3.6*fxhf) 12017.48 3.36 灰壁温差dtb ℃qm*Rhb 31.013.37 管灰壁温度tb ℃dtb+dt 225.01 3.38 有效辐射层厚度sfb m 式8-48 .193.39 实际水蒸汽量Vs Nm3/kg 式3-23 .473.40 烟气总容积Vg Nm3/kg 式3-22 6.463.41 水蒸汽容积份额rh - 式3-25 .073.42 三原子气辐射减弱系数ktri 1/(m.MPa) 式5-19 6.413.43 烟气黑度ag - 式8-45 .123.44 对流换热系数ad W/m2℃式8-24 73.873.45 辐射换热系数af W/m2℃(式8-44) 5.253.46 传热有效系数psi - 设计选定.653.47 传热热系数Kcr W/m2℃式8-1 51.433.48 传热量Qcp KJ/kg 式8-2 1505.97 3.49 计算误差ca % - 0SZS6-1.6省煤器热力及烟风阻力计算汇总序号项目符号单位公式及来源数值1 入口烟温t1 ℃原始数据2632 入口烟焓I1 KJ/kg 焓温表3042.7493 出口烟温t2 ℃计算结果168.81124 出口烟焓I2 KJ/kg 焓温表1932.4475 平均烟气速度w m/s 式(8-14) 9.989126 入口烟气速度w1 m/s - 11.084577 出口烟气速度w2 m/s - 9.1322538 烟气通道面积Fx m2 CAD查询.4369 出口烟气量Vy2 m3/h - 8.87211310 入口标准烟气量VY01 Nm3/h - 8600.63411 出口标准烟气量VY02 Nm3/h - 9117.33912 沿程阻力Pc Pa - 497.47813 烟气导热系数 a W/m.℃表B9 .040054714 烟气运动粘度v m2/s 表B9 3.269E-0515 烟气普朗特数Pr - 表B9 .61028916 对流换热系数ad W/m.℃式(8-27) 70.8863417 辐射换热系数af W/m.℃式(8-44) 5.61013518 传热系数kcr W/m.℃式(8-1) 53.5475319 烟气侧放热量Qrp kJ/kg 式(8-2) 1099.7420 传热量Qcp kJ/kg 式(8-1) 1099.74121 对流传热有效系数psi - 设计取值.722 R2O辐射减弱系数ktri - 式(5-19) 1.90017823 管壁黑度ab - 设计取值.824 烟气黑度ag - 式(8-45) .346309625 管灰壁热阻系数hrz m2.℃/W 设计取值.0025826 管灰壁温度差dtb ℃程序计算17.9984727 管壁计算温度tb ℃式(8-49) 97.9984728 热流密度qm W/m2 程序计算6976.15229 烟气与介质最大温差dtmax ℃式(8-51) 18330 烟气与介质最小温差dtmin ℃式(8-51) 88.8111631 平均温压dt ℃式(8-51) 130.279732 烟气计算温度tyj ℃式(8-23) 210.279733 管间有效辐射层厚度s m 式(8-48) .223727234 管子外径dw mm 计算取值5135 横向节距s1 mm 计算取值10036 纵向节距s2 mm 计算取值12037 纵向管排数z2 - 计算取值5038 横向相对节距sgma1 - S1/d 1.96078439 纵向相对节距sgma2 - S2/d 2.35294140 管排几何布置系数Cs Cs - 式(8-25) 141 纵向管排布置系数Cz Cz - 式(8-26) 142 工质温度tj ℃饱和蒸汽表8043 冷空气温度tlk ℃设计取值2044 冷空气焓Ilk KJ/kg 焓温表131.033845 入口空气系数kq1 - 设计取值 1.646 漏风系数dkq - 设计取值.147 出口空气系kq2 - 设计取值 1.748 固体不完全燃烧损失q4 % 设计取值849 锅炉散热损失q5 % 设计取值 1.750 锅炉热效率XL % 热平衡计算结果7951 保热系数Br - 热平衡计算结果.978934352 燃料耗量 B kg/h 热平衡计算结果111753 计算燃料量Bj kg/h 热平衡计算结果1027.6454 理论空气量V0 Nm3/kg 式(3-7) 4.94840955 二氧化物容积VR Nm3/kg 式(3-20) .906036356 理论氮气量VN Nm3/kg 式(3-19) 3.91620357 理论水蒸汽容积VH Nm3/kg 式(3-21) .530219458 实际水蒸汽容积VS Nm3/kg 式(3-23) .582004559 实际烟气量Vy Nm3/kg 式(3-22) 8.62070960 水蒸汽容积份额rh - 式(3-25) 6.751236E-0261 三原子容积份额rq - 式(3-24) .172612362 管束吸收功率Qgl MW 程序计算.313927163 烟气密度m kg/m3 程序计算.757133864 烟气通道当量直径ddl m CAD查询.091365 雷诺数Re - 程序计算27896.5666 单排阻力系数z0 - 式(1-15) .263394667 总阻力系数zn - 式(1-14) 13.1697368 动压头Pyt Pa - 37.7743569 沿程阻力F_pc Pa - 497.478 SZBQ6-1.25-T锅炉烟风阻力计算书计算依据《工业锅炉设计计算标准方法》20031.炉膛序号项目符号单位公式及来源数值1.1 炉膛负压p1 Pa 设计选定202.流程1烟气通道阻力计算.序号项目符号单位公式及来源数值2.1 对流管直径dw mm 设计选定512.2 横向管距ss1 mm 设计选定1002.3 纵向管距ss2 mm 设计选定1052.4 纵向布管数量z2 - 设计确定272.5 横向相对节距sm1 - s1/dw 1.962.6 纵向相对节距sm2 - s2/dw 2.062.7 布管形状系数fsi - (s1-dw)/(s2-dw) .912.8 烟气通道面积fx m2 设计确定.62.9 通道当量直径dl m 设计确定94.52.10 入口烟气温度t1 ℃热力计算1043.832.11 出口烟气温度t2 ℃热力计算524.262.12 计算烟温tyj ℃热力计算743.722.13 烟气平均速度w m/s 式8-14 13.052.14 烟气平均密度myp kg/m3 热力计算.352.15 烟气运动粘度v Pa.s 程序查表.00011385 2.16 雷诺数Re - 上段计算10833229.08 2.17 烟气平均动压pd Pa 上段计算30.142.18 单排管阻力系数zo - 式1-15 .082.19 管程总阻力系数zn - zo*z2 2.162.20 管程阻力dpa Pa 式1-14 02.21 管壁工质温度tj ℃设计选取1942.22 烟温与工质最大温差tmax ℃t1-tj 849.832.23 烟温与工质最小温差tmin ℃t2-tj 330.262.24 平均温压dt ℃式8-51 549.722.25 计算烟温tyj ℃热力计算743.722.26 通道当量直径ddl m 式1-4 94.52.27 烟气入口调和面积ft1 m2 式1-13 .62.28 烟气入口转向角度af1 度设计902.29 烟气入口动压pd1 Pa 式1-6 39.032.30 烟气入口阻力系数zn1 - 1.4.4条 12.31 烟气入口阻力dp1 Pa 式1-6 39.032.32 烟气出口调和面积ft2 m2 式1-13 .62.33 烟气出口转向角度af2 度设计902.34 烟气出口动压pd2 Pa 式1-6 23.632.35 烟气出口阻力系数zn2 - 1.4.4条 12.36 烟气出口阻力dp2 Pa 式1-6 23.632.37 计算管程烟气总阻力dp Pa 式1-1 127.723.流程2烟气通道阻力计算.序号项目符号单位公式及来源数值3.1 对流管直径dw mm 设计选定513.2 横向管距ss1 mm 设计选定1003.3 纵向管距ss2 mm 设计选定1053.4 纵向布管数量z2 - 设计确定273.5 横向相对节距sm1 - s1/dw 1.963.6 纵向相对节距sm2 - s2/dw 2.063.7 布管形状系数fsi - (s1-dw)/(s2-dw) .913.8 烟气通道面积fx m2 设计确定.463.9 通道当量直径dl m 设计确定92.63.10 入口烟气温度t1 ℃热力计算524.263.11 出口烟气温度t2 ℃热力计算352.053.12 计算烟温tyj ℃热力计算427.673.13 烟气平均速度w m/s 式8-14 12.13.14 烟气平均密度myp kg/m3 热力计算.513.15 烟气运动粘度v Pa.s 程序查表.00006146 3.16 雷诺数Re - 上段计算18230405.15 3.17 烟气平均动压pd Pa 上段计算37.563.18 单排管阻力系数zo - 式1-15 .073.19 管程总阻力系数zn - zo*z2 1.953.20 管程阻力dpa Pa 式1-14 03.21 管壁工质温度tj ℃设计选取1943.22 烟温与工质最大温差tmax ℃t1-tj 330.263.23 烟温与工质最小温差tmin ℃t2-tj 158.053.24 平均温压dt ℃式8-51 233.673.25 计算烟温tyj ℃热力计算427.673.26 通道当量直径ddl m 式1-4 92.63.27 烟气入口调和面积ft1 m2 式1-13 .63.28 烟气入口转向角度af1 度设计903.29 烟气入口动压pd1 Pa 式1-6 25.123.30 烟气入口阻力系数zn1 - 1.4.4条 13.31 烟气入口阻力dp1 Pa 式1-6 25.123.32 烟气出口调和面积ft2 m2 式1-13 .63.33 烟气出口转向角度af2 度设计903.34 烟气出口动压pd2 Pa 式1-6 19.693.35 烟气出口阻力系数zn2 - 1.4.4条 13.36 烟气出口阻力dp2 Pa 式1-6 19.693.37 计算管程烟气总阻力dp Pa 式1-1 117.864.流程3烟气通道阻力计算.序号项目符号单位公式及来源数值4.1 对流管直径dw mm 设计选定514.2 横向管距ss1 mm 设计选定1004.3 纵向管距ss2 mm 设计选定1054.4 纵向布管数量z2 - 设计确定274.5 横向相对节距sm1 - s1/dw 1.964.6 纵向相对节距sm2 - s2/dw 2.064.7 布管形状系数fsi - (s1-dw)/(s2-dw) .914.8 烟气通道面积fx m2 设计确定.354.9 通道当量直径dl m 设计确定99.64.10 入口烟气温度t1 ℃热力计算352.054.11 出口烟气温度t2 ℃热力计算270.564.12 计算烟温tyj ℃热力计算306.424.13 烟气平均速度w m/s 式8-14 13.554.14 烟气平均密度myp kg/m3 热力计算.624.15 烟气运动粘度v Pa.s 程序查表.00004449 4.16 雷诺数Re - 上段计算30334194.01 4.17 烟气平均动压pd Pa 上段计算56.924.18 单排管阻力系数zo - 式1-15 .074.19 管程总阻力系数zn - zo*z2 1.76 4.20 管程阻力dpa Pa 式1-14 04.21 管壁工质温度tj ℃设计选取194 4.22 烟温与工质最大温差tmax ℃t1-tj 158.05 4.23 烟温与工质最小温差tmin ℃t2-tj 76.56 4.24 平均温压dt ℃式8-51 112.42 4.25 计算烟温tyj ℃热力计算306.42 4.26 通道当量直径ddl m 式1-4 99.6 4.27 烟气入口调和面积ft1 m2 式1-13 .35 4.28 烟气入口转向角度af1 度设计904.29 烟气入口动压pd1 Pa 式1-6 61.4 4.30 烟气入口阻力系数zn1 - 1.4.4条 14.31 烟气入口阻力dp1 Pa 式1-6 61.4 4.32 烟气出口调和面积ft2 m2 式1-13 .35 4.33 烟气出口转向角度af2 度设计904.34 烟气出口动压pd2 Pa 式1-6 53.4 4.35 烟气出口阻力系数zn2 - 1.4.4条 14.36 烟气出口阻力dp2 Pa 式1-6 53.4 4.37 计算管程烟气总阻力dp Pa 式1-1 214.785.烟气通道阻力汇总:序号项目符号单位公式及来源数值5.1 炉膛负压P0 Pa 设计选定205.2 流程1 P1 Pa 计算127.72 5.3 流程2 P2 Pa 计算117.86 5.4 流程3 P3 Pa 计算214.78 5.5 除尘器阻力pc Pa 制造厂提供1200 5.6 其它烟道阻力pq Pa 设计预选1000 5.7 总阻力Pa Pa 2681。

工业锅炉3章热平衡计算讲述

锅炉热平衡 1. 定义
输入热量=输出热量
燃料燃烧的放热量
产生蒸汽所利用的热量 未利用而损失掉的热量
2. 前提
1kg收到基燃料为基准 锅炉处于稳定状态
2
一. 热平衡方程
Qr Q1 Q2 Q3 Q4 Q5 Q6
Qr :输入热量,kJ/kg
Q1 :有效利用热,kJ/kg
Q2 :排烟热损失,kJ/kg Q3 :化学未完全燃烧热损失,kJ/kg Q4 :机械未完全燃烧热损失,kJ/kg Q5 :散热损失,kJ/kg Q6 :灰渣物理热损失,kJ/kg
3
热平衡方程
Qr Q1 Q2 Q3 Q4 Q5 Q6
除以Qr
100 q1 q2 q3 q4 q5 q6
Qi qi Qr


4
锅炉效率
Q1 正平衡效率 q1 100 Qr
反平衡效率
100 qi
i 2
6
二.输入热量
Qr ir Qwr Qwh
排渣方式 (3)计算:固态排渣煤粉炉thz=600℃
液态排渣thz=t3+100℃
流化床thz=800 ℃
11
五、锅炉热平衡计算
1.有效利用热Q1
给水加热到过热蒸汽 (1)组成
排汽加热到再热蒸汽
排污水吸收热量
(2)计算
Q1
" " ' Dgr igr igs Dzr izr izr Dpw (ibh igs )
(1)原因:固体颗粒未燃尽
飞灰Qfh4
灰渣Qlz4
设计:选取 (2)选择
飞灰量?
固态排渣煤粉炉0.5~5.0% 燃油和燃气炉0.0%
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1286.9
三、锅炉计算负荷:φ=60%
部件名
传热面 积
进口烟 温
出口烟 温
Wy
进口汽 出口汽 传热系 烟气放
(水)温 (水)温 数
热量
m2


m/s

℃ W/(m2·℃) kJ/ kg
炉膛 16.4

8Hale Waihona Puke 6.4-193193
- 7188.8
燃烬室 6.9 896.4 807.8

193
193

691.0
SZL6-1.25/300-AⅡ 双锅筒纵置式链条炉排组装水管锅炉
热力计算汇总表
ZB497-6
一、锅炉计算负荷:φ=100%
部件名
传热面 积
进口烟 温
出口烟 温
烟气流 速
进口汽 (水)温
出口汽 (水)温
传热系 数
烟气放 热量
m2


m/s

℃ W/(m2·℃) kJ/ kg
炉膛 16.4
- 1048.2 -
20
74.3 20.0
计算燃料:Ⅱ类烟煤(Qnet,ar =17693kJ/kg);燃料消耗量:Bj=770.8kg/h; 锅炉设计热效率:η=79.1%;排烟温度:125.7℃。
1223.5
193
193
- 5833.0
燃烬室 6.9 1048.2 962.6

193
193

677.3
第一管束 66.6 962.6 495 10.76 193
193
50.9 5152.1
过热器 26.2
495
418
9.68 196.7 300
43.7 720.2
第二管束 62.3
418
292
9.00
193
193
45.2 1311.3
省煤器 87.2
292
169 11.23
20
76.7 26.5
计算燃料:Ⅱ类烟煤(Qnet,ar =17693kJ/kg);燃料消耗量:Bj=1299.4kg/h; 锅炉设计热效率:η=78.17%;排烟温度:169℃。
1263.9
计算:
校对:
审核:
标准:
二、锅炉计算负荷:φ=110%
193
52.4 5306.7
过热器 26.2 511.1 431.6 9.97 196.7 300
45.0 741.8
第二管束 62.3 431.6 301.1 9.27
193
193
46.6 1350.6
省煤器 87.2 301.1 176.4 12.59
20
77.8 28.2
计算燃料:Ⅱ类烟煤(Qnet,ar =17693kJ/kg);燃料消耗量:Bj=1433.2kg/h; 锅炉设计热效率:η=77.7%;排烟温度:176.4℃。
第一管束 66.6 807.8 415.8 9.04
193
193
42.8 4327.8
过热器 26.2 415.8 351.1 8.13 196.7 300
36.7 605.0
第二管束 62.3 351.1 245.3 7.56
193
193
38.0 1101.5
省煤器 87.2 245.3 125.7 6.10
部件名
传热面 积
进口烟 温
出口烟 温
Wy
进口汽 出口汽 传热系 烟气放
(水)温 (水)温 数
热量
m2


m/s

℃ W/(m2·℃) kJ/ kg
炉膛 16.4
- 1078.8 -
193
193
- 5546.9
燃烬室 6.9 1078.8 993.9

193
193

671.9
第一管束 66.6 993.9 511.1 11.08 193
相关文档
最新文档