工业锅炉设计热力计算
工业锅炉3章热平衡计算资料

与负荷成反比
工质吸收的热量=
工质吸收的热量
烟气放气量 工质吸收的热量+烟道的散热量
10
5.灰渣物理热损失Q6
(1)原因:灰渣温度高于环境温度
(2)影响因素
灰分
4190 Aar Qar,net
Aar , zs
10
排渣方式
(3)计算:固态排渣煤粉炉thz=600℃ 液态排渣thz=t3+100℃ 流化床thz=800 ℃
燃料的物理显热; 外来热源加热空气时带入的热量;
雾化燃油所用蒸汽带入的热量 燃料和空气没有利用外界热量
燃煤水分满足
4190 M ar Qar .net
M ar,zs
6.65
Qr
为什么空气预热器所带入的热量不计入输入热量?
5
三、各项热损失
1.机械未完全燃烧热损失Q4
飞灰Qfh4 (1)原因:固体颗粒未燃尽
灰渣Qlz4
(2)选择
飞灰量?
固态排渣煤粉炉0.5~5.0% 设计:选取
燃油和燃气炉0.0%
运行:热平衡试验测定
飞灰系数0.9~0.95
(3)灰平衡:进入炉内的总灰量=灰渣中灰量+飞灰中灰量
排渣率
6
(4)影响因素
燃料种类,燃烧方式 炉膛型式与结构 燃烧器设计与布置 锅炉运行工况
2.化学未完全燃烧热损失Q3
1.目的
确定锅炉效率 确定锅炉各项损失 确定锅炉各项工作指标
正平衡
2.方法
反平衡
Q1和燃料消耗量B→ηb
小型锅炉
各项损失Σqi→ηb
大型锅炉
14
人有了知识,就会具备各种分析能力, 明辨是非的能力。 所以我们要勤恳读书,广泛阅读, 古人说“书中自有黄金屋。 ”通过阅读科技书籍,我们能丰富知识, 培养逻辑思维能力; 通过阅读文学作品,我们能提高文学鉴赏水平, 培养文学情趣; 通过阅读报刊,我们能增长见识,扩大自己的知识面。 有许多书籍还能培养我们的道德情操, 给我们巨大的精神力量, 鼓舞我们前进。
工业锅炉热力计算

工业锅炉热力计算
工业锅炉是现代工业生产中广泛使用的一种热能装置,通过燃烧燃料将化学能转化为热能,然后利用热能将介质加热至一定温度或产生蒸汽,用于生产或供热。
工业锅炉的热力计算主要包括热效率计算、燃料消耗量计算和烟气排放计算。
热效率是衡量锅炉能量转化效果的重要指标,表示锅炉每单位燃料所转化的热能。
热效率计算可以根据以下公式得出:
η=100×(Q1-Q2)/Q1
其中,η表示热效率,Q1表示锅炉所有燃料的热值,Q2表示烟气中未利用的热量。
燃料消耗量的计算可以通过锅炉的额定蒸发量和热效率来计算。
额定蒸发量是指锅炉在规定工况下所产生的蒸汽量。
燃料消耗量的计算公式如下:
G=S/LHV
其中,G表示燃料消耗量,S表示蒸汽量,LHV表示燃料的低位发热值。
烟气排放计算是指通过对锅炉燃烧过程中产生的烟气中的各种气体成分进行分析,并计算其排放浓度和排放量的过程。
烟气排放计算需要考虑锅炉燃烧过程中产生的二氧化碳、一氧化碳、硫化物等气体,并结合锅炉燃烧空气量、燃料成分等因素进行计算。
工业锅炉热力计算的目的是为了评估锅炉的热力性能以及燃烧效率,为提高锅炉的能效和环境保护提供依据。
在实际工程应用中,可以根据锅
炉的具体参数和运行情况进行热力计算,并结合能源管理的要求,优化锅炉运行参数,降低能耗和环境污染。
总之,工业锅炉热力计算是对锅炉热力性能参数进行计算和分析,推导出锅炉热效率、燃料消耗量和烟气排放等指标的方法和过程。
通过热力计算,可以评估锅炉的能效和环保性能,并为优化锅炉运行提供依据。
锅炉热力计算课件

燃烧过程计算
燃烧效率计算
根据燃料特性和燃烧条件,计算燃料 的燃烧效率。
燃烧温度计算
基于燃料的种类和燃烧条件,计算燃 烧温度。
燃烧产物计算
烟气成分分析
分析燃烧产生的烟气成分,如二氧化碳、一氧化碳、氮氧化物等。
烟气排放量计算
根据燃料成分和燃烧效率,计算烟气的排放量。
04
热工控制与安全保护
热工控制原理
控制系统集成
讲解如何将锅炉的控制系统与其 他系统进行集成,实现信息共享 和协同工作。
05
实际应用与案例分析
实际应用场景
1 2 3
工业生产 工业生产中需要大量的蒸汽和热水,锅炉热力计 算可以确定锅炉的容量、热效率等参数,以满足 生产需求。
集中供热 在城市集中供热系统中,锅炉热力计算可以确定 供热管网的输送能力和热源的供热能力。
01
根据锅炉的负荷和效率,计算出燃料消耗量,以优化能源利用。
热量平衡计算
02
通过对锅炉进出口水温、蒸汽流量等参数的计算,确定锅炉的
热效燃烧效率,计算出烟气流量和温度,以评估
燃烧效果。
系统效率分析
热效率分析
通过对比实际运行数据和设计值,分析锅炉热效率的 高低及其原因。
案例二:大型电站锅炉热力计算
案例概述
某大型火力发电厂需要 建设一台电站锅炉,用 于发电。
计算内容
根据汽轮机的进汽参数 和发电效率要求,进行 锅炉热力计算,包括炉 膛尺寸、受热面布置、 燃烧器数量等。
计算结果
确定锅炉的设计和运行 参数,以及相关的工艺 参数。
案例三:生物质锅炉热力计算
案例概述 某生物质发电厂需要建设一台生物质锅炉,用于燃烧生物 质发电。
锅炉WNS2-1.25燃气热力计算

Q net.q ( 100- q 3- q 4- q 6)/ ( 100q 4)+ Q k=35588×(100-0.5-0-0)÷(1000)+273.35
查焓温表
Θ jr+273=1890.85+273
θ l〞 I l〞 T l〞
先假定后校核 查焓温表
θ l〞+273=1333+273
(Q l - I l〞) / (T j r - T l)=(35683.4124130.49)÷(2163.85-1606)
Ⅴ.锅炉热平衡及燃料消耗量计算 符号
Q net.q tl Il
k k
单位
KJ/m
3
数
值 35588.00 20.0 248.5 160.00 2539.38 0.00 0.50 1.00
燃料低位发热值 冷空气温度 冷空气理论热焓 排烟温度 排烟热焓 固体不完全燃烧 热损失 气体不完全燃烧 热损失 排烟过量空气系 数 排烟热损失
查烟焓表
KJ/m3
KW/m3 KW/m
2
ψ (Q l - I l〞) =0.96×(35683.4124076.93)
qV q
f
B Q net.q / V=158.3013÷3600×35588÷ 1.11 Q
f
/H f=11157.5÷7.75
符号
θl I′ θ l〞 T l〞 I l〞 Q rp D gz t
3.6 V l / F l=3.6×1.11÷8.08
数
值 8.08 0.50 1.00 0.55 0.55 7.75 1.10 0.10 20.00 248.50 20.00 248.50 273.35 35683.41 1890.85 2163.85 1333.00 24130.49 1606.00 20.71 0.104
锅炉热力计算书

锅炉热力计算书锅炉热力学计算书(BoilerThermalCalculations)是用来精确地计算锅炉热力学性能的重要书籍,它是国家标准、国际标准、工业技术规范、实验室和厂房设备调试等工作的重要参考书。
锅炉热力学计算书包括以下几个方面:1.质量计算:当受热量和温度变化时,热质量计算法可以准确地估算锅炉的热能转换效率。
2.容量:热容量是指锅炉的能够容纳的热量,这是用来评估锅炉的热能转换效果的重要参数。
3.传导:热传导是指锅炉的热量如何在流体内传播的过程,这也是锅炉热能转换效果的重要参数。
4.械传动:机械传动涉及到锅炉的压力控制、温度控制以及电气动力涡轮变速器等相关系统,是锅炉热能转换效果的重要要素。
5.管理:热管理是指在锅炉运行过程中,如何实现对热量的控制,是提高锅炉热能转换效率的关键技术领域。
6.质交换:热质交换是指锅炉的热能如何从一种介质转换到另一种介质的过程,也是锅炉热能转换效率的重要参数。
7.体动力:气体动力则是指锅炉内燃料燃烧后产生的热量如何用于发动机的运行,这对于提高锅炉热能转换效率也是至关重要的。
锅炉热力学计算书是锅炉热能转换效果的重要参考书,它可以为我们精确估算锅炉的热能转换效果提供有力的参考依据。
它应用于各种制造业的锅炉的设计、制造及运行都是必不可少的,所以有必要研究和开发出更高水平的锅炉热力学计算书,以满足不断变化的锅炉设计要求。
为了充分利用锅炉热力学计算书,需要先了解锅炉的热力学特性和规律,并了解各种热力计算方法,以及与锅炉热力学有关的各项理论和实践。
此外,应当注意物理数据的准确性,以确保锅炉的热力学计算的准确性。
在进行锅炉热力学计算时,应根据锅炉的实际情况,尽可能准确地反映出锅炉热力学变化,以期可以得出符合实际情况的结论。
综上,锅炉热力学计算书是锅炉热能性能精确计算的重要参考书,它对于社会经济建设发展和改善人类生活有重要意义,应得到重视。
工业锅炉设计计算 标准方法

工业锅炉设计计算标准方法
工业锅炉设计计算是工程设计中的重要环节,其准确性和合理性直接关系到锅
炉的安全运行和能效。
本文将介绍工业锅炉设计计算的标准方法,以供参考。
首先,工业锅炉设计计算的第一步是确定工作参数。
这包括锅炉的额定蒸发量、额定蒸汽压力、额定蒸汽温度、给水温度、燃料种类和热值等。
这些参数的确定需要充分考虑锅炉的使用环境和工艺要求,确保锅炉在设计工况下能够稳定运行。
其次,根据工作参数,进行热力计算。
热力计算是工业锅炉设计计算的核心内容,主要包括燃烧热效率计算、传热面积计算、燃料燃烧量计算等。
在进行热力计算时,需要考虑锅炉的燃烧方式、传热方式、燃烧风量、燃烧风压等因素,确保计算结果准确可靠。
接着,进行结构设计和强度计算。
结构设计包括锅炉的整体结构设计和传热面
的布置设计,需要考虑锅炉的使用场所、安装方式和维护要求。
强度计算则是根据设计参数和材料特性进行应力分析和变形分析,确保锅炉在工作过程中能够承受各种载荷,并保证安全可靠。
最后,进行热力系统和控制系统的设计。
热力系统设计包括锅炉的给水系统、
蒸汽系统和排烟系统等,需要考虑热力平衡和热力损失,确保系统运行稳定。
控制系统设计则是根据锅炉的工作参数和工艺要求,确定控制方式和参数范围,确保锅炉能够按照设计要求进行自动控制。
综上所述,工业锅炉设计计算是一项复杂的工程计算工作,需要充分考虑锅炉
的使用环境和工艺要求,确保设计结果符合安全、稳定、高效的要求。
只有通过严谨的计算和科学的设计,才能保证工业锅炉的安全运行和长期稳定性。
工业锅炉设计

kJ/kg
i'+BjQrp/D(1+Ppw)
10
工质出口温度
t″
℃
由[1]附表5
71.25
11
工质入口温度
t'
℃
设计数据
70
12
烟气平均温度
υpj
℃
(υ'+υ″) /2
220
13
最大温差
△td
℃
υ'+t″
188.75
14
最小温差
△tx
℃
υ″-t'
110
15
温压
△t
℃
(△td-△tx)/ln(△td/△tx)
1295.24
4
锅炉管束吸热量
Qgg
kJ/kg
由热力计算得
6448.4
5
省煤器吸热量
Qsm
kJ/kg
由热力计算得
714.87
7
绝对误差
△Q
kJ/kg
Q1-ΣQ[(100-q4)/100]
-84.52
8
相对误差
—
%
|△Q/Qr|×100误差小于0.5%
0.478
省煤器计算
表1-9铸铁省煤器几何特性计算
序号
名称
符号
单位
计算公式或来源
数值
1
省煤器管长
m
由[1]表3-3
1.5
2
管内径
dn
mm
由[1]表3-3
60
3
每根管受热面积
H1
m2
由[1]表3-3
2.18
4
每根管烟气流通截面积
工业锅炉热力计算

T4 wal
Qb,c
Ib,c
b,c
I0 l,a
Ib,c
Tav Tb,cTb,c
11
锅炉热力计算简介
燃油燃气锅炉炉胆热力计算
方法:采用校核计算方法; 主要计算方程
Qr
CH r Bcal
Tav 100
4
Twal 1004锅炉热力计算简介 热力计算简介
校核计算
校核计算是估计已有锅炉在非设计工况条件下的运行指标或者 改造后锅炉热力性能计算
计算任务:根据已有的锅炉各受热面结构参数及传热面积和热 力系统形式在锅炉参数,燃料种类或局部受热面面积发生变化 时,通过传热性能计算确定各个受热面交界处的水温、汽温、 烟温及空气温度的值,确定锅炉的热效率和燃料消耗量等。
对布置在炉膛出口处的对流受热面,还考虑炉膛的辐 射热量。
13
锅炉热力计算简介
对流受热面热力计算
方法:一般采用校核计算方法,对于两级过热器,先 计算的一级采用校核计算,后计算的一级采用设计计 算;
主要计算方程
Qh,t
KH t Bcal
——诸多锅炉厂根据长期设计生产经验确定的修正系数
fur
Tfur Tadi
p
fur
k
B0
1 afur
m
10
锅炉热力计算简介
燃尽室热力计算
方法:采用校核计算的方法,先确定燃尽室几何结构 参数,然后求出燃尽室出口烟气温度;
主要计算方程
Qr
0ab,c H r
Bcal
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1286.9
三、锅炉计算负荷:φ=60%
部件名
传热面 积
进口烟 温
出口烟 温
Wy
进口汽 出口汽 传热系 烟气放
(水)温 (水)温 数
热量
m2
℃
℃
m/s
℃
℃ W/(m2·℃) kJ/ kg
炉膛 16.4
-
8Hale Waihona Puke 6.4-193193
- 7188.8
燃烬室 6.9 896.4 807.8
-
193
193
-
691.0
SZL6-1.25/300-AⅡ 双锅筒纵置式链条炉排组装水管锅炉
热力计算汇总表
ZB497-6
一、锅炉计算负荷:φ=100%
部件名
传热面 积
进口烟 温
出口烟 温
烟气流 速
进口汽 (水)温
出口汽 (水)温
传热系 数
烟气放 热量
m2
℃
℃
m/s
℃
℃ W/(m2·℃) kJ/ kg
炉膛 16.4
- 1048.2 -
20
74.3 20.0
计算燃料:Ⅱ类烟煤(Qnet,ar =17693kJ/kg);燃料消耗量:Bj=770.8kg/h; 锅炉设计热效率:η=79.1%;排烟温度:125.7℃。
1223.5
193
193
- 5833.0
燃烬室 6.9 1048.2 962.6
-
193
193
-
677.3
第一管束 66.6 962.6 495 10.76 193
193
50.9 5152.1
过热器 26.2
495
418
9.68 196.7 300
43.7 720.2
第二管束 62.3
418
292
9.00
193
193
45.2 1311.3
省煤器 87.2
292
169 11.23
20
76.7 26.5
计算燃料:Ⅱ类烟煤(Qnet,ar =17693kJ/kg);燃料消耗量:Bj=1299.4kg/h; 锅炉设计热效率:η=78.17%;排烟温度:169℃。
1263.9
计算:
校对:
审核:
标准:
二、锅炉计算负荷:φ=110%
193
52.4 5306.7
过热器 26.2 511.1 431.6 9.97 196.7 300
45.0 741.8
第二管束 62.3 431.6 301.1 9.27
193
193
46.6 1350.6
省煤器 87.2 301.1 176.4 12.59
20
77.8 28.2
计算燃料:Ⅱ类烟煤(Qnet,ar =17693kJ/kg);燃料消耗量:Bj=1433.2kg/h; 锅炉设计热效率:η=77.7%;排烟温度:176.4℃。
第一管束 66.6 807.8 415.8 9.04
193
193
42.8 4327.8
过热器 26.2 415.8 351.1 8.13 196.7 300
36.7 605.0
第二管束 62.3 351.1 245.3 7.56
193
193
38.0 1101.5
省煤器 87.2 245.3 125.7 6.10
部件名
传热面 积
进口烟 温
出口烟 温
Wy
进口汽 出口汽 传热系 烟气放
(水)温 (水)温 数
热量
m2
℃
℃
m/s
℃
℃ W/(m2·℃) kJ/ kg
炉膛 16.4
- 1078.8 -
193
193
- 5546.9
燃烬室 6.9 1078.8 993.9
-
193
193
-
671.9
第一管束 66.6 993.9 511.1 11.08 193